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We describe a comprehensive computer program COSIPO, computer simulation in polycrystals,
which uses the binary-collision approximation to simulate the slowing down of heavy ions in the
keV region in crystalline targets. The atomic scattering is governed by a potential which is chosen
as an option. Inelastic losses are either impact-parameter-dependent or friction type. Thermal vi-

brations of the target atoms can be included. Various ways to treat polycrystallinity are described.
The range dist;ributions are compared with results based on existing codes and the significance of
various parameters is studied. The effect of crystalline structure on the results of Doppler-shift at-
tenuation measurements [line shapes and F(r) values] is calculated in various ways. Both range dis-

tributions and line shapes are found to be in agreement with experiment. Nuclear stopping during
the slowing-down process in polycrystalline materials can be either smaller or larger than in amor-

phous materials. Some possible applications of the results are discussed.
I

I. INTRODUCTION

In recent years considerable progress has been made in
calculating the potential between colliding atoms and
hence in calculating the nuclear stopping power of low-

energy ions in amorphous solids. Wilson and Bisson'
used a modified Wedepohl method originating from
Gombas to calculate the potential between closed-shell
atoms. In this method the charge distributions of the in-
dividual atoms are calculated using the Hartree-Fock-
Slater formalism. When the interaction energy of the col-
liding atoms is calculated, the charge distributions are as-
sumed to be undisturbed. The total energy of interaction
between the two charge distributions is calculated from
the Coulomb, kinetic, and exchange energies. Wilson
et al. found these potentials to be suitable for the calcu-
lation of nuclear stopping.

We have calculated the potentials by using Dirac-Fock
(DF) electron distributions in the original Gordon-Kim
method, in which a small correlation term is included.
We have tested the potentials by comparing with experi-
ment the calculated ranges and range distributions of
several ions in various amorphous materials and found
them to agree to within 10% over the reduced energy in-
terval @=0.1 —1 (Refs. 5 and 7—9). The potential is test-
ed in these calculations to less than 10a ass [the
Lindhard-Scharff-Schi{5tt radius a Lss

——0.8852az /(Z
&

+Zz )', az ——0.529 A]. Recently, we studied the mul-
tiple scattering of several 50-keV ions in xenon targets. '

In comparing the widths of lateral distributions with ex-
periment, the potentials were tested up to 20alss. ' Even
in this case reasonable agreement was achieved. However,
when the experimental targets were polycrystalline, the
calculations assuming amorphous targets are quite inade-
quate, -especially in reproducing the tails of the distribu-
tions (e.g., Refs. 11—13). For example, the experimental-
ly measured range of 60-keV Al in Ta is larger than the
calculated one by a factor of 1.47+0.06.'

In the analysis of Doppler-shift attenuation (DSA) mea-
surements at low reduced-recoil energies (e-0.1 —1), the
problem of not knowing the slowing down in polycrystal-
line materials has been overcome by using experimental
correction factors for nuclear (f„) and electronic (f, )

stopping powers and by assuming the material to be
amorphous. Since the lifetimes and line shapes of the
emitted y rays are sensitive to the stopping value of the
recoiling atom, the correction procedure is both possible
and obligatory. The actual procedure in determining con-
stant f„and f, values has been typically carried out by
fitting calculated and experimental mean ranges and line
shapes at 0' and 90' detector angles. " Typical values for
the dominant f„values have been 0.7—0.8. Although the
procedure has been found to be successful, it is still not
known how the polycrystalline structure affects the line
shapes and F(~) values, or how well f„and f, are energy
independent. The consequence of using an average correc-
tion for the stopping (so that' the average slowing down
should be correct) is seen when we compare the range dis-
tributions. As a result of using f„values (e.g. , 0.7) the
modal range is shifted away from the experimental value
by about the same amount. However, the experimentally
determined tails cannot be reproduced, which leaves the
possibility that some diffusion phenomenon is the origin
of the tails. An uncertainty is therefore introduced into
the correction values. The fact that surface peaks are
often found in the implanted profiles indicates some dif-
fusion tendency.

Two methods have been used for simulations of the
slowing down of energetic ions in crystalline solids. In
the first case the force equations are solved by taking into
account the n body -interactions [multiple-interaction
method (MIM)] (e.g., Refs. 14—16). This method is more
applicable at low energies, where n-body events are impor-
tant; at higher energies the computing time required pre-
cludes its use. This method is also generally restricted to
studies where statistical information is unnecessary. The
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other method, the so-called binary-collision —ap-
proximation method (BCAM) is superior at high energies
because of its rapidity. Robinson and Oen used this latter
method in the 1960s to study in detail the common
features of the slowing down of energetic ions in various
crystals. ' In the 1970s the code was extended (and
named MARLowE) to treat displacement cascades, ' and
later still, an improved method was developed for simul-
taneous collisions. MARLowE has primarily been used
to treat fusion-reactor, 'first-wall problems, i.e., sputtering,
reflection, and radiation damage, and for light particles at
low energies. In recent reviews Harrison and Robinson '
have discussed the limitations of each of these methods in
detail, especially in the case of sputtering.

There has been a limited amount of interest in studying
in detail the .fundamentals of the stopping problem, i.e.,
the accuracy of the nuclear stopping in crystalline materi-
als. In the 1960s, when channeling was discovered by Ro-
binson and Oen using simulation' and was confirmed ex-
perimentally, the comparison between theory and experi-
ment was only qualitative because there were too many
unknown factors (see Ref. 22). In particular, the potential
was uncertain. The situation has now changed, since our
knowledge of the potential has improved considerably.
Nevertheless, there is still the need to know better the
stopping power in polycrystalline materials, because of
their common usage in experiment.

In addition, the results of the MIM and BCAM seem to
be somewhat contradictory. It thus seemed useful to
construct an independent code specially designed for stud-
ies of range distributions and the analysis of DSA mea-
surements in polycrystalline materials, where statistical
information is needed, in the keV region. The simultane-
ous collisions are then less important and BCAM is ade-
quate, so that we can concentrate on the speed of the pro-
gram.

The aim of this paper is to describe the new computer
code CQSIPO (computer simulation in polycrystals), and to
study its accuracy and the significance of the approxima-
tions. We also want to compare these results with the re-
sults of the other codes and try to understand any differ-
ences that might occur. Some results of the analysis of
the DSA measurements are given and possibilities of ap-
plying the method in new areas are described. Finally,
and most importantly, we attempt to provide a
comprehensive overview of our understanding of nuclear
stopping, both in the range and DSA measurements in
polycrystalline materials. We will show that the structure
of the material is of significance to the "effective" nuclear
stopping during the slowing-down process, which can be
smaller or /arger than in an amorphous material.

II. PROCEDURE

A primary aim in developing the code cosIPO was to
make a code as fast as possible without any serious loss of
accuracy, with a view to its use in the slowing down of
heavy ions in the keV region in polycrystals. In order to
check the accuracy of some of the approximations and to
compare the results with other calculations, various op-
tions were set up in the code.

A. Collisions

The scattering is calculated in the binary-collision ap-
proximation. The following possibilities are used in the
present work for determination of the scatterer, from the
nearest and next-nearest neighbors, and in the determina-
tion of simultaneous collisions.

(i) SCA1. The scatterer is the target atom with the
smallest impact parameter. This is a fast method intend-
ed especially for polycrystalline targets.

(ii) SCA2. The scatterer is the atom which is nearest
and which has an impact parameter less than b,„,which
may be a constant or may be determined by a specified
scattering angle. However, if there is a scatterer that has
a smaller impact parameter at a distance which deviates
by less than x;„from the nearest neighbor, that scatterer
is chosen. If the distances to some other target atoms de-
viate by less than x;„and the impact parameters are less
than b,„,the collisions with those target atoms are treat-
ed simultaneously. The final direction of the ion after the
simultaneous collisions is determined by adding the mo-
menta vectorially. In all the distributions presented,
b mgx: 2 0 A amI xmjII 0.4 A, unless otherwise stated.
More involved methods exist, ' but this method has been
found to be adequate for the present purposes; i.e., the im-
portance of simultaneous collisions can be studied by
varying b,„. If the results are sensitive to b,„, the
BCA method is in any case inaccurate, and the MIM
should be used. Some care must be exercised when choos-
ing b,„, because too large b,„values may sometimes
lead to neglect of the nearest collisions, as only the nearest
and next-nearest neighbors are included in the search for
the next scatterer.

B. Potential and scattering angle

When the method described in the Introduction is used
to calculate a potential, a different potential for each pair
of atoms is obtained, thus making the calculation unwiel-
dy. Therefore we calculated a mean of the potentials in
reduced units, aLss, which is a good approximation for
the individual potentials at not too small energies. Some-
what better agreement was possible by introducing a new
scaling parameter a ' =a Lss [a+p(Z & +Z2 )r ]. Ziegler
et al. later used a similar method. In the following, ei-
ther an individual (=DF) or the mean (=MEAN) poten-
tial in azss units is used when making comparison with
experimental range distributions. When the reduced ener-
gy e is of the order of 1, there is little difference in the
stopping calculated from the various potentials. '

The potential between atoms in a solid is different from
that between undisturbed atoms at greater distances. In
metals we may consider that the zero of the potential en-
ergy is changed. The change may be naturally included in
MI simulations. In the BCA calculations the change may
be studied by suitable "erosion" of the potential, i.e., by
subtracting a constant from the potential energy so that it
goes to zero, e.g., in the middle of the channel. This
reduces the energy loss, but keeps the force at zero in the
middle of the channel. The potential can also be tt'uncat-
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ed, i.e., it is set to zero after a definite distance, whereas at
shorter distances there is no change in the potential.

In order to compare the present program with other.
methods, some other potentials are also used, as we show
in the following.

For Cu-Cu, the Born-Mayer (=BM1; see Ref. 17),

VaMi (r) = (22.5 keV)exp( r /0.—1966 A),
or the Born-Mayer —plus —Bohr (=8MB; see Ref. 15) po-
tentials is used,

VaMii(r) = VnM, (r) +(12/r keV)exp( r/0. 12—A),
for Xe-W, the Born-Mayer (=BM2; see Ref. 26) potential
is used,

VnMz(r) =(80.8 keV)exp[ —4.75r (A)],
and for D-Ni, the Thomas-Fermi-Moliere (TFM) poten-
tial is used. In the DSA calculations, where the potential
is rather irrelevant, the commonly. used Thomas-Fermi
(TF) potential is taken.

The scattering angle (and the time integral) is evaluated
from the standard scattering integral' using the transfor-
mation suggested by Latta and Scanlon. The integrals
are calculated either by the Simpson method or the n-
point Gaussian-Mehler quadrature. In the beginning of
the simulation, 5000 scattering angles and time integrals
for 100 impact parameters and 50 energies are calculated
and stored in a look-up table for later use. The axes of the
table are either both logarithmic, or energy is logarithmic
while impact parameter is linear; the cb.oice depends on
the relative importance of small or large impact parame-
ters. The different possibilities are for checking purposes.
The interpolated angle deviates less than 1% from the ex-
act value. Instead of using the look-up table, it is also
possible to calculate the integral explicitly (e.g., when the
potential is discontinuous or in test runs).

C. Thermal vibrations

Thermal vibrations are included by assuming the dis-
placements to be uncorrelated and Gaussian-distributed.
For later use, 1000 displacements for 1000 random num-
bers are stored in a look-up table. The displacements in
the x, y, and z directions are calculated independently.
The mean-square displacement is based on the Debye
model, the only parameters required being the tempera-
ture and the Debye temperature 8D.

D. Inelastic energy loss

The following choices are used in the present calcula-
tions.

(i) LSS: A viscous force according to the LSS theory
(dE/dx = —kE' )

(ii) Firsov: Impact-parameter dependent, according to
the Firsov theory, including all scatterers for which the
impact parameter is less than a parameter called EL
(EL,„=2.0 A in the present calculations. )

In each case it is possible to use a correction factor f, . If

needed, it would be possible to use more refined methods
in the calculations for dealing with inelastic scattering. In
the present calculations the electronic energy loss is of
minor importance, and any associated inaccuracy would
not affect our conclusions. By varying the parameters f,
and ELm,„ it is easy to study the importance of the elec-
tronic stopping.

E. Target structure

1. I'olycrystalline target

a. Poly1. The direction of the beam is isotropic and the
fixed crystal orientation determines the coordinate axis.
The azimuthal angle P is $=2nPi a.nd the polar angle 0
is O=arccos(1 —2P2), where Pi and P2 (0& P„P2 & 1)
are random numbers. Robinson and Oen' called the cal-
culation isotronic, when the primaries originate at lattice
sites, i.e., x =y =z =0. This way of calculation, however,
is not satisfactory, because of the unique nature of the lat-
tice site.

A problem arises if the distributions of positions are re-
quired also to be uniform over the symmetry element of a
particular crystallographic surface. Let the symmetry ele-
ment be —a/2 &xy&a/2, where a is the lattice con-
stant. Then, if O=n/2, there is a head-on collision
without any dependence on P. This occurrence should be
very rare. As the area seen by the beam is relative to cosO,
the probability density for the angle 0 to be between
0,0+d 0 is sinO cosO d 0. From this it follows that 0 can
be calculated from

0= —,arccos I cos(20;„)—[cos(20;„)—cos(20,„)]PI,
where 0;„and O,„are the minimum and maximum of
the polar angle, respectively. This method is particularly
suitable if the microcrystals tend to orient in some direc-
tion, i.e., if there is texture. If there is no texture, 0;„=0'
and L9,„=90'.

b Poly2. Th.e direction of the beam is fixed and the
crystal is rotated (or actually the coordinate system). The
random orientation of the crystal is achieved as follows:
First, the direction of the new z axis is chosen randomly
and then the x and y axes are randomly rotated around
this new z axis. The "isotropic" calculation again follows,
if the primary originates at x =y =z =0. The problem
now arises how to choose the initial position of the pri-
maries at the surface, because the axes of the crystal do
not coincide with the laboratory coordinates. We have
solved the problem simply by choosing
—100a &x,y & 1R)a randomly and then searching for the
nearest target atom. Although the positions are not
chosen from a perfect symmetry element, the large area
taken ensures that the error is small. The two methods
are always found to yield very similar results. When the
target is polycrystalline (calculated by either the Poly 1 or
Poly2 method), each grain is assumed to be infinitely
thick.

2. Other possibilities for target structure

Instead of random rotation, it is possible to rotate the
crystal or beam direction between specified 6 angles and
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thus simulate the texture of the target. If the crystal is
rotated randomly between collisions the target is referred
to as "random. "

It is also possible to use the more specified targets need-
ed especially in the DSA analysis. The crystal may in the
beginning be rotated randomly and later have texture, or
it may initially have texture and then be randomly rotated
after some specified number of collisions, thus stimulating
damage and implanted atoms. A slightly modified ver-
sion includes also the implanted atoms in the crystalline
structure. Some comparisons are made with Monte Carlo
simulations in an amorphous material. For an explana-
tion of these simulations the reader is referred to Refs. 5
and 9.
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F. DSA analysis

As an option, the code also includes the DSA analysis,
the calculation of F(r) values, and line shapes of y-rays.
Each particle represents a specified number (five in the
present calculations) of lifetime values ~, and for each ~
value a definite number of y's are emitted. The actual
emission time T for each y ray is obtained by
T = —sin(P), where ~ is the mean lifetime of the level.
For an explanation of the DSA-analysis method and of its
underlying concepts, the reader is referred to Ref. 31,
where a Monte Carlo method for DSA analysis, using the
LSS differential cross section for collisions and an amor-
phous target, is described in detail. This analysis method
has proved successful, provided that f„-and f,-correction
factors for stopping are used. These can be experimental-
ly determined. "

A statistical error for a F(r) value is calculated in the
following way. The Fr(r) values for each y ray are com-
bined into a histogram of 100 channels ( n „.. . , n ice), the
mean of the Fr(r)'s being F(r) The nu. mber of Fr(~)
values in each channel is assumed to be Gaussian-
distributed with a mean n; and a standard deviation.
(n; ). '~ For each channel a random number is generated,
which determines the actual n; for that channel. In this
way a new Fr(r) can be calculated. This procedure is re
peated 100 times. The standard deviation of these 100
Fr(r)'s is then the error of F(w). Although five Fr(r)'s
per ~ value per ion are calculated, and therefore the
Fr(~)'s are not properly uncorrelated, the method should
give a reasonable estimation of the reliability of the calcu-
lated F(w) value.

III. CALCULATIONS

A. Comparison with other codes

Harrison et al. found large differences between the
BCAM (truncated BM1 potential) and MIM (BM1 poten-
tial) in the case of 5-keV Cu in (110) Cu. Therefore we
have chosen this case for comparison. The BCA and MI
results taken from Ref. 23 are presented in Fig. 1 together
with distributions from cosrPO. It is seen that, when the
SCA2 method is used, the SCAM result is reached by the
truncated BM1 potential and the MIM curve is approxi-
mately found by the BM1 potential. This shows that the

FIG. 1. Integral penetration distributions for S-keV Cu in
(110) Cu. BCAM, the binary-collision simulation of Robinson
and Oen (Ref. 17), the potential being truncated BM1, and
MIM, the multiple interaction simulation of Harrison et aI.
(Ref. 23) with the potential BM1, are compared with the present
simulations with truncated BM1 and the SCA1 (4) or SCA2
(X) method, and BM1 with the SCA1 (~) and SCA2 (0)
method. + refers to the calculation in which the BM1 eroded"
potential with SCA2 was used. The truncated and "eroded" po-
tentials were cut at 1.278 A. The inelastic energy loss has been
omitted in all the calculations.

difference is due mainly to truncating the potential at
1.278 A. On the other hand, the SCA1 results show that
it is important to take into account the simultaneous col-
lisions when the BM1 potential is used. For this poten-
tial, focusing is effective.

The general agreement with the MIM can. be improved
by "eroding" the potential. The different absolute values
can probably be associated with the computational prob-
lems in the MIM in determining the "effective representa-
tive area" in which ions actually remain long enough to be
counted. One should remember that a static lattice is
assumed and no electronic stopping was included, thus en-
larging the effect of the potential. In reality the differ-
ences between the the different methods are not as large as
in Fig. 1.

A comparison with another MI code of Lutz et al. 'r is
presented in Fig. 2 in the case of 20-keV Cu in (111)Cu.
These workers included I.SS electronic stopping and took
the six nearest neighbors into account in the calculations.
Again, good qualitative agreement using expected parame-
ters can. be found. The distance from the middle of a
channel to the three nearest atoms is 0.74, 1.28, and 1.95
A, thus limiting the b,„value.

A third comparison with the MIM is given in Fig. 3,
where the 5-keV Xe atom in the (100) W case is studied.
In this case the results are in quantitative agreement. The
rrns vibration amplitude differs from the experimental one
(0.049 A) because of the erroneous formula used in Ref.
26 (the integration limit in the equation for the rms dis-
placement should be 0/T and not T/0). In Fig. 3 the
experimental curve is also presented, which indicates that
the BM2 potential is too strong.

The 5-keV Xe atom in the (100) W case is studied fur-
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FIG. 2. Integral penetration distributions for 20-keV Cu in

(111) Cu using the BMB potential. The MIM calculation of
t.utz et aI. is reproduced from Ref. 15. In the present simula-

tions both SCA1 (~) and SCA2 (0) methods were used with

b,„=1.5 A.

FIG. 4. Integral range distributions of 5-keV Xe in ( 100) W.
The experimental curve is reproduced from Ref. 27. %'hen the
SCA1 method was used, the potential was DF-eroded. (Q).
With the SCA2 method, the DF potential was either eroded (~ )

or not eroded; in the latter case, b, was either 1.58 (0 ) or 2.0
A(X).

ther in Fig. 4 using the DF potential and an experimental
correction factor f, =1.6 (Ref. 32) for Firsov electronic
stopping. The distribution is sensitive to the potential and
computational details, indicating that simultaneous col-
lisions are important in this case; with expected parame-
ters, however, good agreement with experiment can be
found. It can be seen that the SCAI method with an
"eroded" potential is still a rather good approximation in
this energy range (reduced energy e=4&& 10 ). This ex-
ample shows that, in principle, low-energy channeling ex-
periments can be used in the determination of potential
parameters, although the treatment of simultaneous col-
lisions may cause problems. The MIM would be superior
for these types of calculations. We have, in an earlier pa-
per, compared the simulations with experiment as a

function of crystal orientation, energy, and temperature in
more detail. At higher energies, where the calculations
are not so sensitive to the parameters, the experimental
problems became evident.

Finally, comparison with MARLOWE is presented in Fig.
5 for the case of 10-keV D in polycrystalline, Ni. The
simulation of a single particle's history required over 1000
collisions, the movement of D-atoms being diffusionlike.
Test runs showed that identical initial conditions yielded
widely varying final positions, indicating diffusional
movement and lack of accuracy in the calculations,
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FIG. 3. Comparison of the previously calculated (Ref. 26)
(HG) and experimental (Ref, 27) range distributions with the
present simulations for 5-keV Xe in (100) W. In the calcula-
tions either the "eroded" BM2 potential and SCA1 is used ( &(),
or the BM2 potential and SCA2 with b,„either 1.5 (~ ) or 2.0
A (0 ). The electronic stopping was LSS with f, =0.25, and the
rms vibration amplitude was 0.022 A.
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FIG. 5. Integral range distributions of 10-keV D in polycrys-
talline Ni. The experimental curve is reproduced from Ref. 34.
The solid curve is the MARLOWE simulation of Moiler and Eck-
stein (Ref. 34) assuming a static lattice, Thomas-Fermi-Moliere
(TFM) potential, and LSS electronic stopping with f,=1.086.
The present results with the same assumptions are the follow-
ing: &(, SCA2 method, b,„=d „=1.5 A, 0, SCA1 method,
eroded TFM potential. Also presented are the results including
thermal vibrations (the rms vibration amplitude is 0.059 A) at
room temperature, assuming a polycrystalline lattice (~).



30 NUCLEAR STOPPING IN POLYCRYSTALLINE MATERIALS: 5015

whereas the distributions from separate runs were in
agreement with each other. Thus our simulations should
be also reliable in this extreme case, and comparison with
the MA.RLowE result shows good agreement. Also, the
SCA1 method, being 40%%uo faster than SCA2 in this case,
yields the correct result. Moiler and Eckstein did not in-
clude thermal vibrations in their simulations and they had
to add some damage to the crystal in order to achieve the
experimental result. 3 As Fig. 5 shows, if the vibrations
are included, the theoretical curve lies below the experi-
mental curve and instead of introducing damage we must
look for some other remedy. We found a similar
phenomenon also in the case of 120-keV Pb in Al and
60-keV Al in Ta, where experimentally measured pro-
files"' could be reproduced if noticeable texture was in-
cluded. In the present case the difference might also be
due to the importance of the correlations in the vibra-
tions. The effect of correlations on the relative vibration
of an atom is to make the standard deviation of its distri-
bution smaller. Using the rms value 0.046 A, the experi-
mental curve could be reproduced.

B. DSA analysis

It is clear that to explain away the tails in the range dis-
tributions by texture is only one possibility and that dif-
fusion phenomena could also cause tails. It has been
pointed out that experimental range profiles may be ob-
tained in this latter way. 9 Therefore some additional in-
formation is needed to determine the correct physical ex-
planation. The results of the (p, y) DSA measurements
depend strongly on stopping conditions, but not on dif-
fusion, and therefore could yield some information. In
the following we compare both experimental range distri-
butions and DSA-measurement results with sirn. ulations.

In an earlier paper we have shown, for the case of 60-
keV Al in Ta, that the distributions are sensitive to
thermal vibrations and the texture, but are less dependent
on the potential or on the inelastic energy loss. Further
tests show that the results in this energy region
(e-0. 1 —1) are not sensitive to the various parameters
when polycrystalline targets are treated, and especially
that the SCA1 method, together with the TF potential, is
sufficiently accurate. This is the method that is used in
all the simulations presented in the following for 60-keV

Ne range distributions in Mo and for the DSA analysis
in the reaction Ne(p, y) Na, E~=1005 keV, in Mo.
These present a good basis for a direct test, because they
have recently been thoroughly studied experimentally as a
function of fluence. When the TF potential was used in
the analysis and amorphous backing assumed, correction
factors of f„=0.78 and f, = 1.0 were obtained.

The range distributions are studied in Fig. 6. It is seen
that both ways of simulating polycrystallinity yield the
experimental distribution and that amorphous and ran-
dom distributions agree with each other but differ from
experiment. Also included is the simulation in an amor-
phous material using the experimental correction values
f„=0.78 and f, =1.0. Further calculations using the
mean potential yielded very similar results. The time
scale presented in Fig. 6 illustrates why this method is
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FIG. 6. Integral range distribution of 60-keV Ne in Mo. The
experimental curve is reproduced (and deconvoluted) from Ref.
39. In the simulations, the TF potential and LSS electronic
stopping was used. The rms vibration amplitude was 0.060 A.
The time per distance scale is calculated using the maximum
velocity (6.0)&10' m/s) of the recoiling nucleus. The target
structure was either POLY1 ( &(), POLY2 (0 ), random (~), or
amorphous, in which case f„was either 1.0 or 0.78.
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FIG. 7. F(w) curves for the reaction Ne(p, y ) Na,
E~ = 1005 keV, for amorphous, random, and polycrystalline Mo
backing. When the target has crystalline structure, the initial
position of the recoiling ion is either substitutional lattice site or
random. The error bars are calculated as described in text.

usually adequate in the DSA analysis, although the exper-
imental range distribution cannot be produced. In addi-
tion, the probability distribution exp(

tlat)

of the em—is-
sion times t causes the short emission times to have more.
weight than the less frequently occurring longer times in
the determination of the F(r) value.

In Fig. 7 the Ii(v) curves for the DSA analysis are
presented. It is found that polycrystalline and f„=0.78
curves agree at intermediate r values, and that the Ii (r)
value is sensitive to the initial position of the recoiling ion
and to target structure, and so establish limitations on the
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FIG. 8. Line shapes for v=120 fs at 0' detector angle. They
are convoluted by the energy resolution (full width at half max-
ixnum=3. 4 keV), and in the simulations the finite size of the
detector in the experimental measurements (Ref. 39) was taken
into account (the solid angle subtended by the detector eras 37').
The maximum Ne concentration in the experiment was 0.81
at. %, and in the simulations the target was either amorphous,
with f„=0.78 (0), or polycrystalline, with damage (X ) or
without damage (). The experimental curve is reproduced
from Ref. 39.

accuracy of the experimentally measured ~ values.
In Fig. 8 the line shapes for the experimentally mea-

sured r= 120 fs are compared with experiment. It is seen
that the polycrystalline line shape agrees well with the ex-
perimental one (with 0.81% implanted atoms), whereas
the amorphous one with f„=0.78 shows some deviation.
Figure 8 shows a typical feature that is introduced by the
polycrystallinity, namely, the more varying structure in
the line shapes.

As a rule, the calculation should yield an upper limit
for the r value in the analysis of low-dose experiments, be-
cause the implanted atoms and the damage both increase
the slowing down and thus lower the F(r) and r values.
Some calculations were made to study the importance of
these factors in the present case. The inclusion of the im-
planted atoms in the simulations is not straightforward,
but the approximative results indicate that 0.81% of the
implanted atoms do not have a noticeable effect on the
F(w} values. On the other hand, if the crystal is randomly
rotated, on an average after 100 collisions, the I" (~) value
changed from 0.356+0.006 to 0.345+0.006, and the
range distributions closely resembled the f„=0.78 curve
in Fig. 6 and the line shapes are in agreement with experi-
ment (Fig. 8).

The results in Figs. 6 and 7 demonstrate clearly that if
polycrystallinity is introduced in the calculation, no pa-
rameters are needed to get agreement with low-dose exper-
iment and the combined DSA- and range-measurement
method should be sensitive and sufficiently accurate to re-
veal possible diffusional effects in the range distributions.

Usually, the comparison with DSA studies is compli-
cated by the large doses needed to yield good statistics in
y-ray line shapes. However, some further comparisons
have been made. 20-, 60-, and 100-keV N-in-Ta range dis-

tributions' could be reproduced only if some damage was
introduced in the polycrystalline material. In the compar-
ison of the calculated F(r) values in the ' C(p, y)' N,
E&

——1150 keV, reaction in Ta with experimental ones,
where a 20% concentration of implanted atoms has been
used, good agreement was found if some damage was as-
sumed. For the Mg(p, y) Al, Ez ——1733 keV reaction in
Ta, ' good agreement was also found with some damage.
These results are in contrast with the range distribution
study of 20-, 60-, and 100-keV Al in Ta, where some tex-
ture was needed for Ta. A probable explanation is that
Al atoms diffuse before they are trapped. This explana-
tion is supported by the calculated 100-keV profile assum-
ing texture, which displayed too long a tail. This is
understandable, if diffusion is the explanation. It is ener-

gy independent and thus relatively more pronounced at
smaller energies. The error in stopping power is not a
likely reason, because it would yield an error also in the
DSA studies. We showed earlier that the experimental
distributions can be reproduced, if diffusion is allowed to
change the calculated distributions.

IV. DISCUSSION

On the basis of the comparisons made, we may con-
clude that cosIpo produces the results in agreement with
MIM and other BCAM codes in the keV region, although
the results become increasingly sensitive to the parameters
and the potential at a&0.02. This is the lower limit that
Latta gives for e below which the range calculations based
on realistic potentials begin to differ. " On the other
hand, this is the energy region which yields information
on the potential and is therefore of importance. In the
DSA analysis the typical e value of the recoiling ion is
e- 1, where there is very little difference in nuclear stop-
ping powers calculated from different potentials. The
good agreement found between calculations and both
DSA and range measurements (Figs. 6—8} is strong indi-
cation that the potential is correct and that possible devia-
tions in the slowing down are due to the structure of the
target (including implanted atoms, damage, and texture)
and diffusion.

On the other hand, at @ &0.02 experimental measure-
ments show that the mean ranges of projectiles with dif-
ferent atomic numbers display variations about a curve
which is calculated with a semiempirical potential.
At @=0.04 the oscillations are less than 10%, and at
@=0.1 they have disappeared altogether.

The Gordon-Kim method for potentials is in fact ap-
propriate only for ground-state and closed-shell atoms.
Neither of these assumptions is usually valid in stopping
processes. However, the Gordon-Kim method can be em-
ployed here, because the screening in the interatomic po-
tential is mainly due to the inner-shell electrons at shorter
distances. Only at @&0.04 can the outer-shell effects and
excitations no longer be ignored in calculation stopping.
As we have recently shown, statistical calculating which is
based on the assumptions that the electron distributions of
the interacting atoms are spherically symmetric and un-

disturbed, do not yield sufficiently large variations in the
potential to explain the experimental multiple scattering
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data of various ions in xenon targets. ' It should be noted
that the calculated and experimental values agreed in the
cases of closed-shell argon and krypton, but diverged
strongly in the cases of copper and silver. Consequently,
more refined methods are needed at low energies.

In the calculations it has been assumed that the elastic
and inelastic parts of the energy loss can be separated.
Robinson and Torrens' give the equations, where the ef-
fect of the inelastic energy loss is included in the elastic
scattering calculations. Those equations show that the as-
sumption is well justified. At higher energies the inelastic
energy loss plays a major role in stopping. It has been
pointed out that for e) 10 the calculated backscattering
cross section of He ions agrees with experiment to within
the experimental accuracy (1%) (e.g., Ref. 45). This again
indicates that the elastic and inelastic energy losses can be
treated separately.

In conclusion, we maintain that above e & 0.04 there
remains little interest in nuclear stopping power in itself;
if the structure of the target is known, the elastic slowing
down of ions can be calculated at least to an accuracy of
10%. ' ' ' ' Thus only the lack of a detailed knowledge
of the target structure (and diffusiori) makes the measure-
ments necessary in application.

An immediate application of knowing the slowing
down is that it should be possible to improve the accuracy
of the DSA measurements at low ( —10 fs) and high
( —1000 fs) r values, where the uncertainty in the F(r)
curves is largest and the experimental correction pro-
cedure least accurate, or at least. the ~ values should be put
on a more firm basis by these means.

In normal cases, where large implant doses are needed
for good statistics in the DSA measurements, there is less
help from the present method, and an individual study of
target structure must be made, as in Ref. 39. Then, the
crystalline structure effects are small as well. If the only

purpose of the measurement is the lifetime values, it
should even be possible to include the effect of the crystal-
line structure on slowing down as a correction factor in
the Blaugrund method in the way described by Latta.
At least the upper limit for the ~ value could be calculated
this way, if there is no change in the density of the back-
ing (for density effects, see Refs. 39 and 41).

We may invert the above situation; thus, when the nu-
clear stopping is known, we may, by DSA measurements,
study the structure of the target and the initial position of
the implanted atoms, as absolute F(r) values and y-ray
line shapes are sensitive to these factors (Figs. 7 and 8).

It can be seen from Fig. 7 that the "effective" nuclear
stopping is about 20% smaller (i.e., f„=0.8) in a poly-
crystal than in an amorphous material. However, if the
initial position of the recoiling Ne atom considered is a
substitutional lattice site, the effective nuclear stopping is
about 20% larger (f„would be 1.2). The difference in the
E(r) values is about 20% between the cases where the ini-
tial position of the recoiling ion is either substitutional or
interstitial (by comparison, the difference between the re-
sults for an initial position either random or interstitial is
small). In favorable cases the F(r) value can be measured
to an accuracy of at least 3%. This means that it should
even be possible to measure the percentage of the atoms in
substitutional lattice sites. In metallurgy an important
problem is to determine the lattice locations of nitrogen
and boron atoms in various kinds of steel. The method
presented above should be sensitive enough for this pur-
pose. When the structure of the target is known (e.g., by
DSA measurements) it should also be possible to study
diffusion'during implantation by experimentally measur-
ing the concentration profiles of implanted ions. Some
experiments are planned to study whether or not the
method is sufficiently sensitive to be used in such applica-
tions.
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