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A theory for the resonant excitation of a system of particles is presented. Infinite series arising
from the multiple couplings are converted into simple expressions involving only determinants that
allow for easy numerical evaluation of the resonances up to high order in the multipoles included.
Linear, planar, and cubic arrangements of dielectric spheres are analyzed, and they all indicate a
failure of the dipole approximation when the particles are closer than about three particle radii from
each other. A convergence criterion as a function of interparticle separation for smaller distances is
provided. In particular, it is found that some geometries in which particles touch require multipoles
to all orders for a proper evaluation of resonant modes. It is shown that dimensionality is not im-

portant for excitation along a long dimension of the arrangement. Results for Nacl spheres are
presented, and the effect of the above findings on their optical spectrum is analyzed.

I. INTRODUCTION

The physical properties of small particles have been the
subject of much recent interest. In particular the effect of
shape and environment has been studied through their
response to an electromagnetic excitation. The first influ-
ences the polarizability and the second the local field each
particle is in. It is well known that an isolated uniform
dielectric sphere, for instance, exhibits an absorption reso-
nance in the long-wavelength limit for a material dielec-
tric constant value of E= —2, far away from the bulk res-
onance. ' By contrast the corresponding resonance in a
rectangular particle may be shifted through the whole
range —oo & e & 0 by changing the extensions of the paral-
lelepiped. These examples illustrate the effect of shape.
The effect of the environment may be exemplified by tak-
ing a uniform sphere and observing its optical spectra as
an identical sphere is approached along the direction of
polarization of the field. The result is that there is not
one but several resonances whose location depends on the
particle separation and cover with it the whole range—ao &e& —1."' Thus shape and environment of parti-
cles are important in analyzing the properties of particu-
late matter. Optical properties as well as the dynamics of
their motion are influenced by them. We note also
that in the limit of very small particles with radii —100 A
size may also be a dominant consideration.

In this work we are interested in the effect of the envi-
ronment. In particular we treat the case of a particle in
the presence of one or more particles in the static approxi-
mation, that is, for an excitation whose wavelength is
much larger than the particle diameter and interparticle
separation. Shape and bulk properties are introduced
through the particles polarizabilities. A satisfactory solu-
tion to this problem is not necessarily simple since it must
be self-consistent in the sense that the effect of environ-
ment on a given particle changes the response of the envi-
ronment itself. Also there is the question of convergence
in the multipole couplings between particle and environ-
ment that occur. The validity of the usual dipole approxi-

mation' '" has been questioned by several authors when
the particles are very close' ' and calculations done in-
cluding higher multipoles confirm this view. 4 '~ 27 The
suggestion that the approximation holds up to an inter-
particle separation of about three-particle radii has been
made based first on numerical evidence for two identical
particles ' and later extended to a string and a square lat-
tice.

Going beyond the dipole approximation is not trivial
since self-consistency requires the summation of an infin-
ite series for each new coupling treated. This difficulty
has limited progress in the assessment of the importance
of multipolar effects. We develop here a theory that
yields a straightforward computational scheme for obtain-
ing the normal modes of the system to an arbitrary pole
order assuming only that the polarizabilities are known.
This is done in Sec. II. In Sec. III we discuss optically ac-
tive modes for a system of 2, 3, and infinite identical par-
ticles arranged along a line, or a lattice in two and three
dimensions. This allows us to study the effect of dimen-
sionality on the spectrum of resonances. Numerical re-
sults for such geometries are obtained in Sec. IV, where
we treat the special case of uniform dielectric spheres.
We end with a summary and conclusions in Sec. V.

II. THE NORMAL MODES EQUATION

We consider a set of 1V polarizable charge distributions
(particles) that are nonoverlapping, but otherwise arbi-
trary. The system obeys the usual laws of electrodynam-
ics, whatever the mechanisms of response within a parti-
cle to an external drive may be. These could be pure pho-
non or polariton modes in a dielectric, or pure electron
response as in a metal or an atom, for example. The
response of any particle, for example, the ith one, is
characterized by the polarizabilities aI;, which we take to
be defined by the relation

2l +1
Vrms
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4m
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where

qimi= f pi(r)[&P(i) y)]'"r
is the (l,m) moment of the charge distribution p;, and
Vlm(i) is the expansion coefficient, of order (l,m), of the
potential the particle is in, the potential and integral hav-
ing the same origin within the particle. If the particle is
isolated the potential is just the applied external field, if
present, but if more particles are around, their excitation
will modify the field at the site of the ith particle. The
complete potential is then a sum containing the external
field and the contribution from every other particle
present in the system. We shall ignore retardation effects,

Vlm(i) Vlm~(i)+ y Vlm(i) '

l,J
j+i

(2)

From the multipole expansion of the field due to the jth,
particle we obtain

Vlm(i)= g ( —1)'Al'; 'Sm;,
l', m'

where the geometrical coefficients

(3)

which means that field wavelengths are larger than the
relevant dimensions of the system. The (i,m) component
of the potential may then be written in the form

~/mi '=( —1)
m —m'

(4m') (l +l'+m —I')!(l+.l' —I +m')! [~l+l' (gij &%ij )]
(21 + 1)(2l'+ 1)(2l +2l'+ 1) (I'+ m ')!(l+m )!(I'—m')!(i —m)! g,.'.+' +' (4)

obey the symmetry relations in the respective indices

lm l'm
~l'm ~lm

elm (g lm'p
( 1)m+m'(g I —m )e

Here R;1 =(Rij,8,&, ip,z ) is the vector from the origin at the
ith particle to the origin at the jth particle. Replacing in
(1) we get the set of coupled linear equations for the mo-
rnents

I

&~=F~+ XB~&~ (8)

that constitute the basic equations of this paper. We have
used the compact notation p =(i,m, i),

2l+1
Fp = — izlmlVlm(i) ~4n

and

mation (L=1, dipole; L=2, quadrupole; L=3, octupole;
etc.). Thus in the dipole approximation for uncharged
particles only dipole moments appear in Eq. (8) and we
have in general a set of (at most) 3N linear equations that
may be easily solved using Krarners rule. %'e expect this
approxiination to be good provided the particles are far
apart and the external field does not vary significantly
within the dimensions of the system I.n the quadrupole
approximation Eq. (8) will mix dipole and quadrupole
moments, and the nuinber of equations to solve increases
to (at most) 8N In the . 2 -pole case the number is
L(L+2)N, so that it grows as L for large L. This
shows that going beyond the dipole approximation can be
costly in computing time. Symmetry properties of the
particles and their arrangement eliminates certain cou-
plings, making the set of equations separable and thus
reducing the dimensionality of the problem. In choosing
our examples below we shall draw heavily on this simpli-
fication in order to go as far as possible in the size of L.

Iteration of Eq. (8) yields an expression that is physical-
ly instructive. It reads

( 1)l +l 2l +1
P 4m.

+lmi lmi (10)
I

&~=F~+ X CF~+C&~

in order to simplify the expressions. The sum runs over
all possible values of the triplet p' ( I'=0, 1, . . . ;
m'= —l', i '+1, . . . , i—'; i-'=1,2, . . . , N) if we adopt the
convention Blm™;'=O. Physically the coefficient B&~

represents the direct coupling strength of the moment of
order (i,m) of the ith particle with the moment of order
(l', m') in the ith particle so that our convention just
states that a particle does not couple directly with itself.
It can certainly couple with itself with the intermediacy of
other particles however, as we shall see below. A special
case of Eq. (8) valid for spherical dielectric particles was
previously derived by Gerardy and Ausloos. '

In principle, Eq. (8) constitutes an infinite set of equa-
tions. The couplings become weaker as the indices l, l' be-
come larger, however, and it is reasonable to cut off the
infinite sequence i =0, 1, . . . at some i,„=L. This sim-
plification defines what we will call the 2 -pole approxi-

where

Q„"=B„"+g B„"B"„+g B„"B~B~+
v'

(12)

and the prime in a sum means that the summation indices
skip the set p. One may interpret now the quantity Q&~

defined by the sum (12) as the complete coupling strength
of particle i through its (i,m) moment, to the (i,m) mo-
rnent of particle i. The first term is the direct coupling;
the second, the coupling through the intermediacy of an
excitation in any particle of the system, summed over all
possible sets not including ( i, m, i); the third, the coupling
through the intermediacy of two particles, and so on. For
-instance, the term in the third sum Bl I BLM2 BLM3

LM 2 L'M'3 l'm i4

may be represented by the diagram
tm LM LM L' M' L' M'

~2 = ~3 = 4
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meaning that the particle 4 is coupled to 1 through excita-
tions in 3 and 2 involving the moments that label each in-
teraction line. With this interpretation the first term in
(11) gives the direct coupling to the external field, the
second the coupling to other external field components
through their action on different sets p'=(l', m', i'), and
the third is a self-polarization term. An especially simple

form of (11) occurs when the external field is uniform.

The field components for I&1 are all zero, and after some

rearrangement we obtain

Q
1nu (13)

I 'tg Qi'm Flm
m', i'

1 —Q
(14)

Q~= 1 .IJ (16)

Even in the dipole approximation this equation for the
self-polarization factor is difficult to solve since it re-
quires the evaluation of the infinite series (12). An alter-
nate expression for the sum derived in the Appendix sim-
plifies the problem greatly. Prom (A4), Eq. (16) may be
written in the form

det(B I)—
(17)

cof(B~~—1)

where B is the matrix f0~ed by the elements Bpp, and I is
the unit matrix. The problem is thus reduced to comput-
ing determinants of (at most) size NI. (l. + 2) and solving
for the resonances. The number of resonances equals that
of each particle when isolated, summed over all particles
in the system. This can be seen by noting that when the
particles are very far apart from each other the left-hand
side of (17) approaches tHe inverse of the single-particle
polarizability uI;, so that the number of poles of this
quantity summed over all possible triplets (l,m, i) deter-
mines the total number of modes at all separations. Con-
dition (17) amounts in general to finding a zero of the
determinant of matrix B I a solution that rem—ains valid
for all values of p. The normal mode associated with

The particle index in the field has been omitted since this
quantity is in this case the same at all particle positions.
Notice that except for cases in which symmetry
suppresses some couplings, all moments are excited by an
external field, not just the dipole. This fact is important
in what follows. Notice also that if different values of m
are not mixed in Eq. (13), as is the case in symmetric ar-
rangements of spherical particles, one may define an ef-
fective dipole polarizability

1++ QImI

+1m'
~

C 1mi (15)
1 —Ql ';

Normal modes are the solutions of Eq. (11) with the
field set to zero, that is, they are defined through the con-
dition

such solution. is then an excitation of the system as a
whole. When symmetry suppresses couplings then the
denominator plays a role, causing cancellations for certain
values of p. Uncoupled sets in the system are then excited
independently and the corresponding nodal modes for a
given set will not involve modes of the other set.

Normal modes are suppressed by damping. A collec-
tive mode may still be excited by an external field in such
a situation and will appear as a resonance in the spectrum.
These collective modes are associated with ordinary nor-
mal modes and the correspondence is established by let-
ting the damping term approach zero. Such modes are
called active modes of the system.

We are interested in the absorption of electromagnetic
waves by particles in the long-wavelength limit and in the
absence of magnetic effects. The absorption cross section
in an external electric field E is then given by '

(41r) ~ ~lli +~1 —li
sin @+ala; cos e

3C

where the eff'ective dipole polarizabilities are given by
(15), E is the angle the electric field makes with the z axis,
and co is the frequency. In the next section we shall give
explicit expressions for a few arrangements of identical
particles.

III. OPTICALLY ACTIVE MODES

In an external field normal modes appear as peaks in
the absorption spectrum. Not every normal mode gives a
peak, however, since the field couples to the system
through the dipole moment, and as is clear from Eqs. (13)
and (17) cancellations could make the latter a smooth
function around certain modes. Collective modes that
make the dipole moment resonant are the so-called opti-
cally active (OA) modes of the system. In the presence of
damping the peaks become finite and broaden but may
still be seen depending on how strong and damping is, and
on geometry. %"e shall consider next a few simple exam-
ples that will allow us to illustrate and analyze the proper-
ties of these modes. Only identical particles will be treat-
ed for simplicity although the extension to more than one
kind can easily be done. In this section we derive the gen-
eral expressions and leave numbers for next section, where
we will take a concrete model for the polarizabilities.

A. Pf=2
' Consider two identical particles with their centers a dis-

tance D apart and placed on the z axis. From (4) and the
properties of spherical harmonics it follows that the cou-
pling strength involving unequal values of m between the
particles is zero. The set of equations (8) does not mix
values of m, and for each value of this integer there is a
closed set that may be solved independently. Whenever
only two indices are shown below it means that the index
m has been omitted.

It is convenient to discuss this case in terms of the coef-
ficients P~ that represent the coupling of the l moment
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of particle i to the I' moment of particle i' through all
possible intermediate pairings not involving moment I, as
defined in the appendix. From (A7), (5), and (10), one can
readily verify the symmetry properties P/,

' =P/'2 and
Pl 1 P/——z. Using these results in (Al 1) yields

P/I Pl 1 )(1 Pl 1 +P/1 )
71 l2 ll l2

Ql'i' ——1+ (19)
Pl )' —l

which also equals Q/z. According to (16) normal modes
occur whenever any of the factors in parentheses above
vanish. We shall see that the zeroes of the first factor in
parentheses for 1=1 define the OA modes of this system.
Again from (A7) follows

(P/1+P/2)(1 PP/+P/2)
Qli +Q/i = „' (20)pl1

The above expressions may be used in (13) to obtain the
dipole polarization. We get for either particle

2k+k'+1

1+k'+1 1 ( 1)

1)k'+1

B., Three particles aligned

Consider next three identical particles labeled 1,2,3
placed on the z axis at. the origin, z =D and 2D, respec-
tively. This case is similar to the %=2 case, only that
now the particle at the center gives rise to additional
modes. For OA modes the excitations of particles I and 3
obey q/1 ——( —1) +'q/i whereas for particle 2,q/z ——0 for 1

even. The dipole polarization is different from zero for
the three particles and thus they all contribute to absorp-
tion, the one at the center giving a different contribution
from the other two. Inactive modes, in contrast obey

q/1
——( —1)'q/i and q/z

——0, 1 odd. To find the OA modes,
one must solve (25), where now the matrix M has ele-
ments which are themselves 2X2 matrices,

Fim
11 12

P11 P11
(21)

(26)

pl 1 +pl2 det(M —I)
cof(M/ —1)

(22)

The zeroes of the first factor in parentheses in (19) thus
determine the OA modes, the other modes being given by
the zeroes of the second factor in parentheses. Explicit
expressions for these brackets may be obtained with the
aid of (A7) and (A4). One obtains

C. Infinite lattice

We now turn to the case of a lattice arrangement of
identical particles. This case is co~venie~t to study the ef-
fect of dimensionality since it gives transparent and sim-

ple results. The treatment that follows can be easily ex-
tended to a lattice with a basis of possibly unequal parti-
cles. Equation (16) may be transformed with the aid of
(A 1 1) into the simpler condition

where I is the unit matrix, and M has the elements det(P —I ) =0,
cof(P 1)— (27)

Okm
Mk =+&km

D

with

( 1)i+m+1
km

(k+k'+m —m')!

[(k +m)!(k —m)!(k'+ m')!(k' —m')!]'~z

(23)

(24)

1et(M I)—
cof(M/ 1)— (28)

~ /

where the elements of the matrix P are P//: Pl' /J as given-
by (A7). If in the determinant we add all other columns
to the ith column, the quantity g". , P/ 1 comes out —as

a factor since it is independent of i Setting . this quantity
to zero gives the OA modes of the system as may be
checked directly from Eq. (8) by noting that by symmetry
excitations are the same in all particles. The identity

The vanishing of (22) requires the determinant to be zero, reduces the condition for OA modes to Eq. (25), where the
elements of M are now given by

det(M —I ) =0 . (25)

To order L it is simply an L XL determinant and the nor-
mal modes may be found to high-pale order without
much computational effort. Because of the dependence
on D of the matrix elements (23), as the particles are
drawn apart couplings of high order become less and less
important. Equation (22) may in fact be viewed as a per-
turbation series in D ' cut at order L(L+2). For OA
modes the moments of particles 1 and 2 are related
through q/1 ——( —1) +'q/2 whereas for inactive modes

q/1 ——( —1)'q/2 holds. Notice that for OA modes the di-
pole moments ( l = 1) of the particles are parallel and equal
whereas for inactive modes they are antiparallel.

IMTlll g IITill/ (29)

Explicit expressions may be given for a few simple cases.
One may rewrite (29) in the form

MT'm GTm lm
lm — lm l+P+1 (30)

where D is the lattice parameter and G is a factor of pure-
ly geometric nature that is given by

G/~ =2N/m @1+1+1)b,g6 (31)

for the linear chain,
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for the square lattice, and

Tm —m n~n

n, n =1 [n'+(n') ]"++" ' (32)

T (n, n')+2R)+l- (n, O, n')
Gl ——N (1+—,

'
& —)g(I +&+1)+ g, , „!-,)/,

nn =1'[n '+ ( n ')'] +

2T (n, n')Rl+1- (n, n', n")

[ 2
( i)2 ( ii) ]2{1 +I +1)/ 2

(33)

for the simple cubic lattice. In these expressions g(k) is Riemann s zeta function, hkk (Zkk ) equals 1 if k —k is even (a
multiple of 4), and 0 otherwise. Also, the coefficient X is given by (24) and

2'+ -'[(l +l+m —m )/'2]![(l +l —m +m )I2]!
2k

Tzk(n, n')=
k g ( —1)'

2
'

n '(n') ',
[n +(n') ]",

Rl (n, n', n")=

tt
m . n

2+( i)2+( Ii)2]1/2

P In
(0 )

with Pl (x) in this last expression, the associated Legen-
dre function. The z axis has been chosen to point along
the linear chain, normal to the square lattice plane and
along one of the principal directions of the cubic lattice.
In actual computations simplifications occur due to the
appearance of the b, function in these expressions. It
means, for instance, that the dipole moment does not cou-
ple to multipoles of even order so that in fact the deter-
minant in (27) ma'y be broken down into two factors, one
involving only even orders and the other, multipoles of
odd order. The OA modes are then found solving for the
zeroes of the latter factor.

IV. THE CASE OF DIELECTRIC SPHERES

l(e —1)
I (e+ 1)+1

(34)

where a is the sphere radius and e the dielectric constant.
Normal modes occur for special values of e that we label
e', defined through Eq. (16) or its special forms, Eqs. (17),
(25), and (27). Mode frequencies are then given by the

We have said nothing so far concerning the detailed
manner of response of the particles the medium is com-
posed of. In the previous formulas their physical proper-
ties appear through the polarizabilities which are still to
be specified. For definiteness we assume in this section
the system to be made of uniform dielectric spheres, a
case often treated in the literature because of its simplici-
ty. The optical properties of periodic arrays of such
spheres for wavelengths comparable to the interparticle
distance have been studied by Ohtaka and Inoue. ' The
polarizabilities are independent of the index m and are
given by

l+1
E'g

l
(35)

which are the poles of (34), or modes of the isolated
sphere. Each value of I gives rise to a different solution
that remains distinct as the particles approach. We call
these solutions the dipole mode (I= 1), quadrupole mode
(l=2), and so on. Only the lowest I-value curves are
shown, as we have verified up to high values of l the rest
to follow a qualitatively similar behavior. The variation

dispersion relation of the material once these values of e
are known. We have done numerical work using this
model. Our main interest here is in OA modes, their
dependence on geometry and dimensionality, and the con-
vergence properties of the multipolar expansion. We shall
present results obtained from the various configurations
of particles discussed in Sec. III. In none of these config-
urations are the dipole moments q)M(M =0, +1) coupled
to each other so we shall label our results by the value of
M treated in each case. This index acquires its meaning
from the orientation of the z axis implicit in the formulas
of Sec. III.

Figure 1 shows our results for e* at the first few modes
as a function of separation for the two spheres case. Fig-
ure 1(a) is for an external field parallel to the line joining
the centers (M=O), and Fig. 1(b) is for a field normal to
such a line (M =+1). In the latter case each solution is
twice degenerate. Only OA modes are shown, the inactive
modes being qualitatively similar, except the M=O case
looks like the OA, M =+1 modes, and vice versa. The
separation parameter cr is in units of the sphere diameter
so that unity means that the spheres touch. For large cr

the modes approach the infinite sequence
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FIG. 6. Diverging OA dipole resonance for two spheres
(dashed-dotted line), three aligned spheres (dashed line), and
linear, square, and cubic lattices (solid line).

10
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tion fails not only because it yields just one resonance but
also because this resonance is in the wrong place in all
cases for 0. & 1.5. It may be used safely, however, in ob-
taining the dipole resonance for an interparticle separation
greater than three particle radii, except for the square lat-
tice and an external field normal to the plane, in which
case the region 1.5(o &1.7 is strongly affected by the
proximity of the dipole to other modes, and in which case
the region of applicability is cr) 1.7. Our results also
show striking similarities for arrangements of particles in
one, two, and three dimensions as is apparent in Figs. 1(a),
3(a), 4(b), and 5. One may understand these similarities
by noting that in all the cases cited the external field has a
component along the axis joining two nearest-neighbor
spheres. The multipolar interaction is short range and its
effect is dominated by the nearest-neighbor couplings so
that the W=2 results are reproduced in essence in all the
cases mentioned. There is a difference in strength in the
coupling however, as is apparent in Fig. 6 where we have
drawn together the diverging dipole resonances. As more
particles are added along the field direction the dipole lo-
cal field increases, pushing the resonance further away
from the isolated sphere value of e' = —2. In infinite ar-
rangements the linear chain configuration dominates over
lateral interactions and the square and cubic lattices give
results that are indistinguishable from the linear chain in
the scale of the figure. We conclude that dimensionality
is not an important consideration in determining the posi-
tion of the dipole resonance for excitation along an infin-
ite dimension. The octupole and higher resonances also
coincide in this case, save for the splitting near a=1.0
caused by couplings between neighbor strings in the
square and cubic lattices. Dimensionality does play a role
for excitation along a dimension that is empty as Figs.
3(b) and 4(a) show, the main difference between these be-
ing that in the latter case there are resonances that diverge
which do not in the former. These resonances are weak,
however, and they do not play an important role in the
optical spectrum of the system.

The absorption cross section was also computed using

FIG. 7. Absorption spectrum for two equal NaCl spheres
separated by 1.1 diameters and excited with a field along the
line joining their centers. The solid line includes multipoles up
to order L= 12, and the dashed line is the dipole approximation.
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FIG. 8. Absorption spectrum for two equal NaCl spheres at
separations o =1.50 (dashed line), o.=1.02 (dashed-dotted line),
and cr = 1.01 (solid line).

Eq. (18) and NaC1 as a test system. For this material the
usual dispersion relation was used with the optical pa-
rarneters eo ——5.934, e =2.328, co&- ——164 cm ', and

y =0.02coz. Figure 7 shows for %=2 and o =1.1 how the
dipole approximation fails when the particles are too
close. In the fully converged calculation (solid line) the
dipole resonance is shifted towards the infrared and a new
resonance appears arising mainly from the excitation of
the quadrupole mode. As the spheres are drawn closer to-
gether higher pole modes are excited resonantly, as shown
in Fig. 8. For 0.=1.02, strong quadrupole and octupole
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FIG. 9. Absorption spectrum for two equal NaCl spheres
that touch and an external field normal to the line joining the
centers.

FIG. 10. Absorption spectrum for a square lattice of NaC1
spheres excited by a field normal to the plane of the lattice. The
lattice constant is o = 1.1.

peaks are added to the dipole resonance and a weak max-
imum reveals the onset of the 2"-pole resonance. For
o.=1.01 all resonances are shifted to the infrared, the 2-
pole becomes strong, and the 2 -pole resonance appears at
the high-frequency edge of the spectrum. Note the shift
of the left edge towards smaller frequencies while the
right edge essentially does not move. - Note also that for
such 'a small change in o of 'less than 1% the spectrum
changes qualitatively, showing how sensitive it is to parti-
cle separation. All curves in Fig. 8 mere obtained with
2 =40 and were checked for full convergence. When the
spheres touch, Fig. 1(a) indicates that all resonances lie at
e*=—00 which is the bulk resonance at frequency cor.
Because the multipolar series solution is not convenient
for checking this assertion numerically, it remains as a
conjecture suggested by our results. The multipolar shift
towards the infrared is well established by our calcula-
tions, however, and is consistent with the experimental
evidence. ' ' ' The cases X= Oo and M=O, square lat-
tice and M=1, and cubic lattice, M=O, showed the same
qualitative behavior as described above and will not be
discussed here further.

Figures 9 and 10 show the effect of multipolar cou-
plings on solutions that do not diverge. Figure 9 is for
%=2 and M= 1 and Fig. 10 for the square lattice and an
external field normal to the plane (M=O). The dipole res-
onance is somewhat shifted by the couplings and higher
pole modes induce some structure to a wing of the reso-
nance. The effect, although noticeable, is rather weak. It
is interesting that in the square-lattice case the strongest
peak is not the direct dipole mode. By this we mean that
the lowest curve in the left-hand side of Fig. 4(a) to which
the peak corresponds may not be connected by continuity
to the e*=—2 as the spheres are drawn apart. The peak
is reminiscent of the dipole resonance, however, because
of its relative strength and since it appeared as a continu-

ous evolution of the dipole resonance obtained in the di-
pole approximation as it was made better by inclusion of
higher multipoles, one at a time.

V. SUMMARY AND CONCLUSIONS

We have presented a theory of static electromagnetic
modes in particulate matter that yields expressions for the
resonances simple enough to include high-order mul-
tipoles in actual computations. %'e were then allowed to
reach full multipolar convergence in obtaining the reso-
nances and thus to assess the importance of multipolar ef-
fects in various cases involving dielectric spheres. Our
main findings are that the normal modes are infinite in
number, yielding a structure on the absorption spectrum,
and that the dipole approximation fails in all cases when
the interparticle distance is less than three particle radii.
These results were anticipated in previous work involving
two spheres. ~ The number of multipolar terms needed
for convergence in optically active modes diverges as the
spheres approach touching if the external field is along a
direction where two or more particles lie in line. The res-
onance value of the dielectric constant itself diverges so
that the bulk resonance is approached by all modes. This
is clearly seen in the absorption curves for particles made
of an ionic material such as NaC1 for which we have
shown how sensitive the peak positions are to interparticle
separation, all moving tomards the bulk resonance in the
infrared as the particles approach touching. This suggests
that the peak positions provide an accurate measurement
of the distance between particles in configurations where
this distance is well defined, such a single pair or a perfect
lattice. Disorder on the other hand would readily destroy
the structure in the absorption spectrum. For an external
field normal to the axis of a one dimensional arrangement,
or normal to the plane for a square lattice, the pattern of
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resonances depends much on the geometry. There may be
purely finite solutions or a combination of diverging and
finite resonances. The absorption spectrum consists of a
main resonance with some wing structure whose detail de-

pends on the diversity referred to above. Multipolar ef-
fects appear not as dramatic for this perpendicular excita-
tion as for axial excitation, Modes that are optically inac-
tive display similar patterns as OA modes and may be ob-
tained with the same convergence criterion described
above and will not be discussed here. They have no effect
in optical absorption but are relevant in dynamic cou-
plings such as those that arise in. van der Waals forces.
Finally, the effect of dimensionality is found to be unim-
portant for axial excitation suggesting that the important
couplings occur in this case between neighbors along the
axis only. For perpendicular excitation in the linear and
planar cases dimensional effects arise that have a weak
bearing in the optical spectrum.

cof(B")
Q&r

cof(B~~ —1)
(A5)

From the properties of determinants it follows that this
last expression may be written in identical form as (A4)
with the prescription that in the p,th column of the deter-
minant one must replace Bg by B~~. The formulas just de-
rived are extremely useful since they turn an infinite sum
into a simple combination of determinants the order of
which is at most the range of p.

There is still another way to express the sum. Suppose
p=(A, i) ,where A, and i run over independent set of in-
tegers. For instance we could have A, =(l,m), and i, the
particle label. We can then iterate (Al) in a different
form. We first separate from the sum the terms with
V =A., that is, we write

xi,;=5&q5;—;f+g B&.;x&.;++ B&. x&;;,A, 'i'
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~Xl
xzi =gz)'+ ~ ~at xzg' ~ (A6)

g'=5.x5;,-f +(1-5.x)P.'f ~

Xl

where the prime in the sum means that k'=. A. is to be ex-
cluded from the summation, i' rerDaining unrestricted.
Iterating on the remaining sum indefinitely, always
separating terms containing x~; one obtains

APPENDIX

We derive an alternative expression for the sum (12).
Consider the set of linear equations for the unknowns x„

A, 'i '
A,"i '-' X i+ gf g+

gal&

~ I ggtI ~ II + (A7)

x„=5„++g B"„x„,
I

(Al)

cof(B~—5„„)
det(B —I) f (A3)

Here the matrix B has components B~~. Comparing (A2)
and (A3) for the case P=p we obtain

&I
det(B I)—

cof(B&~—1)

Doing the same for p&P yields

cofBI„'
n&' = 1 n&')

det(B I)—
which after use of (A4) becomes

(A4)

where p is a set of indices. If we separate from the sum
the term proportional to xz and iterate over the
remainder indefinitely, we obtain the solution

Q&r

x„=5+g " f,
Q&I

where Q is defined as in (12). The above expression is just
a special case of (11), with a simple nonzero component
for F„. An alternative solution to (Al) is obtained by
direct use of Kramer's rule,

Note that Pq contains all possible couplings of (A, , i) to
(X,i) through members of the set not involving A, . Q&„ is
more inclusive since it only leaves A. out when i is in-
volved. Repeated iteration of (A6) retaining each time the
term with x~; yields

A.l iUx j4' —gag + ~ Qkl gi.l' +Q i.lxil''
~' (+ij

which is of the same form as (11). Here, however,

(AS)

Q~i. '=P~. '+ g P&,'P~i, '
'(~)

'II

+ g Pi.'Pi. ' Pi.'-+
i' (&i),
i" (&i)

(A9)

That this sum, as suggested by the notation, is the same as
(12), can be seen if we write (AS) for A.&A, , i&i. Then

g&„; P&„f, and we ha=veXl

Xl Xlxi.i= P~i+ g Q&;P&.i' f+Quxx(
i' (&i)

(A10)

'
Using (A7) and (A9) one may easily check that the
parentheses equals Qi '. Comparison with (A2) then

shows the desired equivalence. One may use (A4) and
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(AS) to sum (A9). The result is

det(P —I)
~~i'= &+

cof(Px,' —1)
(Al 1)

where the matrix in the denominator has elements P~~z

and in the numerator P differs from such matrix in that
in the ith column P~z must be replaced b& Ppj.
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