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Specific heat of the classical easy-plane ferromagnetic chain
with an in-plane field: A model of CswiF3
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The specific heat of the one-dimensional anisotropic classical Heisenberg ferromagnet in a magnetic field
is calculated by computer simulation. The results are compared with experimental measurements on the
linear-chain magnet CsNiF3 and with analytical calculations on the continuum version of the model. Spe-
cial attention is paid to the dependence of the specific-heat maximum on magnetic field. It is concluded
that quantum effects are essential for a proper model of CsNiF3.

For the quantum spin-1 system, the model parameters have
been determined to be'

J/ka = 23.6 K, A/ks =9 K, g p, s/ks =0.16' kQ ' . (2)

In the absence of specific-heat calculations for the model in
Eq. (1), Ramirez and Wolf compare their experimental
results with the theoretical predictions for the classical sine-
Gordon model' which is taken as an approximation for Eq.
(1) in the limit of extreme anisotropy, (AJ)'i')) kaT.
They find qualitative agreement and therefore attribute the
peak found in the specific heat as a function of the field to
the characteristic nonlinear domain-wall excitations of the
sine-Gordon model. ' Renormalizing the domain-wall ener-
gy in a somewhat ad hoc manner, they even obtain a quanti-
tative fit.

A variety of investigations, " ho~ever, have cast doubts
on the validity of the sine-Gordon approximation for
CsNiF3, and it seems more appropriate to compare experi-
mental results with predictions made directly for the finite-
anisotropy model in Eq. (1).

In the present paper, we report the results obtained from
a numerical computer-simulation study of the specific heat
of the model in Eq. (I) as a function of magnetic field and
temperature. We compare the numerical results with the
experimental values for CsNiF3 and with the low-
temperature steepest-descent predictions for the continuum
version of Eq. (1):

,

(

dx 2 J —— +3 (S ) —g psH(S —1)dK x 2 z (3)

recently reported by Fogedby, Hedegard, and Svane' and
by Leung and Bishop. "

%e find qualitative agreement but a significant quantita-
tive discrepancy between all three sets of result. The large
difference between the numerical results for the classical

One-dimensional magnetic systems have been the subject
of intensive experimental' and theoretical studies. " Re-
cently, Ramirez and Wolf' have measured the specific heat
of the linear-chain magnet CsNiF3 in an applied field. The
magnetic excitation spectrum of CsNiF3 is generally believed
to be well described by the discrete spin-Hamiltonian of the
ferromagnetic Heisenberg chain with single-site anisotropy '

P'= —J QS; S;+i+A g(S,") —gpsH $S

model in Eq. (1) and the experimental data indicates that
quantum effects play a significant role. ' " The discrepancy
between the numerical results for the discrete model in Eq.
(1) and the low-temperature analytical results for its contin-
uum version in Eq. (3) calls for an investigation of finite-
temperature and finite-lattice-spacing effects.

Our computer-simulation study is based on conventional
Monte Carlo importance-sampling techniques. Cyclic chains
with N spins are brought to thermal equilibrium by a
Glauber single-site excitation mechanism. A variety of bulk
thermodynamic quantities are calculated, of which we shall
here focus on the specific heat, CH. C~ is derived via the
fluctuation theorem, C~ ——(ks T ) '((4 ) —(4 ) ). The
main part of the calculations is performed on chains with
N =100 spins. Calculations on longer chains with N =400
spins show that finite-size effects can be neglected as far as
CH is concerned. It is we11 known that fluctuation quanti-
ties, such as CH, are difficult to derive from computer simu-
lations. This is particularly true of systems close to critical
points. Despite the lack of true critical fluctuations in the
one-dimensional spin chain studied here, it turns out to be
extremely demanding to obtain accurate numerical values of
C~ in the presence of the field. This is due to a very deli-
cate competition between the ordering effect of the magnet-
ic field term and the tendency of the entropic part of the
free energy to destroy long-range ordering. Accordingly,
the specific-heat results reported below are based on very
extensive statistics corresponding to ensembles of about
40000 N microconfigurations. Moreover, the final values
of CH are obtained by averaging over five to ten different
ensembles constructed by using different Markov chains.
Thus the statistics required for the present calculations is
about two orders of magnitude larger than that needed to
calculate C& in the neighborhood of an ordinary three-
dirnensional critical point. We believe that similar unusual
demands are responsible for the difficulties encountered by
Gerling and Landau'4 in their attempt to calculate C~ for
the classical X)'chain in a magnetic field. In order to check
the reliability of our computer simulations, we have made a

comparison with the exact Fisher solution" for the zero-
field isotropic chain (H =A =0) and with the numerically
exact transfer-matrix results for the planar chain in a field
(A/J ~).' In both cases, we obtain excellent agree-
ment.

In our calculations, we have used the model parameters
of Eq. (2), except for the choice of 3/ka=4. 5 K which is
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the analytical calculation on the finite-anisotropy continuum
model in Eq. (3) (Refs. 12 and 13) gives a nonlinear depen-
dence of H„,k on T' due to the presence of the anisotropy
function in Eq. (5). The Monte Carlo results in Fig. 2 also
suggest a nonlinear behavior. Since the experimental data
cannot be distinguished from a linear function in the tem-
perature interval ranging from 4 to 7 K, the nonlinear pre-
diction can only be verified by measurements in a wider
temperature range.

We wish to comment on possible explanations of the large
discrepancy between the numerically exact computer-
simulation results for the discrete model in Eq. (1) and the
low-temperature analytical calculation on the continuum
model in Eq. (3).'2 '3 In order to obtain an estimate of
finite-temperature corrections to H„,k, we have adapted the
results of Sasaki and Tsuzuki' for the sine-Gordon
model. " To order T, the coefficient in the linear relation-
ship shown in Fig. 2 is found to be enhanced by a factor of
= 1.7. It is reasonable that finite-temperature corrections
to the steepest-descent result for the continuum model in
Eq. (3) will enhance H~„k with a similar factor. However,
even when anticipating a correction of this size, the continu-
um prediction is still another factor of = 1.7 lower than the

results for the discrete model. This marked discrepancy
makes worthwhile a further investigation of finite-
temperature corrections as well as corrections due to the
finite-lattice spacing.

Finally, a remark is in order on the anomaly predicted by
the steepest-descent approach"" to be present in the ther-
modynamic properties at a "critical" field g p, sH = 2A /3
( —18 kG for CsNiF3). In the light of recent work2' and in
analogy with a similar behavior for the Heisenberg chain
with two anisotropies, ' this anomaly, caused by the singular
structure of the anisotropy function, Eq. (6), at x =3, is a
spurious feature of the steepest-descent calculation which
only takes into account static domain walls. At the "criti-
cal" field, the static domain wall couples via a tilting
mode' ' to a moving domain wall, and the free energy and
its derivatives (specific heat, magnetization, etc.) are expect-
ed to behave in a smooth manner. This is supported by the
present work in that we do not discern such an anomaly in
the Monte Carlo results, neither for the specific heat nor for
any other bulk thermodynamic quantity.
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