
PHYSICAL REVIEW B VOLUME 30, NUMBER 1 1 JULY 1984

Correlation-induced reentrant spin-glass behavior
in an Ising model with random interactions

J. O. Indekeu
Instituut voor Theoretische I'ysica, Eatholieke Universiteit Leuven,

Celestjinenlaan 200D, B-3'030 Leuven, Belgium

and Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139

Ph. de Srnedt and R. Dekeyser
Instituut voor Theoretische Fysica, It atholieke Universiteit Leuven,

Celestjinenlaan 200D, B-3030 Leuven, Belgium

An Ising spin-glass calculation is presented showing that stable "reentrant" spin-glass behavior, which is

absent in mean-field theory, occurs when local correlations are taken into account. The method is a simple

Kikuchi approximation starting from the exactly soluble classical spin-glass model proposed by van Hem-

men. The resulting phase diagram is in good agreement with experiment.

Much recent theoretical work on disordered magnetic sys-
tems has concentrated on the role which spatial correlations
play in magnetic spin-glass ordering and the possibility of
mixed phases and a "reentrant" spin-glass phase. Model
calculations which try to clarify these points of interest and
aim at a spin-glass description beyond the mean-field level,
are very relevant to the confrontation between theory and
experiment.

Here, we investigate effects of local correlations of mag-
netic and spin-glass order parameters, starting from an Ising
spin-glass model introduced and solved exactly, in the

mean field limit, b-y van Hemmen. ~ The replica-free mean-
field solution of this "simplest nontrivial model" can al-

ready reproduce several genuine spin-glass features,
Among these are the susceptibility cusp at the freezing tem-
perature Tf and the field-induced transition away from the
spin-glass phase, at finite magnetic field. However, with
particular regard to dynamical behavior below Tf, the model
appears too simple to describe a spin-glass in the "full
sense. "5 Even if so, it appears that all Ising spin-glass
models studied so far, including the celebrated Sherrington-
Kirkpatrick (SK) model, cannot describe stable "reentrant"
spin-glass behavior at the mean-field level. ' In the SK
model, this can be remedied, at the expense of using
Heisenberg spins. '

We find that van Hemmen's mean-field phase diagram
changes drastically when effects of short-range interactions
are taken into account: a "reentrant" spin-glass phase ap-
pears and the new phase diagram agrees much better with
experiment.

van Hemmen considered" the W-spin Hamiltonian

Jp
Pi& = —$s;s& QJ,&s;s& /i $s;

I,J I,J I

with s; = + I, ferromagnetic exchange Jp, magnetic field h,
and weakly correlated random spin-glass exchange JJ = J
&& (g,q&+(&ri;)/N, assuming identically distributed, indepen-
dent random variables ( and q on every site. Randomness
and frustration are abundantly present in this model and, in
the mean-field limit, van Hemmen derived the equations of

state (p = 1/kT):

m = ( tanh (P [Jpm + h + Jq (( + ri) ]})

q = ((/+q)tanh(P[Jpm +/1 + Jq (g +q) ]})/2

for the magnetization m = lim~ (1/X) g; s; and spin-glass
order q =lim~ (1/X) $, (;s; (the symmetry between
and q is never broken). The brackets denote the average
over ( and q

Examining all the solutions of the equations of state and
selecting those which minimize the free energy leads to very
appealing phase diagrams, typically consisting of a paramag-
netic (q = m =0), ferromagnetic (q =0, m & 0), and spin-
glass (q & 0, m =0) phase, meeting at a multicritical point
&M„and a mixed phase (q & 0, m & 0) at low temperatures
T. However, neither in the case of a discrete distribution
(g= + 1=q), for which the spin-glass phase is even un-
stable at low T, nor for a Gaussian distribution of ( and q,
does van Hemmen's solution allow spin-glass behavior at
"magnetic atom concentration" Jp/J greater than 1 (i.e. , the
multicritical point value). Experiments, though, reveal that
spin-glass phases extend far above Jp/J = l.

In a pure ferromagnet, it is well known how to improve
over a mean-field description by including effects of local
correlations, for example, in a first-order Kikuchi (or
Bethe-Peierls) approximation. ' What one gains hereby is a
"dimensionality dependence" of the phase diagram (relating
space dimension to lattice coordination number) and an im-
provement of the critical-point location. In the Ising model,
for instance, the Bethe-Peierls approximation correctly
predicts the lower critical dimension dLc to be 1 and shifts
IC, in d = 2 from 0.25 (mean field) to 0.347 (cf. Onsager's
exact value 0.441), on the square lattice.

Our first step is to replace van Hemmen's Hamiltonian by
an analogous short-range Hamiltonian

$ [Jps s& +J ((;VI& + g&'it; ) s s& ]
(IJ'&

where (ij ) indicates a sum over all nearest-neighbor pairs
on a lattice. An external field term may be added, but we
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will not consider it here. The first-order Kikuchi approxi-
mations may be described as follows. Consider a set of two
nearest-neighbor sites with spin variables s~ and s2. The
states on such a two-site system may be described by the
probability distributions p2($1, $2,$1, qt, (2, 7i2), giving the
probabilities for finding spin values s1 and s2, when the (
and q are known. Some obvious conditions should be satis-
fied, such as

gp2; —= gp2($1, $2', (1, q1, $2, 212) = 1 (for i = 1, 2)

p 2($1,$2'sss 1s 'g 1, $2s 'g2) =p2($2, S1's$2s 7l 2, (1s 2i1)

P2(sl s2 ri1 41 (2 212)

These distributions can also be characterized by order
parameters such as

pr = ~ =( psss) =
& &s1) .

I

Os= s —(psrs s & )=(ppssss) = «s&, &1
I I

ps= r =(/sr„s;&, ss, = &( Ass &1s

~ ~

f

where j = 1 or 2. ( ) indicates an average over the ran-
dom variables ( and 2I, while { . } indicates an average
over the s variables, weighted with the probabilities p2. The
Qk with k & 3 contain variables on both sites simultaneous-
ly. We can also define the single-site distributions
p&(s;g, q). These p1 are functions p1(m, q, r) of m, q, and r
alone. With these distributions, one defines in an obvious
way the single- and two-site entropy functions:

S1(m, q, r) = —( {lnp1})

S,(Q) = —({»p2})

For a lattice with coordination number z, one then defines
the following approximation to the free energy per lattice
site:

F (Q) = ——( [Jps&S2+ J ((17)2+ ss 27l1)S1S2])
2

—T —S2(Q) —(z —1)S1(m, q, r)
2

where m, q, and r are equal to 01, 02, and 03, respectively.
The Kikuchi approximation is then determined by minimiz-
ing F with respect to the 0;.

The Kikuchi approximation may be approached in an al-
ternative way, which is completely equivalent to what we
have just described, but much more practical to use. Let
the single-site system be determined by a Hamiltonian Pj,
which couples the spin to some molecular-field-like order
parameters mo, qo, and ro on its z neighbors:

P 1
= z [Jpm ps + Jq p (g + 7i )s + r pgvl s ]

Minimizing the free energy of this system determines m~,
q~, and r~ as a function of mp, qo, and rp.

m1= ({s}),etc. ,

where ( } indicates here a thermal average with respect
to the Hamiltonian ~j. The value of the minimal free ener-
gy itself is given by

—pF1(mo qo «o) = ln /exp( —pP~)

At this point, it is interesting to note that, up to a rescaling
of the interaction strengths, van Hemmen's mean-field
equations (1) are recovered simply by imposing

mo= m~', qo= q&', ro= 0

For the two-site system we use an analogous Hamiltonian:

[Jos1s2+ J((12i2+ (22I1)$1$2]—(z —1) (Jpmp($1+ s2) + Jqo[($1+ 211)s1+ ($2+ 2i2)s2] + ro(/1211St+ $22I2$2)}

Remark that there is no term corresponding to ro in the
direct interaction between sites 1 and 2. One may again
determine the order parameters

m 2= ( {(s1+s2)/2} ), etc.

where { } is now a thermal average with respect to P'2,
and a free energy I" 2. The Kikuchi free energy is then de-
fined as

F(mo, qo, ro) = —F2(mo qo ro) (z —1)F1(mp, qprp)

Extremizing this free energy with respect to mo, qo, and ro
yields the equations

m] = m2',

By exploring the free energy in the neighborhood of the
solutions of this set of equations, we may furthermore
determine whether or not we have found an equilibrium
state (minimum of F), a metastable (relative minimum), or
an unstable (saddle point or maximum) state.

When the resulting phase diagram is examined for dif-

ferent values of the coordination number z, we find that
below z =2 (meaning d ~ 1) there are no ferro (F) or
spin-glass (SG) phases at T & 0. For 2 ( z ~ 3, there is F
but no SG at T & 0 (in terms of Bravais lattices, z = 3 corre-
sponds to a honeycomb lattice in d = 2). For z & 3, both F
and SG can exist at finite temperatures. What we have
found is that the "lower critical coordination number" zLC
equals three for the spin-glass transition, whereas it is
known to be two for ferromagnetism. A standard attitude is
to associate a dimensionality d to z through z = 2d; a rela-
tion which holds on hypercubic lattices. Our approximation
would then predict dLC ——~, apparently a crude underestima-

tion of the true lower critical dimension in spin-glasses.
Noteworthy, however, is that, since ~ ) 1, our result is

qualitatively correct in showing that the SG phase disappears
before F, as d is lowered.

Figure 1 shows all the equilibrium (stable) phases for
z & 3 (e.g. , z =4) in the "concentration" (Jp/J)-
"temperature" (T/J) plane. The important physical im-
provement over van Hemmen's phase diagrams lies in the
dominance of SG over F at low T, over a wide Jp/J range,
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FIG. 1. Equilibrium phase diagram for z =4. Phase transitions
of second-order (full lines) and first-order (dashed line) separate
para, ferro, and spin-glass phases and meet at a multicritical point

M, . In addition, a mixed phase occurs, separated from ferro by
second-order transitions (full line).

and, hence, the occurrence of a "reentrant" spin-glass transi-
tion. Suppose we cool the system at fixed concentration
j & Jp/J & 2, starting from the paramagnetic phase. First,
the system undergoes a second-order transition into a fer-
romagnetic phase (a small m &0 is acquired). Computa-
tions show that m increases as T is further lowered, reaches
a maximum, and then decreases. Next, the system enters a
mixed phase via a second-order transition (apart from hav-
ing m N 0, also a small q & 0 is acquired). A little further
down in T, say at Tf, the system makes a first-order "freez-
ing" transition to the pure SG phase (m =0, q %0). This

transition is only weakly first-order: the jumps in m and q
from the mediating mixed phase toward the SG phase, are
small.

When comparing with experiment, the thermal equilibri-
um scenario just described may be modified to include a
discussion of the metastable mixed phase which we find
below the line of first-order transitions from mixed to SG
and which can give rise to hysteresis effects.

Recent measurement of I vs T at reentrance in amor-
phous spin-glasses is in remarkable agreement with our
description. Experiments in metallic and insulating'
glasses also revealed a phase diagram similar to ours. The
observed reentrant transition appeared to be a second-order
transition directly from ferro to SG, at Tf. However, the
observed irreversible or frozen moment behavior at low T
was found to persist to temperatures somewhat higher than
Tf, suggesting" a coexisting of ferromagnetic and spin-glass
order some~hat above Tf. Also, from experiments on de-
generate semiconductors, a transition has been reported"
from a mixed (ferro + SG) phase to the SG phase at low T.

In closing, we would like to draw attention to renormali-
zation group calculations on hierarchical Ising models where
a reentrant disordered (paramagnetic) phase was found. '3

This is seen to be due to short-distance correlations destroy-
ing long-distance ones.

In a more extensive publication, we will present full de-
tails, discuss correlation-induced corrections to the behavior
of specific heat and magnetic susceptibility, and also
describe the phase diagram in the presence of an external
magnetic field.
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