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Classical diffusion, drift, and trapping in random percolating systems
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Monte Carlo studies for a biased diffusion are made on simple-cubic random lattices containing 180 and
256 sites with time steps up to 10~. Above the percolation threshold, we observe diffusion for short
times, and drift for long times, when the bias is below a characteristic value. For larger bias, a very slow

relaxation, presumably to the asymptotic nonclassical behavior, is observed.

Recently, the problem of classical diffusion on random
percolating clusters has been studied intensively. ' In most
of these current investigations one asks many questions:
What is the power-law behavior of the root-mean-square
(rms) displacement of a random walker~ How does it ap-
proach its asymptotic value? How does it depend on the
concentration p of the occupied sites? Earlier controversies2
between the computer experiments and scaling theories on
such questions seem to be settled now for unbiased dif-
fusion on isotropic lattices. 7 It is well established that, in
the power-law description for the rms displacement R(t)
with time t, in three dimensions,

R(r)~ r". . . .

The exponent k = 0 for p (p, where R (~) is the average
radius of the clusters, k = 0.20 + 0.01 at p =p„and k = 0.5
for p & p„where Eq. (1) describes Einsteinian diffusion
with adiffusivity D which goes to zero for p p„p, being
the percolation threshold. What happens when a biased
field is switched on to cause the random walker to move
with unequal probabilities (1+8)/2 and (1 —8)/2 with
0 ( 8 & 1 in positive and negative directions, respectively?
The random-walk motion diffuses the particle according to
R~ Jt while the biased field causes it to drift with R~ t.
When t is very small, diffusion dominates and when t is
large, drift dominates. A crossover from diffusion to drift
behavior thus occurs at about t,„—1/(bias field). ' Barma
and Dhar have recently predicted that above the percola-
tion threshold the drift velocity is nonmonotonic and van-
ishes above a critical value. On the other hand, Bottger and
Bryksin in a somewhat different model have shown that in
high field, the current (presumably due to drift) decreases
and goes to zero only in the infinite field (corresponds to
8=1 here, and in Ref. 8). To examine the controversy on
biased diffusion we perform a computer simulation to study
various power laws, crossover, and relaxation due to com-
petition of diffusion, drift, and trapping. Our simulations
seem to support the suggestions of Bottger and Bryksin.

The basic idea to model the problem of biased diffusion
on computer is simple. As in our previous studies7 of ordi-
nary diffusion we first prepare the sample (called lattice
realization) by distributing a fraction p of occupied sites ran-
domly on a L x L x L simple-cubic lattice (a quenched disor-
dered lattice). A particle (random walker) is then placed on
a randomly selected occupied site (called local origin). The
biased probability B is set up to study the motion, for which
a random number r is chosen randomly between 0 and 1
and is compared with B; if r is less than or equal to 8 then
an attempt is made to move it to one of the randomly
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FIG. 1. Log-Log plots of the rms displacement R with time t at
concentration p=0.5 for the bias 8=0.0, 0.05, 0.2, 0.4, 0.8, and
0.98 with their respective symbols indicated in inset.

selected neighbors in the positive directions (i.e., in +X,
+ Y, or + Z directions), otherwise, i.e., if r & 8, the move
is attempted to any of its six randomly selected neighbors.
The bias 8 thus acts as a bias field pushing the stalker into
positive directions [with probability (1+8)/2] reducing its
chance to turn back [in negative direction with probability
(1 —8)/2]. Note that this study is different from the other
investigations of unbiased diffusion on the biased percolat-
ing clusters. ' The random walker is moved to the neigh-
boring site so chosen, if the site is occupied; otherwise it
stays at the same position. Each attempt is counted as one
time step. The process of selecting a neighboring site under
the biased probability prescription and an attempt to move it
is repeated again and again until the desired (preset) time
step is reached. For reliable statistics at concentration p, the
simulation is performed on several independent lattice reali-
zations each with many independent local origins. The
average mean-square displacement is calculated over these
statistics and its value is recorded at various periods of in-
tervals. For our studies here we perform the simulation
mainly on samples 180 on a CDC Cyber-76 machine and
on 2563 samples using a CDC Cyber-205 vector machine.
Apart from the biased field descriptions, the technical de-
tails may be found in Ref. 7.

The variation of rms displacement with time for various
biased probabilities on p = 0.5 random lattices is displayed in
Fig. 1. The data for R in the "small time regime" (up to
105 time steps) were generated on 1803 samples with 50 ar-
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bitrary local origins each on 10 lattices using a CDC Cyber-
76 machine; we use a CDC Cyber-205 machine for the data
in "long time regime" (up to 10' time steps) on 256' sam-
ples with 512 local origins on two lattices. For most of our
analysis here we have used the same statistics except for
some better runs indicated in captions. The CDC Cyber-
205 machine was about 11 times faster than ordinary CDC
Cyber-76 machine. Several runs were made on smaller lat-
tices (323 and 603) for p & p, but no appreciable finite size
effects were observed to affect our conclusion based on our
larger lattices. Note that R can often be much larger than
the lattice size and that the periodic boundary conditions
(used here) will not affect the mean-square displacements.
At 8=0.05 for p =0.5, as time grows, the diffusionlike (Jt
variation of R) behavior is changed into driftlike (almost
linear time dependence of R) behavior at about t„5&& 10 .4

The asymptotic behavior of R approaches sooner (i.e., the
crossover time t,„decreases) on further increasing the bias
until a characteristic value above which the approach to
asymptotic power-law behavior is slowed down. Finally, at
the extreme bias B= 1, R approaches a constant value.

The picture becomes more transparent if we analyze an
effective exponent k, [=d(logR)/d(logt)] as a function of
time. We evaluate this exponent k, in succesive interval of
time, typically covering a decade. The resulting plots are
shown in Fig. 2 for p=0.5 far above p, =0.3117. On in-
creasing the bias, the exponent k, approaches its asymptotic
value (1) faster until the characteristic bias (about 8=0.4)
above which the approach to its asymptotic value is delayed
on further increasing the bias. In high bias, 8 above 0.9,
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the variation of k, with time becomes very slow. Although
the data in the long time regime are fluctuating, the upward
trend for k, with t is rather clear. Note also that within the
Monte Carlo time steps of our observation, the power-law
variation of the rms displacements are neither diffusionlike
nor driftlike, particularly in high bias.

A similar study at lower concentration p = 0.3617
(=p, +0.05) gives the variation of the effective exponent
k, with time steps t as shown in Fig. 3. Compared with Fig.
2, one may say that the crossover and the power relaxation
behavior remain qualitatively similar to those at p=0.5.
But now the characteristic bias seems to be reduced and the
relaxation time for k, to approach to its asymptotic value is
increased. On further decreasing the concentration towards
the critical value p, =0.3117, the relaxation becomes too
slow to estimate a reliable trend of the asymptotic behavior
within our computer time.

Thus, for the random-walk motion on the random
simple-cubic lattice for p & p, in a biased field, our comput-
er experiment indicates the existence of a characteristic
biased field which depends on the concentration p. A bias
below this characteristic value produces a crossover from
diffusion to drift; the crossover regime depends on the bias.
Above the characteristic bias we observe a decrease in R
with increasing bias at constant time. This nonmonotonic
behavior is in accord with the predictions of Barma and
Dhar. However, we have always found an increase of R
with time t in our computer experiments consistent with the
suggestions of Bottger and Bryksin9 (to observe this trend
we had to stretch our analysis to larger times up to 107 par-
ticularly for higher values of bias). Barma and Dhar, s on
the other hand, predicted that the drift velocity vanishes for
large enough values of the bias. This seems to be an ar-
tifact of their model where they consider the traps only due
to branches (i.e., the long dangling ends of the clusters).
Further, they model the infinite cluster by its backbone,
which consists of long stretches of one-dimensional random
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FIG. 2. Effective exponent k~ vs time step t at p =0.5 on a semi-

logarithmic scale. Upper curves are for the bias below its charac-
teristic value 8=0.01 (V), 0.05 (U), 0.2 (o), 0.4 (k); lower
curves are for the bias above its characteristic value 8=0.6 (5),
0.7 (~), 0.8 (+), 0.9 (a), 0.98 ('7).

FIG. 3. Plots of k, vs t at p =0.3617 for 8 =0.05 (x ), 0.01 ( ~),
0.2 (o), 0.4 (b, ), 0.5 (V), 0.55 (k), and 0.6 (+). Inset figure
shows the variation of 8 with t on semilogarithmic scale at

p, =0.3117. At 8=0.2 (+) data up to 10 time steps were gen-
erated with the number of independent local origins N= 80 each on
20 lattice realizations, beyond t =10, N =10 with lattices on 180
sample. At 8=0.5 (o) for the data up to t=10, N=50on 20lat-
tices of 1803 samples beyond 10, N= 512 with 10 lattices on 256
samples. For 8=0.8 (), N=50 on 20 lattices on 1803 samples.
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paths between nodes. s This ideal situation, though neces-
sary for the mathematical simplifications to obtain closed
form analytic expressions, is certainly not correct for the
concentration p much above p, . Moreover, any power-law
with k, ( I (which is in accord with our simulation) implies
a vanishing velocity in the limit t

We know the bias field drives the random walkers for-
ward in its positive directions. If the bias is large, the walk-
ers reach quickly to the positive end of the cluster boundary
or dangling ends of the clusters to which their local origins
belong. The lower is the concentration p, the more ramified
are the percolating clusters" and so are the chances for the
random walker to hit the traps. In high bias, the random
walkers have less probability to come out of the traps
although they always attempt to turn back (in negative
directions) with a finite probability [(I—B)/2) for B less
than one. Thus in high bias regime the disorder through its
traps terminates the drift for a certain interval which we call
the "trapping time" of the walker. This leads to a time
varying power-law behavior with an effective exponent k,
approaching its asymptotic value only very slowly. The long
time relaxation behavior seems to be some complex
(perhaps logarithmic) functions in time, concentration, and
bias. Possibly it is more complicated than the results of re-

lated studies on one-dimensional random system by Derrida
and Pomeau. ' Furthermore, while some theoretical argu-
ments and computer simulations suggest' a nonclassical
(neither diffusion nor drift) power-law behavior, even the
longest run performed here shows metastability in high bias.
One should, however, note that here the local metastability
is due to competition between the bias and disorder (the
ramified geometry of the clusters). Theoretical attempts
(including the analogous multicritical studies'4) are highly
desired to combine all the competing effects, in particular at
p, . Further simulations are required specially for the study
of biased diffusion on biased percolating clusters' to give
more insight into the physics of this problem. We hope this
report will stimulate further attention in this direction.
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