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Theory of semiconductor heterojunctions: The role of quantum dipoles
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At any semiconductor heterojunction there is an interface dipole associated with quantum-mechanical
tunneling, which depends on the band "lineup" between the two semiconductors. When the interface di-

polar response dominates, the actual band discontinuity must be close to that unique value which would

give a zero interface dipole. A simple criterion is proposed for this zero-dipole lineup, which gives excel-
lent agreement with experimental band lineups. The close connection between heterojunction band lineups
and Schottky barrier formation is emphasized.

Semiconductor heterojunction interfaces exhibit interest-
ing and useful electronic properties associated with the
discontinuity in the local band structure at the interface. As
a result, such heterostructures have become important as a
basis for novel devices. However, the fundamental under-
standing of their electronic structure is still far from satisfac-
tory I ~ 2

The most important single property of a semiconductor
heterojunction is the band "lineup, " i.e., the relative posi-
tion in energy of the band gaps in the two semiconductors.
This lineup determines the conduction-and valence-band
discontinuities, and hence the effective barrier for electron
or hole transport across the interface.

This paper presents a theory for the band lineup at ideal
semiconductor interfaces. The central idea is that there is in
general a dipole at the interface, associated with gap states
induced by the band discontinuities. This dipole depends on
the band offset, and tends to drive the band lineup toward
that value which would give zero dipole. A simple estimate
of this zero-dipole lineup gives excellent agreement with ex-
perimental band lineups for a number of heterojunction in-
terfaces.

Figure 1 illustrates schematically the local band discon-
tinuities at a heterojunction, for two possible cases (which
are discussed in detail below). If the semiconductors are
doped, there is also band bending on a length scale—1000 A. However, such band bending can be treated
semiclassically, and is not of interest here.

Experimentally, the interface properties often depend on
growth conditions, so that relatively reliable experimental
values for band lineups are available only for a few sys-
tems. ' Such effects may be due to imperfections (e.g. , high
densities of misfit dislocations3) which extend beyond the
interface region, and so are outside the scope of microscopic
theories of interface electronic structure. Theoretical at-
tempts to calculate band lineups for ideal interfaces have
had mixed success, ' with the most realistic calculations be-
ing typically less successful than some model approaches.

The simplest theories of -band lineup have supposed that
the problem consists simply of relating the bands of the two
semiconductors to a common absolute energy scale. '
Such an approach assumes that no significant additional di-
pole is formed at the interface. Harrison4 in particular has
argued that this is the case, and has obtained reasonably
good predictions of band offsets on this basis.

In general, however, the interface induces states in the
gap of one or both semiconductors, analogous to the so-

called "metal-induced gap states" (MIGS) at a metal-
semiconductor interface. ~ As with MIGS, bulk electronic
states in one semiconductor which fall energetically in the
band gap of the other tunnel a few angstroms into the latter.
The mere presence of these gap states is enough to generate
an interface dipole.

FIG. 1. Two simple examples of the relation between the band
lineup and interface dipole. The band gap is shown schematically vs
position normal to interface. Crosshatching shows projected bulk
bands. Net charge associated with gap states is shown schematically
as (+) (electron deficit) and (-) (electron excess), where states at
the bottom and top of the gap are occupied or unoccupied, respec-
tively (see text). (a) A single semiconductor in which a band

discontinuity is artificially induced, e.g. , by an external step poten-
tial. (b) An interface between two semiconductors, both with
"symmetric" valence and conduction bands (i.e., same electron and
hole effective mass, etc.), but with unequal band gaps.
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For a given system, there exists a unique band lineup
which gives a zero interface dipole. The actual lineup will

not, in general, coincide with this "canonical" lineup; how-
ever, any deviation from this position gives rise to an inter-
face dipole, which acts to drive the lineup towards the
canonical value. If, as is argued below, a small displace-
ment from the canonical lineup gives rise to a large restor-
ing dipole, the actual lineup will be forced very close to the
canonical position. Then the lineup in the absence of inter-
face dipoles, which plays the central role in most previous
theories, becomes relatively unimportant here.

In understanding interface dipoles, the conceptual starting
point is the case of a single gap state in one dimension.
Such a state may be associated with a surface, interface, or
defect. The properties of gap states have been studied ex-
tensively. '3 Any state in the band gap is necessarily a
mixture of valence- and conduction-band character; more-
over, there is a sum rule on the local density of states, so
that the gap state takes its spectral weight from the local
valence and conduction bands, in proportion to its wave-
function character. Charge neutrality occurs if the valence
band is completely filled, and the conduction band com-
pletely empty. Therefore, occupying a state in the gap leads
to excess net charge locally, in proportion to its degree of
conduction character. Leaving the gap state empty gives a
local charge deficit, in proportion to the state's valence char-
acter.

If the state lies near the bottom of the gap, filling it corre-
sponds to only a slight excess charge, since it typically has
only a little conduction character. Leaving that state empty,
however, results in a charge deficit of almost one electron
(i.e., almost one hole in the valence band). Conversely, fil-
ling a state high in the gap gives a large excess charge, while
leaving it empty gives a small local charge deficit.

It is not hard to see how, even when there are no states
at the Fermi level, changing the band lineup can give a net
dipole. Two particularly simple (though artificial) cases are
illustrated in Fig. 1. Consider first an interface between two
semiconductors which are identical, except for an overall
shift in energy. In other words, the band structures and
wave functions are the same, but the zero Fourier com-
ponents of the two potentials (and, hence, the electron af-
finities) differ by an amount V. This is equivalent to a sin-
gle homogeneous semiconductor in the presence of an
external step potential of height V.

According to theories which ignore the interface dipole,
the band discontinuity should be precisely V. In other
words, the potential step is treated as unscreened. Howev-
er, in reality, the band discontinuity induces gap states and
associated charges on both sides of the "interface, " as
shown schematically in Fig. 1(a). The resulting dipole acts
to cancel the potential step. From electrostatics, one knows
that the induced local dipole reduces the step by a factor of
~, the bulk dielectric constant. The lineup is then within

' V of the canonical lineup which would give zero induced
dipole (in this case the trivial homogeneous lineup). This is
not to say that the induced dipole is nearly zero, but only
that a very small deviation from the canonical lineup is
needed to provide the screening, since ~ is large.

At a real heterojunction between two different semicon-
ductors, the analogy to the response of a homogeneous
semiconductor to a step potential is still qualitatively correct;
the effect of gap states at the interface will be to screen any
deviation from the canonical lineup by a characteristic

dielectric constant. For covalent and III-V semiconductors,
this represents an order of magnitude reduction in the devi-
ation. Thus, the dipole response indeed dominates the
difference in electron affinity. Since dipole-free theories~~
give lineups typically within —0.5 eV of the canonical line-
ups tabulated below, the screened deviations from the
canonical lineups should be only —0.0S eV, comparable to
the numerical accuracy of the calculations here.

Another simple example is the case of "symmetric"
valence and conduction bands, where the bands are mirror
reflections (with respect to energy) across the center of the
gap. In that case the condition of zero dipole requires that
the bands of the two semiconductors be aligned symmetri-
cally, i.e., that the centers of the gaps coincide. In that way
the charges induced by gap states cancel, as illustrated in
Fig. 1(b). Again, any deviation from this lineup results in a
restoring dipole. Numerical calculations for model one-
dimensional interfaces' confirm that this effect can be com-
parable in magnitude to the Fermi-level pinning by MIGS at
a metal-semiconductor interface, and that both mechanisms
drive the lineup towards the canonical position.

Both these examples illustrate the remarkable fact that
the relative band positions are "pinned" by the interface
electrostatics, even though there are no states at the Fermi
level. Dielectric screening plays a role here similar to that
attributed to metallic screening in the treatment of Schottky
barriers.

Real semiconductors have complicated band structures, so
the lineup condition for zero dipole is not obvious. Clearly
one must occupy the primarily valencelike states on both
sides of the interface, while leaving the conductionlike
states empty, so as to achieve local charge neutrality
throughout. At some effective midgap energy E~, the states
in the gap are on the average nonbonding in character.
States higher or lower in the gap have, respectively, more
conduction or valence character on the average. The energy
Ez thus plays a role analogous to that of the Fermi level in
metals, as discussed in Ref. 8. A reasonable estimate of the
zero-dipole lineup is, therefore, to align E~ for the respec-
tive semiconductors. This reduces to the symmetric lineup
in the case of symmetric valence and conduction bands dis-
cussed above.

If one of the semiconductors is replaced with a metal, the
heterojunction becomes a Schottky barrier. Then the band
lineup suggested above reduces to aligning E~ in the sem-
iconductor with the metal Fermi level, as in Ref. 8. Thus
heterojunction band lineups and Schottky barrier heights are
here treated within a single unified approach. For both
types of systems, the agreement with experiment obtained
below is at least as good as any other theoretical treatment
to date.

The effective midgap point E~ is calculated exactly as in
Ref. 8. One begins by defining the cell-averaged real-space
Green's function (restricted to propagation by a lattice vec-
tor).

y„'„(r )y„„(r +K) ik a
G(R,E) = „d3r

nk , nk .k E —Enk

where k is the Bloch wave vector, n the band index, and
Q„k and E„k the corresponding wave function and energy.
Then E~ is the energy where valence and conduction bands
contribute equally to G(R, E) in (1) (typically with opposite
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TABLE I. Semiconductor "midgap" energy E~, and Fermi-level
positions at metal-semiconductor interfaces, relative to valence
maxima (eV).

TABLE II. Valence-band discontinuities at selected' heterojunc-
tions (eV).

Eg E~(Au)' Ep(A1)'
Experiments Theory Difference

Si
Ge

A1As
GaAs
InAs
GaSb
GaP
InP

0.36
0.18
1.05
0.70
0.50
0.07
0.81
0.76

0.32
G.07
0.96
0.52
0.47
G.07
0.94
0.77

0.40
0.18

0.62

1.17

A1As/GaAs
InAs/GaSb
GaAs/InAs

Si/Ge
GaAs/Ge

0 19"
0.51
0.17
0.20
0.53

0.35
0.43
0.20
0.18
0.52

'Reference 1.
However, see text and Refs. 1, 19, and 20.

0.16
—0.08

0.03
—0.02
—0.01

'Reference 18.

sign). In one dimension this corresponds to the branch
point in the (complex) energy bands. 9'o In three dimen-
sions E~ has no such precise meaning, but provides a con-
venient criterion for the energy at which the gap states, on
the average, cross over from primarily valence to conduc-
tion character.

Equation (1) requires the band structure E„k as input.
This is calculated as in Ref. 8, with a linearized augmented-
plane-wave method. ' The conduction bands are rigidly
shifted to give the correct band gap, following Baraff and
Schluter '

The calculated position of E~ with respect to the valence
maximum is given in Table I for a number of covalent and
III-V semiconductors. (For GaSb the effect of spin-orbit
splitting is included in an approximate way. ) Also given for
each semiconductor is the Fermi level at interfaces with Au
and (where available) Al, based on Schottky barrier mea-
surements. According to Ref. 8, as well as the arguments
above, the Fermi level at a metal-semiconductor interface
should be pinned at E&, to within the —0.1-eV variation of
barrier height with metal. (This variation can be under-
stood as deriving from the electronegativity difference
between different metals. '7) Experimental values in Table I
are from the classic tabulation of Sze. ' While more recent
measurements are available, a critical evaluation of barrier-
height data is outside the scope of this paper.

Table II gives the most reliably known band lineup results
for semiconductor heterojunctions, according to a recent re-
view by Kroemer. ' (Calculations of Es have not yet been
carried out for II-VI semiconductors, and so those are ex-
cluded. ) Theoretical valence-band discontinuities inferred
directly from results of Table I are also given. The excellent
agreement between the experimental results and the theory
described here, shows at the very least that available data
are consistent with the assumption that quantum-mechanical
dipoles are the dominant factor determining heterojunction
band lineups (as well as Schottky barrier heights).

The quantitative comparison of theory and experiment in
Table II must be made with some caution. The band lineup
even for the extensively studied A1As/GaAs system
remains controversial'920 (see especially Ref. 19). Also,
calculated band structures are only reliable to 0.1—0.2 eV in
general. Any agreement between theory and experiment
better than that in Table II would probably be fortuitous.

Note that in the present approach, the band discontinui-
ties could be estimated by taking the difference in EF rather
than E~ in Table I. The resulting predictions are only
slightly less accurate than the theoretical values given in
Table II, though obtained without any calculation.

The suggestion that heterojunction band lineups and
Schottky barrier heights are correlated has been made previ-
ously, but on the basis of radically different arguments.
Spicer et al. ' had suggested that at metal-semiconductor in-
terfaces, the Fermi level in the semiconductor is pinned by
intrinsic defects. Katnani and Margaritondo pointed out
that were this the case, then such defect pinning at hetero-
junction interfaces might also account for the band lineups.
This would imply Fermi-level pinning, however, which is
not observed. More recent experiments, ' demonstrate
that the band lineup at Ge-GaAs interfaces is not deter-
mined by such defect pinning. These studies also suggest
that native defects do not play a crucial role in Schottky bar-
rier formation.

In contradiction to previous assertions, 4 simple estimates
based on dielectric screening suggest that the interface di-

pole is the dominant factor determining band lineup. In
conjunction with a simple criterion for the zero-dipole band
lineup, this view leads to quantitative predictions of both

heterojunction band offsets and Schottky barrier heights.
These predictions are typically accurate to —0.1 eV; they
require only one number (Es) for each semiconductor,
which depends only on the bulk band structure; and they in-
volve no auxiliary hypotheses about interface structure, or
the presence or absence of native or extrinsic defects.
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D. E. Aspnes, and F. Capasso are gratefully acknowledged.

'Present address: IBM Thomas J. Watson Research Center, York-
town Heights, N.Y. 10598.

H. Kroemer, in Proceedings NATO Advances Study Institute on
Molecular Beam Epitaxy and Heterostructures, Erice, Sicily, 1983;
edited by L. L. Chang and K. Ploog (Martinus Nijhoff, The Neth-
erlands, in press).

J. Pollmann and A. Mazur, Thin Solid Films 104, 257 (1983).
3J. M. Woodall, G. D, Pettit, T. N. Jackson, C. Lanza, K. L. Ka-

vanagh, and J. W. Mayer, Phys. Rev. Lett. 51, 1783 (1983).
4W. A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1977).
5W. R. Frensley and H. Kroemer, Phys. Rev. B 16, 2642 (1977); J.

Vac. Sci. Technol. 13, 810 (1976).
6R. L. Anderson, Solid State Electron, 5, 341 (1962).
7V. Heine, Phys. Rev. A 138, 1689 (1965).
J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).
W. Kohn, Phys. Rev. 115, 809 (1959).



30 THEORY OF SEMICONDUCTOR HETEROJUNCTIONS: THE. . . 4877

toJ. J. Rehr and W. Kohn, Phys. Rev. B 9, 1981 (1974); 10, 448
(1974).

ttR. E. Allen, Phys. Rev. B 20, 1454 (1979).
J. A. Appelbaum and D. R. Hamann, Phys. Rev. B 10, 4973
(1974).

t3F. Claro, Phys. Rev. B 17, 699 (1978).
t4J. Tersoff (unpublished).
tsD. R. Hamann, Phys. Rev. Lett. 42, 662 (1979).
6G. A. Baraff and M. Schliiter, Inst. Phys. Conf. Ser. No. 59, 287

(1981).
7S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, Phys. Rev. B

15, 2154 (1977), and references cited therein.
tsS. M. Sze, Physics of Semiconductor Devices (Wiley, New York,

1969).
~R. C. Miller, A. C. Gossard, D. A. Kleinman, and O. Munteanu,

Phys. Rev. B 29, 3740 (1984). These results for alloy heterojunc-

tions, if extrapolated to the pure A1As/GaAs interface, imply a
valence-band discontinuity somewhat larger than given by the
theory here, whereas the experimental value given in Table II,
also based on extrapolation, is smaller than the theory.
J. R. Waldrop, S. P. Kowalczyk, R. W. Grant, E. A. Kraut, and
D. L. Miller, J. Vac. Sci. Technol. 19, 573 (1981).
W. E. Spicer, I. Lindau, P. R. Skeath, C. Y. Su, and P. W. Chye,
Phys. Rev. Lett. 44, 420 (1980); W. E. Spicer, P. W. Chye, P. R.
Skeath, C. Y. Su, and I. Lindau, J. Vac. Sci. Technol. 16, 1422
(1979).

A. D. Katnani and G. Margar'itondo, Phys. Rev. B 28, 1944
(1983).

~3P. Chiaradia, A. D. Katnani, H. W. Sang, Jr. , and R. S. Bauer,
Phys. Rev. Lett. 52, 1246 (1984).
H. Brugger, F. Schaffler, and G. Abstreiter, Phys. Rev. Lett. 52,
141 (1984).


