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Using a very simple model, valid for transition metals, we derive binding-energy-distance universal rela-

tions. We compare our results with those obtained by Rose, Smith, Ferrante, and Guinea,

I. INTRODUCTION

a'= (a —a )/i (1.2)

i is a scaling length which is to be determined. E'(a") is an
approximately universal function which describes the shape
of the binding-energy curve.

The scaling parameter hE and the translation '(a —a )
ensure that all the curves will go through the point of coor-
dinates (a"=0, E'= —1) at their minimum. The choice of
l is less obvious, and in a first step RFS identify l with the
Thomas Fermi screening length lTF. With this definition of
l, the universality of atomic binding-energy curves is well
obeyed separately for chemisorption on jellium surfaces and
surface and adhesive energies of simple metals. However,
the scaled bulk cohesive energy as a function of
(rws —rws )lirF [rws is the (equilibrium) Wigner-Seitz

JN (m)

radius] exhibits some deviations from universality. For this
reason, and also in the hope of extending the universal rela-
tion to diatomic molecules, RFS introduce a new scaling
length l by requiring that the second derivative of the total
energy with respect to atomic separation at equilibrium is

There has been recently a revival of interest concerning
the universal features of bonding in metals. ' In particular
Rose, Ferrante, and Smith' (hereafter referred to as RFS)
have shown that theoretical'binding-energy-distance curves
can be approximately scaled into a single universal relation
in each of the following cases: chemisorption on a metal
surface, surface and adhesion energies, and cohesion of a
bulk metal. In each case the energy relation can be ex-
pressed as

E (a)
hE

where E(a) is the total energy per atom as a function of the
interatomic distance a and AE its absolute value at the
equilibrium separation a . The coordinate a' is a scaled
length defined by

equal to unity. With this new scaling length, the universali-
ty of the bulk cohesive energy-distance curves becomes
much better and all universal relations fall on top of each
other. This is not really surprising around the bottom of
the potential well since with this choice of scaling parame-
ters all the scaled energy-distance curves are forced to go
through the same minimum point (a'=0, E'= —1) with a
curvature equal to unity. Therefore, around the minimum
point these curves can only differ by a term of the order of
(a') 3. But the surprise comes from the fact that this
universal relation still holds at distances where the third-
order term becomes important.

As a consequence of this universality RFS relate seeming-
ly different physical quantities: cohesive and surface ener-
gies, vibration stretch frequency, and binding energy of ad-
sor bates.

In this paper we will focus on transition metals and show
how universal analytic energy-distance curves can be
derived from a simple tight-binding model. From this
model we relate easily the above mentioned physical quanti-
ties.

II. MODEL

We neglect the electronic correlation energy and assume
for simplicity that, due to symmetry, all bonds are
equivalent. The energy distance contains two contributions:

E = Erep+ Eband

E„, is a repulsive contribution to the energy which will be
assumed to be pairwise and described by a potential of the
Born-Mayer type (exponentially decreasing with distance).
Eb,„d is the one-electron contribution. In a tight-binding
model, it increases with the hopping integrals which are as-
sumed to vary exponentially with distance as exp( —qR).
These exponential laws are derived from a fit to microscopic
calculations and are valid over a relatively large domain of
distances around the equilibrium position.
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A. Bulk energies

The one-electron contribution to the bulk energy per
atom can be written

REF
Eb,„p= J En (E)dE (2.1)

where n (E) is the centered density of states, m the bottom
of the band, and Ep the Fermi level. When n (E) is approx-
imated by a Gaussian of width fitted to the second moment
of the true density of states, it is well known' " that Eb,„d
takes the form

-0.4
CU

CU

~ -0.6
JD

Ebanp = —JZ Fe (2.2)
H -0.8

-pRp ~ —qRp'2' (2.4)

where Z is the coordination number of a bulk atom, R the
interatomic spacing, and F a function independent of
R (F & 0). One sees that this term is not pairwise since it
varies like JZ. Furthermore, let us notice that this MZ
dependence would also be obtained with parabolic or rec-
tangular densities of states and is approximately obeyed
when using accurate densities of states.

Consequently, the bulk energy per atom Eb(R) at intera-
tomic distance R takes the following form:

E (R )
—pR JZ F —qR (2.3)2'

where Ae p" (A & 0) is the repulsive energy associated to
one bond. The existence of a minimum for Eb requires
p ) q and the equilibrium distance satisfies
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FIG. 1. Scaled bulk cohesive energy-distance curves for different
values of plq.

1Ib=
) ~pq

where

(2.10)

appropriate for transition metals.
%hen the separation between atoms is characterized by

the Wigner-Seitz radius as in the work of'RFS Eq. (2.8) is
unchanged but the scaling length becomes

which corresponds to the cohesive energy
1

Eb(R p) = e 1 ——=FJZe ——1
ZA -&&p p —&~p

2 q I p
(2.5) i.e.,

Rp

When we scale (2.3) by (2.5) we find
—q(z -ap)Eb(R)

iEb(R p) i (p/q) 1 (q/p) 1

Let us calculate now the scaling length / by requiring that
the curvature of Eb'(R') is equal to 1 at the minimum

' 1/3
1 16m

1 81
3

for the fcc structure, and
' 1/3

2 3
= 1.76

d2E'(R )
dR

Therefore,

1= —2=pqj
(2.7)

E'(a') = —[I+a"+0.05(a')s]e (2.11)

for the bcc structure.
. In Ref. 4 Rose, Smith, Guinea, and Ferrante propose to

approximate E'(a") using the function

E,"(R")= +
(p/q) —I (q/p) —1

where

(2.8)

(2.9)
I

The potential given by expression (2.8) is strictly univer-
sal provided that the ratio p/q is constant along the
transition-metal series which is roughly true since, from an
analysis of the cohesive energy and elastic constants, Du-
castelle'2 has shown that 3 & p/q & 5. Moreover, if we vary
p/q within realistic limits (from 2 to 5) the scaled energy-
distance curves are almost indistinguishable at small R" dis-
tances and do not differ very much at large R, as can be
seen on Fig. 1. The value p/q =2 corresponds to the Morse
potential, as can be seen on Eq. (2.6). However, if we limit
ourselves to first nearest neighbors, this value of p/q leads
to vanishing values of the shear moduli. ' It is, thus, not

By definition, when R' = 0 (a' =. 0) both functions go
through the point E = —1 and their first and second
derivatives have the same values equal, respectively, to 0
and 1. It is, thus, possible to determine the p/q ratio to get
the same third derivative. This gives

p/q = 2.95 (2.12)

With this value the fourth derivatives differ by only 2%. In
fact, the corresponding curves are almost undiscernible.
Equation (2;12) lies within the estimations of Ducastelle'2
(qRp=3 and pRp=9-15) in transition metals. It leads to

I

lb= (2.13)

for all structures in good agreement with RFS evaluations
from experimental data.

On the other hand, one can also compute the position of
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TABLE I. Variation of pRp and qRp along the three transition-metal series deduced from Eqs. (2.12) and
(2.15); the q value is taken from Rose et aI. (Ref. 4).

V Cr Mn Fe Co Ni

pRp
qRp

4.76
8.18
2.77

Zr

4.81
8.40
2.85

Nb

5.59
9.60
3.25

Mo Tc

5.16
8.86
3.00

Ru

5.31
9.12
3.09

Rh

5.11
8.78
2.98

Pd

7l

Rp
qRp

4.48
7.69
2.61

Hf

4.84
8.31
2.82

Ta

5.85
10.05
3.41

Re

6.04
10.37
3.52

Os

6.41
11.01
3.73

pt

pRp
qRp

4.66
8.00
2.71

4.92
8.45
2.86

5.69
9.77
3.31

6.15
10.56
3.58

6.52
11.20
3.80

6.47
11.11
3.77

the inflection point in (2.8). It lies at

(p/q) '"ln(p/q)
(p/q) —I

(2.14)

q =ROJpq (2.15)

which, with (2.12), can be used to derive pRO and qRO.
They are given in Table I. One sees that they increase
along a transition series.

Finally Guinea et al. ' relate the Gruneisen parameter
which controls the anharmonic properties of bulk metals to
7l:

rws Eelii(

6 I, E"'( )

With our model we find

(p/q) +1
6(p/q)' '

(2.16)

(2.17)

The proportionality factor between y and q takes the values
0.38, 0.41, and 0.45 for p/q = 2.95, 4, and 5, respectively.

B. Binding energies of adatoms

We have already shown that this model can be applied in
chemisorption in the case of weak (or intermediate) cou-
pling" for which the perturbation of the substrate can be
neglected. In this case the binding energy takes a form
identical to Eq. (2.3):

E = Zge I'+ —JgFe (2.18)

i.e., R'=0.95, 0.92, and 0.90 when p/q =2.95, 4, and 5,
respectively, which compares quite well with the relation
(r ws

—r ws ) = Ib given by Guinea, Rose, Smith, and Fer-
rante.

The q parameter (q=rws /lb) tabulated by Rose er al. 4

for all transition elements has the expression in our model

where Z is the coordination number of the adsorbate; A, p,
and q characterize the adatom-substrate bond and R is the
bond length. This equation leads obviously- to the same
scaled binding-energy-bond-length curve [Eq. (2.8)] with
the same expression of the scaling length. This curve is
universal in so far as p/q is constant.

If, similarly to RFS,. we replace the bond length by the
distance a of the adatom to the surface, R should be ex-
pressed as a function of a, which leads to a more complicat-
ed form of the universal relation, and the scaling length be-
comes

1

Jpg COSHO
(2.19)

where Hp is the angle of the bond with the normal to the
surface at equilibrium.

C. Surface energies

hE = E(R) —E(~)
where

E(R)= 'We ' '+ ' e
2

' +2'
—F((Z —Z, )e +Z, e ""]''

(2.20)

(2.21)

and Z, is the number of broken bonds.
To obtain a simple form of the potential we expand the

square root in (2.21) up to the second order in Z,/Z. We
find

For the sake of simplicity we will only consider here the
most densely packed faces of each metal, in which case,
within our model, the variation of total energy when
separating two semi-infinite portions of a metal is only due
to the perturbation of the surface atoms. If the bond length
between the two half-crystals is equal to R, this variation of
energy, per surface atom, takes the form

LEE(R ) 1 (I +. 2 ) 2blR + P~ —4qlR-"

IAE {Ro)I (p/2q) (I n+) —1 2q 2q
(2.22a)
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where
—pRp

lLLE(Rp) l
= ' (1+a)—1

Zae '
p

2 2q
(2.22b)

III. DISCUSSION AND CONSEQUENCES

Let us first discuss the ratio lq/I, R. FS estimates it from
measured quantities using the expressions

is the surface energy and I is the scaling length given by

7 ' 1/2
2crd

S
C11

(3.1a)

1 —1 1/2

(= l~E(R.)l "'E'R'
dR R Rp

t

Ib=
'

le, (R p) l

' "'
12m Brws m,

(3.1b)

p (1+n) —2q

2pq [p + 2q (2a —1)]

' 1/2

(2.23)

with a =Z, /4Z. Expression (2.22a) is identical to (2.8)
when p = 2q and for realistic values of p/q, the two poten-
tials do not differ very much over a wide variation of R'
around 0 (Fig. 2). Let us notice that we do not take into
account the relaxation of the interplanar spacings near the
cleavage- plane.

To compare the scaling length (I, ) of RFS and ours, we
must replace R by the distance a between the two half-
crystals; then I is divided by cos8p. If; for example, we take
a (ill) fcc surface cosHp= 42/3, n= ~ one finds

—=0.65, 0.64, and 0.62
Ib

S

when

&=2.95, 4, and 5 (2.24)
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FIG. 2. Scaled surface energy-distance curve compared with the
scaled bulk cohesive energy-distance curve: p/q = 3 and A

f.(111) face of a fcc metal].

These values are a bit larger than those of RFS and we will

discuss this in Sec. III. Let us point out that, since
0& o. & T, I is almost independent of 0. for reasonable
values of p/q.

where o- is the surface energy per unit area, c11 the elastic
constant appropriate to strain normal to the surface, d the
interplanar separation at equilibrium, and 8 the bulk
modulus.

The above expression of Ib is identical to (2.10) since it is
easy to show that'

),qlEp«p) I .1

12m rws
.m

(3.2)

The expression of I„as stated by RFS, is only approximate
since the appropriate elastic constant cq for the separation
into two-half crystals is not the same as c11, which corre-
sponds to a uniform variation of all interplanar distances.

Indeed, within our model, cq can be easily obtained from
the second derivative of E(R) given by Eq. (2.21). We
find

f

cj —— p Ae Z, 1 —2—1 — d cos Hp, (3.3)1 2 -pRp q Zc

&at p 2Z

where d is the interplanar distance at equilibrium and v, & the
atomic volume. The expression of c11 can be similarly
derived from (2.21) but one should replace Z, by 2Z, since
the interplane bond lengths on both sides of a given plane
are modified. This gives

't

ctt = p Ae Z, 1 —2—1 — d cos Hp . (34)1 2 -pRp q Z 2 2

&at p Z

Expressions (3.3) and (3.4) are identical only if we limit
ourselves to the first order in Z,/Z. Using this assumption
one recovers the expression (3.1a) of the surface scaling
length. However, higher-order terms in Z, /Z are actually
necessary to recover the usual relations between c11 and c11,
ctq, and c44 in cubic crystals and, therefore, Eq. (3.1a) is not
strictly valid. If, nevertheless, we limit ourselves to first or-
der in Z,/Z for the expressions of c~~ and cr and apply Eqs.
(3.1) we find

J2 cosHp
(3.5)

I,

i.e., for a (111) fcc surface Ib/I, = 0.63, which is quite similar
to (2.24).

The difference between our value of Ib/I, and the value
(0.48+10%) quoted by RFS is partly due to the fact that
our simple model seems to underestimate somewhat the
surface energy while RFS use a slightly overestimated o-

since these quantities are taken from measurements on
polycrystals.

Within our model, we can also calculate the ratio
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TABLE II. Comparison of ratios of adsorbate-substrate vibrational stretch mode frequency computed from

Eq. (3.10) with those of Ref. 13 for N, 0, and P atoms adsorbed on the (110) face of bcc transition metals
with N& d electrons. 81 is the bridge site between nearest neighbors and TD the most stable adsorption site

(almost perfect ternary).

cue /o)r
1 D

Nd = 5

N

F

Ref. 13

Eq. (3.10)

Ref. 13

Eq. (3.10)

Ref. 13

Eq. (3.10)

1.10

1.12

1.10

1.03

1.08

1.14

1.13

1.09

1.05

1.07

1.04

1.15

1.13

1.12

1.10

1.07

1.09

a/le(Ro)l . from Eqs. (2.5) and (2.22b). We find in which the vibration of the substrate atoms is important.
The force constant is simply given by

1 Z, (p/2q)(1+n) —1

lEb(Ro) I S Z (p/q) —1
(3.6)

d E(R)
RQ

E(Ro)
2

~c1 em
(3.9)

ct~ = Ae (pRo) 2 —3——pRQ

3vat P

and"

(3.7)

C11+2C]2B=
3

T

2 -PR0 2Ae (pR o) 1 ——
3'Uat p

This gives

where S is the surface area per surface atom.
Let us now compute p, =4vrrws o/IEI, (Ro) l for specific

surfaces in order to compare this ratio to the values derived
from Eqs. (3.5) and (6.1) of RFS. For the (111) and (100)
faces of a fcc crystal, we obtain p, equal, respectively, to
0.32, 0.42, 0.46, and 0.39, 0.50, 0.55, when p = 2.95q, 4q,
5q. These values roughly agree with Eq. (3.5) of RFS,
which gives p, = 0.33 but is too small by a factor of approxi-
mately 2 compared to the empirical result (0.82) given by
their Eq. (6.1). Let us notice, however, that according to
RFS this last value is strictly given with an uncertainty of
+40%, although the straggling of the experimental values

in the plot of their Fig. 13 is much smaller, which indicates
some compensation between errors. The discrepancy
between our values and the empirical estimation of RFS
(0.82) is mainly due to the difference between our value of
lq/I, and theirs, since we agree with the RFS evaluation of
c ft /B as we will show below.

Indeed, for the (111) face of a fcc crystal, (3.4) gives

Therefore,

1/2
E2(R o )~t pzqp

E&(R )oMgp ~q ~ cos8~
(3.10)

where co& is the vibrational stretch frequency of an adatom i,
E;(Ro ) its energy at the equilibrium bond length Ro;, M; its

mass, and 8; is the angle of the adatom-substrate bonds
with the normal to the surface. Equation (3.10) is, thus,
similar to Eq. (3.8) of RFS. Although in our work it is
derived under the assumption of weak or intermediate cou-
pling one can wonder about its reliability in the strong-
coupling limit. In order to check it, we will consider the
case of an atom (N, 0, or F) at a bridge position between
nearest neighbors (site Bt of Ref. 13) and at a nearly ter-
nary site (site TD of Ref. 13) adsorbed on a (110) face of a
bcc transition metal. In this geometry the adatom-substrate
bonds are almost equivalent, which is indeed an essential
assumption in Eq. (2.18). We have computed the ratio

&os,/cur from Eq. (3.10) and compared it to the results of

our previous calculations' using a more sophisticated tight-
binding model. The agreement is rather good, as can be
seen in Table II. Note that the site dependence of the vi-
bration frequency of adatoms has been discussed in great
length by Sayers'4 using an expression for the chemisorption
energy similar to Eq. (2.18).

c t t 2 —3(q/p)
' B 1 —(q/p)

(3.8) IV. CONCLUSION

i.e., cft/B =1.49, 1.67, 1.75 when p =2.95q, 4q, Sq. A
similar calculation leads to c ft/B =1.24, 1.33, 1.38 for a

(100) face. These values are in reasonable agreement with

the value (1.7 + 20%) used by RFS.
Finally, we can compute the ratio of vibrational stretch

frequencies for different atomic adsorbates ignoring modes

In conclusion, we have set up a very simple model, valid
for transition metals, which gives a physical insight into the
universal nature of binding-energy-distance relations. Our
model reproduces the relations put forward by RFS and
Guinea et al. and gives a means to determine a priori the
constant factors which appear in them.
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