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A previously developed theory for electronic properties of doped semiconductors that uses a Hubbard-
like Hamiltonian and takes into account the effect of disorder is applied to the impurity bands associated
with inversion layers. It is shown that the impurity bands have a considerable bandwidth for concentra-

tions in a range of experimental findings.

In this paper we consider the problem of impurity-band
formation due to two-dimensional (2D) hydrogenlike bound
states whose centers are randomly distributed on a plane
surface.

We assume a Hubbard-like Hamiltonian

H= gV,,a,ff,a,,+—2q Snighi-o . ¢))

where a,:r, and a;, refer to creation and annihilation opera-
tors of an electron with spin o bound to an impurity as-
signed to the site / and n,-,=a,f,a,.,- Vi is the ground-state
energy (Ez) of the electron in the atomic limit, Vy (i # j)
and U are, respectively, the hopping matrix associated with
sites i and j and the intra-atomic correlation energy. They
are given by

Vy=— fo(F=R)V(F-Row(F-RDar , @
and

2
U= [lo(FI == p(FDdrd%, . ()
k|T— Tl ,

where k is the dielectric constant and V (r) is the contribu-
tion to the potential energy of the electron due to an impur-
ity at site j.

We treat disorder according to the Matsubara-Toyozawa!
(MT) theory for doped semiconductors. It seems to be a
general property of tight-binding Hamiltonians for regular
2D lattices? that discontinuities appear in the density of
states at the band edges together with divergences in the
real part of the diagonal Green’s function. As we will show
later, the MT theory is very convenient to obtain informa-
tion about those properties in the case of 2D structurally
disordered tight-binding models.

It is well known that bound states due to sodium ions in
the proximity of the Si-SiO, interface of a metal-oxide-
semiconductor field-effect transistor (MOSFET) give rise to
impurity bands at ' concentrations that vary between
101'-10'2 cm~2.% Since the first calculation of these bound
states by Stern and Howard* (SH) using the effective-mass
theorem and considering a thickness inversion layer, many
improvements have been achieved.’

Our present calculations of impurity bands correspond to
the rather unrealistic case of the SH solution for the bound
state with unscreened impurity potential and with the im-
purity located itself at the inversion layer. This rough treat-
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ment generates 2D hydrogenlike bound states with binding
energy equal to 4 Ry*. Although this oversimplification is
unnecessary for the technique to be used it allows us to ob-
tain analytic solution for the Fourier transform of the
transfer matrix V. We will leave improvements on the cal-
culations of Vj; for a future paper. So, we take as ground
state for the bound electron

w(r) = (8/m)%aq " exp(—2r/aq) , )

where aq is the effective Bohr radius, ao=kh/m*e? and
k = (kox+ ks;)/2. For the case of Si-SiO,, 1 Ry* =42 meV.

Next, we apply a previously developed theory for impurity
bands in doped semiconductors® based on a Mott-Hubbard
model to the present 2D case. We define two Green’s func-
tions, G, and Gy, as

Gt (0=—i00)(laion¥, afs(D]s) , (5)
with n,*, =n_, and n,=, =1—n,_,. The average Green’s
function results in

+
n=q

(Git (W))av=-;':E'—i§i(W~Et) , 6)
where EY=E;+ U, E”=E,; and

ViVii) av
gi(w)_l-{— <V,-,»)av <12 4 Il)a . (7)
w—E* . (w—E)?
In 2D, £ obeys the equation
ey 1
£=(w) =ni0m (8
+ >
Q2m)*w [1-NeE(w)/wlV (k)
()]

In the above equation N is the number of impurities per
cm? and V (k) is the Fourier transform of the hopping po-
tential:

V(k)= fexp(iE-ﬁ)V(ﬁ)dzr (10)

Using Eq. (6), we have (from now on we will omit the
symbol minus in G and ¢)

w<Giio(w)>=n:o'§(w) . (11)
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Defining

£(w) 1

w  Na@(u+is) 12)

where ay is the effective Bohr radius, we have for the densi-
ty of states D (w)

2 _1_ s
a¢D (w) g syl (13)

Now, bringing together Eqs. (8), (9), and (12), we have,
after some manipulation

_ 2 vz(q)[u—v(é)]
w—Na&u+—ﬂ_ ‘0 Ti—v@P+s" , a4
and
2_2 [""__v’(f&__
Naj N P SENW dqg , 15)

where = k/a and v(q) =adV (aq).

For regular 2D lattices, ImG; (a) shows discontinuities at
w=E; and w=E,, where E; and E, are the lower and upper
band edges, respectively. On the other hand ReG;; diverges

at E; and E,.
In the above notation
1 u
Re(Gi(w)) = Nag B+ (16)
and
_ 1 u
Im(G;(w)) = Nad Pt an

In order to fulfill the conditions on the real and imaginary
parts of G;, we must have

s(w)=0 forE;>worw>E, ,

u(w)—0 asw— E, " orw— E .

Bringing these results into Eq. (17) we see that the discon-
tinuities lead to the unphysical result of E;=E,=V (R =0).
Therefore a finite bandwidth is not consistent with the
discontinuity of the density of states at the band edge, at
least in the formalism of Matsubara and Toyozawa.

After the pair of Eqs. (14) and (15) the Green’s functions
are obtained self-consistently. In case where an analytical
expression for ¥ (K) is known, Eq. (9), instead can be used
to provide an analytical solution for £.7 Defining a=2/ao
and X=aR, and using Egs. (2), (3), and (4), we get
V(x)=—8xK(x) Ry*, where K(x) is the modified Bessel
function of first order, and U =4.71 Ry*. The Fourier
transform of V(R) is

1287ad .

T (4+adk?)? 18

V(k)=

Figure 1 shows the bandwidths of the lower and upper
impurity bands, separated by U and their relative positions
to the bottom of the inversion layer. Figure 2 shows the
impurity bands for some concentrations, namely,
N =1.55, 3.10, and 6.20x 10! cm~2.

It is evident that no discontinuity is observed on the band
edges. However, a band tail pointing to the low-energy re-
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FIG. 1. Top and bottom edges of the 2D impurity bands as a
function of the concentration N. The position of E, is set at origin,
as the location of the lower band. E is the bottom of the inversion
layer and U is the intra-atomic correlation energy. The arrow indi-
cates the concentration at which the bands start overlapping.

gion characteristic of impurity bands in 3D is not observed
in 2D bands. This feature does not seem to be a result of
the approximation involved in the MT technique to treat
disorder. It also appears when we use computer simulation
of disorder and obtain the band by a cluster model.?

It is worthwhile to mention that Puri and Odagaki® calcu-
lated the one-band density of states using the homomorphic
cluster coherent potential approximation. They have ob-
tained no band tails for the 2D energy bands.

The overlapping of the two bands occurs at a concentra-
tion of 4x10'! cm~2. At concentrations available for exper-
iments®, 1 to 3x10'' cm ™2, there is no overlapping but the
bandwidth of the lower band is 50% to 100% of E,.
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FIG. 2. Density of states of impurity bands as a function of con-
centration. Ej is set at the origin. Dotted lines refer to Ey.
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