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Linear conductance of short semiconductor structures
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%e study the length dependence of the linear conductance ig semiconductor samples sandwiched
between two metallic contacts. In very short samples the conductance is given by the Landauer formula
which accounts for the quantum-mechanical reflection in the semiconducting region. In long samples,
where semiclassical transport concepts are applicable, the conductance is derived by solving the Boltzmann
equation with the appropriate boundary conditions imposed by the metallic contacts. Depending on the re-
lative magnitudes of the sample length L and the carrier mean free pyth l we can distinguish between three
specific modes of the electrical transport: the ordinary collision-controlled conductance for L && l, therm-
ionic emission for L —I, and tunneling at the Fermi level for L « i (below L =100 A, typically).

Progress in semiconductor technology is pushing device
size ever smaller. At present, commercially available de-
vices have a feature size of about 1 p, m and research labora-
tories are processing prototypes with dimensions well in the
submicron range. From the technological point of view it
has been suggested that the minimum device size can be in
the future as small as a few hundred angstroms. '

The study of the transport properties of semiconductor
devices is conventionally based on solutions of the
Boltzmann equation, which are valid in infinitely large sam-
ples only. In practice this implies that the device dimen-
sions must be much larger than the carrier mean free path /.

At room temperature I = 500 A in n-type Si and 1500 A in
n-type GaAs. Thus, the sample length L is in the submi-
cron range only a few mean free paths and consequently
some changes from the long sample behavior can be expect-
ed. One type of modification arises from the boundary con-
ditions imposed by the environment. The other type of
changes stem from the space and time constrained kinetic
effects such as finite collision duration, size quantization,
breakdown of effective-mass approximation, etc.' Some of
these phenomena can be treated as corrections to the semi-
classical Boltzmann theory, but, finally, in very small
dimensions a full quantum treatment of electrical transport
is needed. There are various formu1ations of quantum
transport theory but owing to the complexity of these
theories only very few results exist for short devices. This
paper is intended to describe within a simple model the
behavior of the linear conductance in short semiconductor
structures. We study a one-dimensional metal-
semiconductor-metal (M-S-M) structure shown in Fig. l.
The metallic regions are described by the free-electron
model and the semiconductor by the Kronig-Penney chain
of variable length. The dashed lines stand for the band
edges obtained by allowing L to approach infinity.

In ultrashort samples (L « I ) an electron traverses
through the semiconductor without being scattered. How-
ever, the semiconducting region introduces a perturbation in
potential energy that causes the electron wave function to
be partially reflected. This gives rise to a finite conductance

dEv(E) S (E)—Bf(E)
BE

r

'dE. (E) —"f'E'
dl

where v(E) is the electron velocity. The numerator of the
Landauer formula is familiar from the tunneling theories.
In ordinary formulation the distribution function is taken as
the thermal equilibrium distribution. By correcting the dis-
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FIG. 1. One-dimensional metal-semiconductor-metal (M-S-4)
structure. The conduction and valence bands refer to an infinitely
long semiconductor. Parameter values used in the calculations are
Vs=7 eV, EF=7.75 eV, a =2.26 A, and b=0.24 A.

given by the Landauer formula3 4

e2 J dEX(E)( —Bf/BE)6=
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Here, f is the Fermi-Dirac distribution function and W(E)
the energy-dependent transmission coefficient for the M-
S-M structure. The average (~) is defined by
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tribution function for the current carrying state the renor-
malization factor 1 —(~) is obtained.

The transmission coefficient for the M-S-M structure can
be easily calculated by the usual transfer-matrix method.
The results for the conductance show that above L —100 A
the conduction takes place by the ordinary band conduction
via the semiconductor bands. Thus, for L & 100 A we can
study the conductance with the aid of the Boltzmann equa-
tion.

In the relaxation time approximation the general solution
of the Boltzmann equation can be expressed in the path-
integral form

Sd(p) =— dft" (p (t'))dt', exp—"~' r(p(t"))
(3)

Here, vp is the thermal velocity and n the carrier density.
Equation (4) is an integral equation for the gradient of the
quasi-Fermi level, having the solution

[S(x)+g(L x)+ I/I] .—
evpn

(5)

In Eq. (5) the 5 functions are understood to be within the
region of integration. The term proportional to 1/I
represents the normal long sample behavior, whereas the
sudden changes of the Fermi energy at the contacts account
for the specific contact resistance of the metal-
semiconductor interface.

The integration of Eq. (5) gives the total voltage and thus
we obtain for the conductance of the M-S-M structure

G = Gra/(I+ L/2I)

where
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is the linear conductance of the classical thermionic emis-
sion theory. In Eq. (7) Ec stands for the energy of the

Here, f Ol stands for the local equilibrium distribution,

p (t) = (k(t),x(t) ) for the electron trajectory and r for the
relaxation time. Since f Ol depends on time through the
position-dependent Fermi energy EF(x) only, we see that
df'Ol/dt'-de/dx'. In the metallic regions dEF/dx is orders
of magnitude smaller than in the semiconducting part.
Therefore, we can limit the t' integration in Eq. (3) to the
semiconductor side only. Physically this means that the me-
tallic regions supply thermalized electrons into the semicon-
ductor side, thus giving rise to the boundary condition
S4= 0 at the incoming contact.

In the linearized treatment of the nonequilibrium distri-
bution the t' integration is taken along the free-electron tra-
jectory. Furthermore, by changing the integration variable
from t' to x'=x v(t —t') and a—ssuming a constant mean
free path I = ur we obtain from Eq. (3) for the current den-
sity

evon rt, dEF(x')J= dx', exp( —!x—x'!/I); 0~ x~ L
2kgT" o dx'

(4)
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FIG. 2. Conductance of the one-dimensional metal-
semiconductor-metal structure at T=300 K as a function of the
length of the semiconducting region.

conduction-band edge and E) ' for the equilibrium Fermi
energy.

Figure 2 shows the length dependence of the conductance
of the M-S-M structure as derived from Eqs. (1) and (6)
for an, n-type semiconductor sample at T=300 K. In Eq.
(6) I = 500 A is assumed. For long semiconductor samples
the classical behavior G —1/L is clearly seen down to
L =2t. Below this, 6 saturates to the classical thermionic
emission value G~E, which thus represents the contact resis-
tance of the structure. For the sample thicknesses of a few
atomic layers, only, the Landauer formula gives an ex-
ponentially decreasing conductance, which indicates that the
current flows by tunneling through the semiconducting re-
gion. After L = 100 A the conductance rapidly saturates to
a constant value, which is roughly a factor of 2 smaller than
GqE. The saturation is clearly due to the fact that now the
current flows through the regions of high transmission coef-
ficient associated with the semiconductor conduction band.
Furthermore, in the Landauer formula the exact transmis-
sion coefficient has been used, which explains the slight de-
viation of the saturation value from G~E.

To summarize, the electrical transport in the M-S-M
structures can be characterized by three regimes, as shown
in Fig. 2. The classical length dependence can be seen in
the collision dominated regime (L » I), where the results
of the standard Boltzmann theory are applicable. In the op-
posite limit (L « I) the tunneling at the contact Fermi
level dominates, and the conductance is given by the Lan-
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dauer formula. Between these two extremes (L = I) the thermionic emission current is prevailing. Some refinement of
the theory is sti11 needed in the intermediate regime, but, as seen from Fig. 2, the classical and quantum treatments already
agree within a factor of 2.
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