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Theory of nonlinear electron transport for solids in a strong electric field
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The nonlinear transport for interacting electrons with phonons and impurities is studied in the presence

of a strong electric field E. By separating the center-of-mass motion from the relative motion of electrons

we are able to obtain force- and energy-balance equations in steady states, from which the electron tem-

perature and current density can be determined self-consistently as a function of E.

To invent a tractable method of calculating nonlinear elec-

tron transport in solids has been an outstanding problem for
a long time. ' So far the phenomenological Boltzmann

equation seems to be the only tool for practical calcula-

tions. 7 9 In this Brief Report we shall introduce a different

approach to this problem. The essential idea is to separate
the center-of-mass motion from the relative motion of elec-

trons in Hamiltonian and in density matrix, by which a
force balance equation and a energy-balance equation are

obtained for steady states in the presence of electric fields.
Thus both frictional and heating effects are included in a
natural way.

%e consider a model electron-phonon-impurity system in

the presence of a uniform electric field E, which consists of
W interacting electrons, n& randomly distributed impurities,
and phonons. The electrons interact with phonons and are
scattered by impurities. The conventional expression of the
Hamiltonian for this system is well known. In order to cal-

culate the transport properties we find it is more convenient
to write this Hamiltonian in terms of the center-of-mass
(c.m. ) variables and the electron variables in the relative
coordinates'0

H=H, + H, + Hph+ Hepb+ H, I

H, = —NeR R
I12

2Nm

X
(pt') ~
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Hv~= X &-,.b-, gbq. ~ (3)
q, A,

H, vb= X M(tf, k)(b-„„+b -„)exp(ilf R)p-„, (4)
q, A.

H„= g u((f)exp[icf(R —R, )]p-, (5)
q, a

Here V and R are, respectively, the momentum and coordi-
nate of the center of mass, pI' and r I' are, respectively, the
momentum and coordinate of ith electron relative to the

center of mass, e and m are the charge and mass of an elec-
tron, and p ~

= g& expfi rf r I'] is the electron density

operator in the relative coordinates. In Eqs. (3) and (4),
b -, „(b q „) are the phonon creation (annihilation) operators

in branch ~ with wave vector q and frequency 0-, „, and

M(cf, A. ) is the electron-phonon interaction matrix element.
In Eq. (5) R, and u(tf), respectively, represent the ath im-

purity position and the electron-impurity iriteraction in

momentum space. From Eq. (I) we can see that the elec-
tric field E acts directly on the center-of-mass variables.
The center-of-mass motion couples to the electrons in the
relative coordinates only through the electron-impurity and
electron-phonon interactions. The center-of-mass system
behaves like a single particle with mass M= Nm and is ex-
pected to be described by the classical equation of motion.
The statistical properties of the electrons in relative coordi-
nates and the phonons can be described by a density matrix

In the absence of electron-impurity and electron-phonon
interactions, the electrons in relative coordinates and the
phonons are two decoupled and isolated equilibrium systems
with their own temperatures T, (electron) and T (lattice or
phonon). Then the density matrix takes the form

-0, /r, $ -0 z/v $ —00/r,
Po= 8 e e 8 " = —8

with Hp=H +aH~t, (u= T /T) and Z= Z, Zv&. The physi-

cal meaning of the electronic temperature T, will be dis-

cussed later. If the interaction Hp= Heph+ Hp( and the elec-
tric field are turned on adiabatically from t = —~, the den-

sity matrix p satisfies the Liouville equation"

i p = (H, + Hvb+ Htt, p)
Qt

with the initial condition

P lg= —~=PO

Here Ht, is H, vz+H, t of Eqs. (4) and (5) with R replaced
by its expectation value R(t). The statistical average of a
dynamical variable A, at time t is (A, ) = Tr(pA, ). If p is

solved to the first order in H~„we obtain
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Here

(A, ) =(A, )&—iz 0(r —r')([A, ' -"" "(r),H„,(r')])&Ch' . (9)

A, t)'(r') = exp[i(a —1)H» r]A, (t') exp[ —t'(n —1)H&hT]

with A, (t') =exp(iHat')A, exp( —iHat') and (( ))a= Tr[pa( )]. In steady state, the center of mass moves with a
constant speed vq along the field direction R(t) —R(t') = vq(t —t')i (we assume E is in x direction) and the total force act-
ing on the center of mass must be zero: (P„)= —(i [P„,H]) =0. From this we obtain the following momentum balance
equation:

1

NeE= —n&X [u(c[)l'q„11 (2g, cv)a—2 X [M(t[, &)]'q„f12(tf,~a+0 ~„) n
"" —n—
T AT

(10)

~(a k+ V T ) ~(a k T.)
II((f, tv =2

co+ a- ——a-+ l5
k k+q k

(12)

in which tva=q„vq, n(x/T) =(e"~r—1) ' and II2(cf, co) is
the imaginary part of the electron density-density correlation
function II(g, t0) calculated at electron temperature T„
which can be represented by the shaded bubble in Fig. 1.
Under random-phase approximation [Fig. 1(c)] we have'2

H(~ ) II((f, tv) (11)
1 —v, (q) 11(q,~)

where vc(t[) =e2/apcf2 and II(g, t0) is the density-density
correlation function without Coulomb interaction:

I

Here f(a-k, T, ) = (exp[(a-k —aF)/T, l+ I] ' is Fermi func-
tion at T, and ~~ is the chemical potential. The first and
second terms on the right-hand side (RHS) of Eq. (10) are,
respectively, the frictional forces due to impurities and due
to phonons, experienced by the center of mass when it
moves. They can be described by Figs. 1(a) and 1(b),
respectively. The dotted vertices in these graphs denote
momenta along x direction. We can obtain the energy
transfer rate from electrons to phonons by calculating
(H») = —i([ H»H]). In steady states the power fed to
the system by the electric field JE should be equal to energy
transfer rate. From (H») = JF. and together with Eq. (10)
we obtain the following energy-balance equation:

%vs X [tt(t[)] qx112(%.~o) 2 X [~(%.)t)] (~o+ & ~k)112(t[ tvo+ &-„k) n —n

q, A, q, A,

qA. T

t

&do+ fL ~q&

AT
(13)

with coo= q„vq. The above equation can also be obtained by
requiring that the energy of relative electrons is a constant
in steady states: (H, ) = —I([H„H]) =0. The second part
of the second term on the RHS of Eq. (13) is the energy-
transfer rate from electrons to phonons, which can also be

C) ~

(c)

((j)
FIG. 1. (a) and (b) represent the lowest-order diagrams for the

frictional forces due to impurities and due to phonons, respectively.
The dashed line with a cross represents impurity and the wavy line
represents the phonon Green's function. The shaded bubble is the
electron density-density correlation function, which can be
represented by (c) under the random-phase approximation (RPA).
The double dashed line in (c) is dynamically screened Coulomb in-
teraction, which satisfies the Dyson equation (d).

I

represented by Fig. 1(b) if the dotted vertex is understood
as phonon energy.

Equations (10) and (13) are our main results, from which
the temperature ratio n= T, /T and the current density
J=Nevq can be determined self-consistently. The total
resistivity p~ is defined as the ratio of the electric field to
the current density pr= Z/J. The resistivities due to pho-
non p and impurities p&, according to Eq. (10), are additive:
pr=p+p~. If 112(c[,t0p) is expanded to the lowest order in
o&a(=q„v~), the results of the linear-response theory are
recovered for both p and pi. '

One of the outstanding features in our balance equations
is that the drift velocity vq (therefore electric field) enters
the electron density-density correlation function dynamical-
ly, so that electric field has a significant influence on the
screening. For large vq (therefore high field) in most cases
the denominator of the RHS of Eq. (11) would reduce al-
most to 1, as if high electric field may act to break up the
screening. This is consistent with the high-field descreening
effect discussed by Barker. '

In the following we shall apply the above approach to
study two different problems. The first one is for simple
metals at relatively low temperatures such that T, && ~J: and
the primary scatteririg mechanisms are electron-acoustic

, phonon and electron-impurity interactions. By the use of
Debye spectrum for acoustic 'phonon, deformation potential
for electron-phonon interaction and short-range potential
for electron-impurity scattering, we obtain the solutions to
Eqs. (10) and (13). In zero-field limit n= T, /T 1 and
the phonon-induced resistivity reduces to the weH-known
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FIG. 3. Dimensionless current density J/Jc and temperature ra-

tio o. = T, /T are shown as functions of dimensionless electric field

E/Ec for an electron system obeying the Maxwell-Boltzmann distri-
bution at several different T. The scattering mechanism here is en-
tirely due to optical phonons. The numbers near the curves are the
values of T//Hp. Ha = Qp/kg', ks is the Boltzmann constant.

FIG. 2. The electron temperature T, and phonon resistivity p in

the limit of T 0 are shown as functions of dimensionless electric
field E/E for several different impurity resistivities in a degenerate
electron system with acoustic phonon and impurity scatterings.

piti/p = 0, 0.03, and 0.1 for curves 1, 2, and 3, respectively.

Bloch-Gruneisen formula'

p(E = 0) = ps= p'g (14)
O~F

Here p' is a constant,

3' 3'

r J c (ey/& 1)(1 e
—y/)

and Oy=2kyeD/qD, with OD for Debye temperature, kF
and qD for Fermi and Debye wave vectors, respectively. It
is interesting to see what happens at very low lattice tem-
peratures and finite field. From Eq. (13) we find that when

T 0 the electron temperature T, approaches a finite,
field, and impurity-dependent value ? . The calculated P'
and the phonon part of the resisitvity are shown in Fig. 2 as
a function of dimensionless electric field E/E" for several
values of pie/p', where E'= p'Nev„v, is sound speed, and

pI, is the impurity-induced resistivity in zero-field limit at
T, =O K. For impure sample at relatively low field our
results can be reduced to

' 1/S' '2/5

=0422 P (15)
o"F pIp

which is in agreement with the result obtained recently by
Arai' from phenomenological Boltzmann equation. How-

ever, Eq. (15) is valid only for pip /p" & 0.01 and
E/E" ( 0.01. For higher field or cleaner sample, our curves
show great deviation from F. . It is also worth mentioning
that in high field the phonon contribution to resistivity will

not vanish at T= 0 K in our model.
The second problem is for semiconductors at relative high

temperatures, where the equilibrium electrons obey the
Maxwell-Boltzmann distribution and electron-optical-
phonon scattering is expected to play a major role. We plot
in Fig. 3 the temperature ratio n = T, /T and dimensionless

current density J/Jc as a function of dimensionless electric
field E/Ec at several different lattice temperatures. Here
Jp= Nevp and Fp= Jppp. pp is the zero-field resistivity due
to optical phonons with frequency Qa and vs= (Qa/m)t/2.
The outstanding characteristics of J-F.curves are the satura-
tion of the current density at high field and the value of the
saturation current decreases as T increases. These features
seem in agreement with experimental results of Ryder' on
n-Ge.

In summary, we have introduced a self-consistent ap-
proach to nonlinear electron transport for solids in a static
electric field, in which electron-electron interaction,
electron-phonon interaction, and electron-impurity scatter-
ing are assumed to exist. The electron heating effect has
been taken into full consideration by the introduction of
electron temperature T, and by the energy balance equation.
The physical meaning of T, can- be understood as follows.
If we turn off the electron-phonon and electron-impurity in-
teraction at a certain instant after the system has already
reached the steady state, the electrons in relative coordi-
nates will decouple themselves from the center-of-mass and
phonons. They will become thermalized and will approach
to an equilibrium state. The thermodynamical temperature
of this equilibrium state is defined as T,. The most impor-
tant aspect of the present approach is its simplicity in
mathematical structure, so that the numerical labor involved
is kept minimal. Moreover, many-body effects can be taken
into account microscopically by diagrammatic methods. At
present moment we have performed calculation only to the
lowest order in scattering potentials; the higher-order pro-
cess can, in principle, also be included.

We enjoyed illuminating discussions with Professor H.
Suhl and would also like to thank Dr. A. K. Ganguly and
Dr. T. W. Nee for useful conversations. This. work is sup-
ported at Houston by the U.S. Office of Naval Research,
and at the Institute for Theoretical Physics (Santa Barbara)
by the National Science Foundation under Grant No. PHY-
77-27084, supplemented by funds from the U.S. National
Aeronautics and Space Administration.



4812 - BRIEF REPORTS 30

W. Kohn and J. Luttinger, Phys, Rev. 108, 590 (1957).
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benja-

min, New York, 1962).
sL. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys.

JETP 20, 1307 (1965)].
4V. P. Kalashnikov, Physica 4$, 93 (1970).
5J. R. Barker, J. Phys. C 6, 1663 (1973).
aA. P. Jauho and J. W. Wilkins, Phys. Rev. Lett. 49, 762 (1982);

Phys. Rev. B 29, 1919 (1984).
E. M. Conwell, High Field Transport in Semiconductors (Academic,

New York, 1967).
D. K. Ferry, in Physics of Nonlinear Transport in Semiconductors,

edited by D. K. Ferry, J. R. Barker, and C. Jacoloni (Plenum,
New York, 1980), and references therein; J. Phys. (Paris) Colloq.
42, C7-253 (1981).

sK. Hess, in Physics of Nonlinear Transport in Semiconductors, edited
by D. K. Ferry, J. Barker, and C. Jacoloni (Plenum, New York,
1980).

tcC. S. Ting, S. C. Ying, and J. J. Quinn, Phys. Rev. B 14, 4439
(1976).

ttD. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consul-
tants Bureau, New York, 1974).
J. Lindhard, K. Dan. Vidensk. Selsk, Mat. Fys. Medd. 28, 8
(1954).

tsC. S. Ting and X. L. Lei, Solid State Commun. 51, 553 (1984).
'4J. R. Barker, Solid State Commun. 32, 1013 (1979).
tsJ. M. Ziman, Principles of the Theory of Solids (Cambridge Univ.

Press, London, 1972).
tSM. R. Arai, Appl. Phys. Lett. 42, 906 (1983).
t~E. J. Ryder, Phys. Rev. 90, 766 (1953).


