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We have examined several improvements to a previously reported calculation of Dingle temperatures

[L. Cole et al. , Phys. Rev. Lett. 42, 1174 (1979)i for dilute AILi, including self-interaction corrections and

other nonlocal effects in the exchange and correlation potential. The scattering rates (or Dingle tempera-

tures) are changed only slightly from the values obtained previously using the Kohn-Sham density-

functional method with the local-density approximation. In particular, the calculated anisotropy remains

strong, and the discrepancy with observed isotropy is unresolved.

I. INTRODUCTION

Recently we and our co-workers reported de Hass —van
Alphen data, together with theoretical calculations of orbi-
tally. averaged electron-impurity scattering rates on the Fer-
mi surface in dilute A/Li. ' The original calculation' used
Sorbello's multiple-plane-wave (MPW) formalism3 to ac-
count for band-structure-induced anisotropy. Thus the ini-
tial and final states were Bloch waves, while the intermedi-
ate states were approximated as single plane waves. The
scattering of these plane-wave components was calculated
using the density-functional formalism, 45 within the local
density approximation. ~ The resulting self-consistent per-
turbation may be characterized by phase shifts 5I, so that
the scattering rate has the form

'(k) = X 71(k) sinhI
I

where the anisotropic coefficients y&(k) incorporate the
Bloch character of the state k. The de Hass —van Alphen

effect measures orbital averages, which are parametrized as
Dingle temperatures Xq'.

Electron-phonon renormalization X(k) is discussed in Ref.
1. The calculation just described predicted a large anisotro-

py of Xr for orbits on the third zone arm of the Fermi sur-

face (Table I and Fig. I). This anisotropy mirrors that of
the s-wave coefficient 7 p(k) and must be expected3 when-

ever 50 dominates the scattering as it does in our case
(Table II).

By contrast, very little anisotropy was found experimental-
ly' (Table I), and this has motivated further theoretical
work. Reference 2 describes an improved self-consistent
treatment that incorporates the Bloch character of the inter-
mediate states (the main effect is lattice backscattering).
This requires the use of the Korringa-Kohn-Rostoker
(KKR) formalism, as recently discussed in this context in

Ref. 6. The improved calculation still produces a large s-
wave phase shift, and the predicted anisotropy of the Xr is

TABLE I. Dingle temperatures as inferred experimentally from de Hass-van Alphen amplitudes (Ref. 2),
and as calculated originally in Ref. 1, shown with corrections calculated in Ref. 2 and in the present work.

Orbits are identified in Fig. 1.

Orbit
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nd Zone is obtained from the xc energy functional

E„,[n] = d3rn( r ) a„,[n; r ]

The local-density approximation (LDA) is made by letting
~„, be the xc energy per particle in a uniform electron gas of
density n( r ), i.e. , e„", "[n; r 1= a„,(n( r )). The resulting
potential is related to the chemical potential

[001]

[loo]
[010]

vL "(r ) = [n( r )e«(n( r ))] p=«(n( r ))
dn r

of a uniform electron gas of density n ( r ).
We now discuss various refinements.

II. CORE CORRECTIONS

(6)

5"—Zone

[010]

FIG. 1. Extremal orbits on the Fermi surface corresponding to
the Dingle temperatures listed on Table I.

reduced only slightly (Table I).
We have also investigated a number of improvements to

the local-density approximation, within the MPW formal-
ism. In this Brief Report we describe these calculations and
show their separate effects. Taken together, they result in
small and rather uniform reduction in the Xq. The follow-
ing brief review will be a useful introduction.

In Ref. 1 the Kohn-Sham equations5 were solved to find
the two Li bound states as well as the scattering states. The
effective potential in these equations is

v ff( r ) =vo( r )+e J d r' " +v„,[n; r ]
r —r' (3)

where vo( r ) is the "externally applied" potential of the
impurity, and the exchange-correlation (xc) potential

v„,[n; r ] = oE„,/on( r )

A. Self-interaction correction (SIC) for Li

The second and third terms of Eq. (3) depend on the to-
tal electron density, and thus each contains self-interaction
contributions. In principle these cancel, but when E„, is ap-
proximated, cancellation may be incomplete. As a result,
the LDA predicts the wrong r ~ ~ behavior of veff( r ) and
n( r ) for the ground state of an atom. ~ 8 A number of
schemes7 '0 for correcting this have appeared in the litera-
ture, and we have used a similar one that may be described
as follows: subtract from E„"," the self-interaction of each
occupied orbital 4' ( r ) that would' remain if all the other
electrons were taken away. Minimization of the resulting
total energy functional E ' produces a state-dependent xc
potential

svc(t' or) =p,„,(n( r ))

—e2J d3r' p„,(n (r—)), , (7)
r —r'

where n ( r ) = iP ( r )]2. A detailed discussion of the SIC
as formulated within spin-density functional theory is given
by Perdew and Zunger. '

The SIC improves the charge distribution of the two
bound electrons, and this in turn affects the scattering of
the conduction electrons. Table II shows the changes in the
Fermi-level phase shifts that result from SIC corrected
bound states. 80 is decreased because the bound states are
pulled closer to the Li nucleus, making it less attractive to
the scattering electrons. Since 80(0 to begin with, the
scattering rates are increased but only slightly. " This effect
is outweighed by the others to be discussed.

TABLE II. Phase shifts 5I computed in Ref. 1, and various corrections computed in the present
work.

Ref

Corrections ASI
SIC in Li
Vz, core in Al
ADA

Total Correction

—1.214

—0.026
0.040
0.034

0.048

—0.341

—0.004
0.047
0.035

0.078

-0.148

0.004
0.002

—0.014
—0.008

—0.033

0.001
—0.013
—0.007

—0.019
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B. Pseudopotential core correction for the Al vacancy

The applied potential is the difference between those due
to the Li and Al ions,

2

vs(r)= —3—' —vA, (r) .
r

The Al vacancy was characterized in Ref. 1 as a hole in jelli-
um, and accordingly the pseudopotential core contribution
was volume averaged. This procedure had proven to be ef-
fective in the calculation of vacancy formation energies. '

In the present context we consider the scattering of Bloch
waves, for which the localized Al ions present no perturba-
tion. This suggests an alternative approach in which jellium
is not introduced, and we simply use vA&( r ) = —3e O(r
—R, )/r, with the Ashcroft core parameter R, =0.59 A.
This tends to localize the perturbation without changing its
average. As a result, 50 is increased and correspondingly
the Xq are decreased.

III. NONLOCALITY IN Exc
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FIG. 2. Fourier transform w(q) of the average density approxi-
mation weight function w( r —r '), as calculated in Ref. 13 for
various r, values (solid lines), and as calculated using the spherical
average described in the text (dashed line).

Methods to account for nonlocal dependence of E„, on
n ( r ) have been proposed recently by Gunnarsson, Jonson,
and Lundqvist' and by Alonso and Girifalco. ' In Ref. 13,
for example, one approximates e„,[n; r ] by e„,(n( r ))
similarly as in the LDA, but with the xc energy per particle
evaluated at an averaged density

n ( r ) = „d3r'w( r —r ';n ( r ) )n ( r ') (9)

This is called the average density approximation (ADA).
The weighting function ~ is chosen in Ref. 13 so that E„", "
reproduces the exact leading correction —[n ( r ) —n ( r ') ]'
to E„, for the almost-homogeneous electron gas. Their
results are tabulated in the form of the Fourier transform
w(q, r, ). To facilitate our self-consistent calculation, we fol-
low Cole and Harmon' and fit the Ref. 13 results by simply
taking an average (in real space) over a sphere with radius
R = kF t(n( r )), which fits the more exact w quite well

(Fig. 2) for r, =2. (For aluminum, r, =2.07; the local r,
value differs appreciably from this only within a small
volume near the origin, where the density is larger and the
LDA should be relatively good. ) The changes in the phase
shifts are again small (Table II), and contribute to a net
fairly isotropic decrease in the Dingle temperatures.

In principle, one should go further and consider the non-
locality of v„, itself. The present formalism provides an ex-
act description of ground-state properties, but not of the
quasiparticles Sham and Kohn' pointed out that the latter
are described by Schrodinger-like equations with a nonlocal,
energy-dependent self-energy in place of v,tr( r ) [Eq. (3)].
Because of the increased difficulty inherent in using a non-
local self-energy here, we have not attempted it.

IV. CONCLUSIONS

Improvements to the LDA considered here appear to be
more important for bound states, whose effective potential
is changed qualitatively (i.e., —I/r —2/r at intermediate
distances ae & r & I/kr), than for the scattering states. We
conclude that the LDA provides an accurate v, ff( r ) ap-
propriate for the ground-state properties of the conduction
electrons. We leave open the question whether nonlocal
self-energy is important for the treatment of quasiparticle.
scattering.

Of the many factors we have considered, only one weak-
ens s-wave scattering sufficiently compared with p wave to
remove the predicted anisotropy: if the Li is assumed to be
interstitial, the Xr are predicted in the range 27-40 K.
However, the neutron scattering work of Solt and Werner'
indicates that the Li is substitutional.

Finally, the corrections found here and in the lattice back-
scattering study of Ref. 2 are both small in magnitude. In
the latter case, however, they do reduce the anisotropy. We
anticipate that further development of the KKR method will

be useful for problems of this kind.
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