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New method for growing branched polymers and large percolation clusters below p,
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We propose a new Monte Carlo method for generating large branched polymers; it is based on enrich-
ment of percolation clusters below p, . %e find that one must take care to distinguish two different ensem-
ble averages: one at constant mass s and the other at constant chemical distance L For constant s, we ob-
tain clusters belonging to the universality class of lattice animals, while for constant I we get topologically
one-dimensional structures for all d.

The structural properties of percolation clusters and lattice
animals are currently a subject of intensive study. ' '

Whereas percolation clusters are used to model gels, ' lattice
animals represent the principal model for branched poly-
mers in dilute solutions. For all concentrations p below the
percolation threshold p, the large clusters seem to have the
critical exponents of lattice animals, i.e., of the p 0 limit.
Thus we denote here as "animals" all clusters with radius
much greater than correlation length g. ' Since the probabil-
ity of generating such a cluster using Monte Carlo methods
is very small' (decays exponentially with size) there has not
been much study of their structure compared to percola-
tion. '-' "

Here, we propose a new method for generating statistical
ensembles of large lattice animals ("branched polymers" ).3
The method is analogous to the enrichment method suc-
cessfully used to generate self-avoiding walks ("linear poly-
mers"). 9

METHOD

First we use the conventional cluster growth method' to
generate a percolation cluster of so sites, say so= 20, using a
value of p so smail that the probability of obtaining a 20-site
cluster sr is typically about 0.01 (i.e. , 100 trials may be
necessary to succeed in growing the 20-site cluster). After
finally obtaining a cluster of size so, we make a fixed
number A of attempts to increase it to size 2st), where A is
chosen to satisfy 2 « I/n. .'9 If we "fail" (i.e. , the cluster
terminates for all A attempts), then we discard the entire
cluster and return to the beginning. If we succeed, then we
make A new attempts to increase our cluster from size 2so
to size 3so and so on. Being interested in "universal"
quantities only we did not make the difficult extrapolation
p 0, since already at finite p animal exponents are expect-
ed.

RESULTS

Using this procedure, we typically generated lattice an-
imals of size 300 on a square lattice with p=0.4 and
p=0.22 for a cubic lattice. In order to confirm that they
had the critical exponents of lattice animals, we measured
the mean-square radius of gyration Ag as a function of the
number of sites (Fig. 1); from the slope we find df
=1.55+0.05 for d=2 and df=2.0+0.05 for d=3, con-
sistent with independent estimates of the fractal dimen-
sion. " We found that different values of so and p give the
same values of df if we maintain the condition Am (& 1.

In general, a cluster is characterized not only by its
geometric structure (parametrized by the fractal dimension
df) but also by its topological structure (parametrized, for
example, by the chemical dimension dt)." First we define
the chemical distance I as follows. '2 We choose a site to cali
the origin. The occupied neighbors of this site form the
first "shel1"; its chemical distance l from the origin is one.
The next-nearest neighbors of the origin form the second
shell with 1=2 and so on. The total number of sites or
"mass" at a chemical distance less than or equal to l scales
as

s(l) —l' .

There are two possible ways to form the ensemble aver-
ages in order to calculate d1. One is to take an ensemble of
clusters with constant s and calculate their average I:

41s(l) —(I),'. A second way to choose clusters of the same l
1and make the average over s: (s)t —l '. For percolation

clusters at p„both averages give the same value for d1. '

However, for p ( p, and large clusters, the two averages
yield completely different results. For the constant s en-
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FIG. 1, Dependence on the cluster mass s of the mean-square ra-
dius of gyration (Rz~). Points represent averages over 1000 large
branched polymers on square and simple cubic lattices. The slope
of the double-logarithmic corresponds to df=1.55+0.05 [d=2]
and df =2.0+0.05 [d =3). Three different values of so were used
for d = 2 in order to test that the fractals were independent of so,
sc=15(h), 20(o), and 30(x ).
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FIG. 2. Linear plot of the average of cluster mass (s) vs the
chemical distance I. The fact that the data fall on straight lines sug-
gests that di=1 for both d=2 and d=3.

semble one gets the lattice animal statistics with dI varying
from di=1.33 for d=2 to dI=2 for d=8." However, for
the constant-l ensemble, one obtains a new universality
class: chemically one-dimensional branched polymer ensem-
bles with di =1 for all d. Numerical evidence will be given
in the following as well as a theoretical interpretation. In
Fig. 2 we plot the average mass s as a function of the chemi-
cal distance l for d=2 and d=3. The linearity of these
plots suggests strongly that

(s)
Before we proceed, we present exact results for the Cay-

ley tree of coordination number o-+1, which describes' the
critical exponents above d, =8. The distribution of s(l)
conditioned on the number of sites in shell l positive (so
that the tree does not terminate at an earlier generation) is
given for p & p, = 1/o. and l &) 1 by'4

Pr [s(l) —l(1 —p)/(1 —o p) ~ u(Hl)' ~]

f v= (27r) 'J~ exp( —u~/2) du, (3a)

where H= (o- —1)p(1+p —2op~)/(1 —o-p)'. Hence, the
conditional expectation value of s(l) is, for l )& 1,

hard to imagine how increasing d could serve to decrease
a fractal dimension. Thus, from the results di = 1 for
d=1, 2, 3 and for d ~ 8, we can argue that dr=1 for all d
and all p below p, .

DISCUSSION

In order to understand the difference between the
constant-l ensemble and the constant-s ensemble, we study
the two different averages carefully. For the constant s en-
semble, the average chemical distance is given by

(l), = $ A„l„sp*(1—p)'/ g A„sp'(1 —p)', (4)

which represents the animal average. ' For the constant-l
ensemble, the average mass s is given by

(s ) I
= g A,i,s'p'(1 —p) '/ g A,I sp'(1 —p ) ' . (5b)

where A„and l„are the number of configurations and the
chemical distance of a cluster with s cluster sites and t per-
imeter sites. For p 0 Eq. (4) yields

(l ),= g W„l„/ g ~„,

s, t s, t

( s ( l) ) —(1 —p)/(1 —op ) l (3b)

Thus the percolation clusters with I)& 1 shells at p & p,
are chemically one dimensional in contrast to the result
dI = 2 for percolation clusters for p = p, on the same Cayley
tree lattice and the same type of average. '

Fracta1 dimensions used thus far in statistical physics have
been found to be nondecreasing functions of d; indeed, it is

In this case, for p 0 because of the factor p', the dom-
inant configurations will be those with the minimum s. The
minimum s for a given l is simply s —l, so we obtain
(s) —l for all dimensions.

The result di=1 has implications for transport, for which
topological concepts are physically relevant. We shall see
that in the constant-l ensemble the fracton or spectral
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FIG. 3. Results of exact enumeration of random walks on lattice animals using so=20; similar results were found for other values of so.

(a) Linear plot of P& vs t, where Pc is the probability of returning to the origin at time t; (b) linear plot of (I) vs t, where (I) is the

average chemical distance. The linearity supports the result of (6) that d, =1 and d„=2.

dimension d, =2df/d„=1 for all d~1. We begin by noting
that the chemical diffusion exponent d„', defined through

gl
t —I ", must satisfy the inequality d' ~ 2, since d„'= 2 for a
Euclidean lattice. Thus, the number of distinct sites visited

1/dI
by the random walk s(t) scales as s(t) —I ". But s(t)

u, /z—t ', and d, ~1 for any connected fractal. Hence the
only way that we can simultaneously satisfy d„'~2 and

d, ~1 is to have

dl =2 (6a)

d, =2df/d~=1 (6b)

To test (6) by direct simulation, we have used the
method of exact enumeration of random walks on fractal
structures. ' In this fashion we have obtained the exact
statistics for 1000 different clusters each containing at least
/=150 shells. ' Results for the probability of a random
walk being at the origin at time t are shown in Fig. 3(a), and
results for the average chemical distance (I) are shown in
Fig. 3(b). For the high degree of linearity of both plots we
conclude that the corresponding values of d, and d„' agree
with the predictions of Eqs. (6b) and (6a). We also calcu-

lated the mean-square displacement (R~) for d=2, 3 and
the corresponding values of d„agree with the prediction of
(6b) that d„=2d~. For an arbitrary fractal, the conductivity
exponent p, can be related to df and d„by'
P' ( d df ) + ( d —2 ) . From Eq. (6b) follows a direct re-
lation between the conductivity and the fractal dimension-
ality for these topologically one-dimensional clusters,
p, = df+ (d —2).

In summary, we have developed a new Monte Carlo
method for generating large percolation clusters below p, .
The method produces clusters in the universality class of
lattice animals for the constant-s ensemble. For the
constant-I ensemble, we find clusters that are topologically
linear. We argue that the fracton dimension d, = 1 for these
topologically one-dimensional cluster and confirm this result
numerically.
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