VOLUME 30, NUMBER 1

New method for growing branched polymers and large percolation clusters below p_c

Zorica V. Djordjevic* Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

Shlomo Havlin[†] Division of Computer Research and Technology, National Institutes of Health, Bethesda, Maryland 20205

H. Eugene Stanley Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

George H. Weiss

Division of Computer Research and Technology, National Institutes of Health, Bethesda, Maryland 20205 (Received 11 April 1984)

We propose a new Monte Carlo method for generating large branched polymers; it is based on enrichment of percolation clusters below p_c . We find that one must take care to distinguish two different ensemble averages: one at constant mass s and the other at constant chemical distance l. For constant s, we obtain clusters belonging to the universality class of lattice animals, while for constant l we get topologically one-dimensional structures for all d.

The structural properties of percolation clusters and lattice animals are currently a subject of intensive study.¹⁻¹³ Whereas percolation clusters are used to model gels,¹ lattice animals represent the principal model for branched polymers in dilute solutions.² For all concentrations p below the percolation threshold p_c the large clusters seem to have the critical exponents of lattice animals, i.e., of the $p \rightarrow 0$ limit. Thus we denote here as "animals" all clusters with radius much greater than correlation length ξ .¹ Since the probability of generating such a cluster using Monte Carlo methods is very small¹ (decays exponentially with size) there has not been much study of their structure compared to percolation.^{3-7,10}

Here, we propose a new method for generating statistical ensembles of large lattice animals ("branched polymers").³ The method is analogous to the enrichment method⁸ successfully used to generate self-avoiding walks ("linear polymers").⁹

METHOD

First we use the conventional cluster growth method¹⁰ to generate a percolation cluster of s_0 sites, say $s_0 = 20$, using a value of p so small that the probability of obtaining a 20-site cluster π is typically about 0.01 (i.e., 100 trials may be necessary to succeed in growing the 20-site cluster). After finally obtaining a cluster of size s_0 , we make a fixed number A of attempts to increase it to size $2s_0$, where A is chosen to satisfy $A \ll 1/\pi$.^{8,9} If we "fail" (i.e., the cluster terminates for all A attempts), then we discard the *entire* cluster and return to the beginning. If we succeed, then we make A new attempts to increase our cluster from size $2s_0$ to size $3s_0$ and so on. Being interested in "universal" quantities only we did not make the difficult extrapolation $p \rightarrow 0$, since already at finite p animal exponents are expected.

RESULTS

Using this procedure, we typically generated lattice animals of size 300 on a square lattice with p=0.4 and p=0.22 for a cubic lattice. In order to confirm that they had the critical exponents of lattice animals, we measured the mean-square radius of gyration R_g^2 as a function of the number of sites (Fig. 1); from the slope we find d_f = 1.55 ± 0.05 for d=2 and $d_f=2.0\pm0.05$ for d=3, consistent with independent estimates of the fractal dimension.¹¹ We found that different values of s_0 and p give the same values of d_f if we maintain the condition $A\pi \ll 1$.

In general, a cluster is characterized not only by its geometric structure (parametrized by the fractal dimension d_f) but also by its topological structure (parametrized, for example, by the chemical dimension d_l).¹² First we define the chemical distance *l* as follows.¹² We choose a site to call the origin. The occupied neighbors of this site form the first "shell"; its chemical distance *l* from the origin is one. The next-nearest neighbors of the origin form the second shell with l=2 and so on. The total number of sites or "mass" at a chemical distance less than or equal to *l* scales as

$$s(l) \sim l^{d_l} \quad . \tag{1}$$

There are two possible ways to form the ensemble averages in order to calculate d_l . One is to take an ensemble of clusters with constant s and calculate their average k $s(l) \sim \langle l \rangle_s^{d_l}$. A second way to choose clusters of the same l and make the average over s: $\langle s \rangle_l \sim l^{d_l}$. For percolation clusters at p_c , both averages give the same value for d_l .¹² However, for $p < p_c$ and large clusters, the two averages yield completely different results. For the constant s en-

NEW METHOD FOR GROWING BRANCHED POLYMERS AND ...

FIG. 1. Dependence on the cluster mass s of the mean-square radius of gyration $\langle R_g^2 \rangle$. Points represent averages over 1000 large branched polymers on square and simple cubic lattices. The slope of the double-logarithmic corresponds to $d_f = 1.55 \pm 0.05$ [d = 2] and $d_f = 2.0 \pm 0.05$ [d = 3]. Three different values of s_0 were used for d = 2 in order to test that the fractals were independent of s_0 , $s_0 = 15(\Delta)$, $20(\odot)$, and $30(\times)$.

semble one gets the lattice animal statistics with d_l varying from $d_l = 1.33$ for d = 2 to $d_l = 2$ for $d = 8.^{13}$ However, for the constant-*l* ensemble, one obtains a new universality class: chemically one-dimensional branched polymer ensembles with $d_l = 1$ for all *d*. Numerical evidence will be given in the following as well as a theoretical interpretation. In Fig. 2 we plot the average mass s as a function of the chemical distance *l* for d = 2 and d = 3. The linearity of these plots suggests strongly that

$$\langle s \rangle \sim l$$
 . (2)

Before we proceed, we present exact results for the Cayley tree of coordination number $\sigma + 1$, which describes¹ the critical exponents above $d_c = 8$. The distribution of s(l)conditioned on the number of sites in shell *l* positive (so that the tree does not terminate at an earlier generation) is given for $p < p_c = 1/\sigma$ and l >> 1 by¹⁴

$$Pr[s(l) - l(1-p)/(1-\sigma p) \le v(Hl)^{1/2}]$$

= $(2\pi)^{-1} \int_{-\infty}^{v} \exp(-u^2/2) du$, (3a)

where $H = (\sigma - 1)p(1 + p - 2\sigma p^2)/(1 - \sigma p)^3$. Hence, the conditional expectation value of s(l) is, for l >> 1,

$$\langle s(l) \rangle \sim (1-p)/(1-\sigma p)l$$
 (3b)

Thus the percolation clusters with l >> 1 shells at $p < p_c$ are chemically one dimensional in contrast to the result $d_l = 2$ for percolation clusters for $p = p_c$ on the same Cayley tree lattice and the *same* type of average.¹²

Fractal dimensions used thus far in statistical physics have been found to be nondecreasing functions of d; indeed, it is

FIG. 2. Linear plot of the average of cluster mass $\langle s \rangle$ vs the chemical distance *l*. The fact that the data fall on straight lines suggests that $d_l = 1$ for both d = 2 and d = 3.

hard to imagine how increasing d could serve to decrease a fractal dimension. Thus, from the results $d_l = 1$ for d = 1, 2, 3 and for $d \ge 8$, we can argue that $d_l = 1$ for all d and all p below p_c .

DISCUSSION

In order to understand the difference between the constant-l ensemble and the constant-s ensemble, we study the two different averages carefully. For the constant s ensemble, the average chemical distance is given by

$$\langle l \rangle_{s} = \sum_{l,t} A_{st} l_{st} s p^{s} (1-p)^{t} / \sum_{l,t} A_{st} s p^{s} (1-p)^{t} , \qquad (4)$$

where A_{st} and l_{st} are the number of configurations and the chemical distance of a cluster with s cluster sites and t perimeter sites. For $p \rightarrow 0$ Eq. (4) yields

$$\langle l \rangle_{s} = \sum_{l,t} A_{st} I_{st} / \sum_{l,t} A_{st} \quad , \tag{5a}$$

which represents the animal average.¹ For the constant-l ensemble, the average mass s is given by

$$\langle s \rangle_{l} = \sum_{s,t} A_{st}^{l} s^{2} p^{s} (1-p)^{t} / \sum_{s,t} A_{st}^{l} s p^{s} (1-p)^{t}$$
 (5b)

In this case, for $p \rightarrow 0$ because of the factor p^s , the dominant configurations will be those with the minimum s. The minimum s for a given l is simply $s \sim l$, so we obtain $\langle s \rangle \sim l$ for all dimensions.

The result $d_l = 1$ has implications for transport, for which topological concepts are physically relevant. We shall see that in the constant-*l* ensemble the fracton or spectral

480

FIG. 3. Results of exact enumeration of random walks on lattice animals using $s_0 = 20$; similar results were found for other values of s_0 . (a) Linear plot of P_0^{-2} vs t, where P_0 is the probability of returning to the origin at time t; (b) linear plot of $\langle l \rangle^2$ vs t, where $\langle l \rangle$ is the average chemical distance. The linearity supports the result of (6) that $d_s = 1$ and $d_w = 2$.

dimension $d_s = 2d_f/d_w = 1$ for all $d \ge 1$. We begin by noting that the chemical diffusion exponent d_w^l , defined through $t \sim l^{d_w^l}$, must satisfy the inequality $d_w^l \ge 2$, since $d_w^l = 2$ for a Euclidean lattice. Thus, the number of distinct sites visited by the random walk s(t) scales as $s(t) \sim t^{1/d_w^l}$. But $s(t) \sim t^{d_s^l/2}$, and $d_s \ge 1$ for any connected fractal. Hence the only way that we can simultaneously satisfy $d_w^l \ge 2$ and $d_s \ge 1$ is to have

$$d_w^l = 2 \quad , \tag{6a}$$

and

$$d_s = 2d_f/d_w = 1$$
 . (6b)

To test (6) by direct simulation, we have used the method of exact enumeration of random walks on fractal structures.¹⁵ In this fashion we have obtained the exact statistics for 1000 different clusters each containing at least l=150 shells.¹⁶ Results for the probability of a random walk being at the origin at time t are shown in Fig. 3(a), and results for the average chemical distance $\langle l \rangle$ are shown in Fig. 3(b). For the high degree of linearity of both plots we conclude that the corresponding values of d_s and d_w^l agree with the predictions of Eqs. (6b) and (6a). We also calcu-

lated the mean-square displacement $\langle R^2 \rangle$ for d = 2, 3 and the corresponding values of d_w agree with the prediction of (6b) that $d_w = 2d_f$. For an arbitrary fractal, the conductivity exponent $\tilde{\mu}$ can be related to d_f and d_w by¹⁷ $\tilde{\mu} = (d_w - d_f) + (d - 2)$. From Eq. (6b) follows a direct relation between the conductivity and the fractal dimensionality for these topologically one-dimensional clusters, $\tilde{\mu} = d_f + (d - 2)$.

In summary, we have developed a new Monte Carlo method for generating large percolation clusters below p_c . The method produces clusters in the universality class of lattice animals for the constant-s ensemble. For the constant-l ensemble, we find clusters that are topologically linear. We argue that the fracton dimension $d_s = 1$ for these topologically one-dimensional cluster and confirm this result numerically.

ACKNOWLEDGMENTS

We wish to thank S. Alexander, D. Ben-Avraham, D. C. Hong, D. Movshovitz, R. Nossal, D. Stauffer, and especially I. Majid for helpful discussions, and National Science Foundation, Office of Naval Research, and Army Research Office for financial support.

- *Permanent address: Institute of Physics, 11080 Zemun, P.O. Box 57, M. Gorkog 124 Yugoslavia.
- [†]Permanent address: Department of Physics, Bar-Ilan University, Ramat-Gan, Israel.
- ¹D. Stauffer, Phys. Rep. 54, 1 (1979); J. W. Essam, Rep. Prog. Phys. 43, 733 (1980); D. Stauffer, A. Coniglio, and M. Adam,

Adv. Poly. Sci. 44, 103 (1982); H. E. Stanley and A. Coniglio, in *Percolation Clusters and Structures*, edited by J. Adler, G. Deutscher, and R. Zallen [Ann. Israel Phys. Soc. 5, 181 (1983)].

²B. H. Zimm and W. H. Stockmayer, J. Chem. Phys. **17**, 1301 (1949); T. C. Lubensky and J. Isaacson, Phys. Rev. Lett. **41**, 829 (1978).

- ³D. Stauffer has proposed an "indirect" method of simulating large branched polymers [see, e.g., H. P. Peters, D. Stauffer, H. P. Hölters, and K. Loewenich, Z. Phys. B 34, 399 (1979)].
- ⁴S. Wilke, Y. Gefen, V. Ilkovic, A. Aharony, and D. Stauffer, J. Phys. A **17**, 647 (1984); M. Sahimi and G. R. Jerauld, *ibid.* **17**, L165 (1984).
- ⁵D. Stauffer, Phys. Rev. Lett. **41**, 1333 (1978); H. J. Herrmann, Z. Phys. B **32**, 335 (1979).
- ⁶C. Domb, J. Phys. A 9, L141 (1976); J. A. M. S. Duarte, Z. Phys. B 33, 97 (1979).
- ⁷H. Gould and K. Holl, J. Phys. A 14, L443 (1981).
- ⁸F. T. Wall, S. Windwer, and P. J. Gans, Methods Comput. Phys. 1, 217 (1963).
- ⁹See, e.g., S. Havlin and D. Ben-Avraham, Phys. Rev. A 27, 2759 (1983); C. Brender, D. Ben-Avraham, and S. Havlin, J. Stat. Phys. 31, 661 (1983).
- ¹⁰P. L. Leath, Phys. Rev. Lett. 37, 940 (1976).
- ¹¹G. Parisi and G. Sourlas, Phys. Rev. Lett. 46, 871 (1981); A. Margolina, F. Family, and V. Privman, Z. Phys. (to be published); I. Majid and H. E. Stanley (unpublished).
- ¹²S. Havlin and R. Nossal, J. Phys. A 17, L427 (1984); see also the

early work of R. Pike and H. E. Stanley, *ibid.* 14, L169 (1981) for d = 2 only (where d_l is denoted ψ_{13}); D. C. Hong and H. E. Stanley, *ibid.* 16, L475 (1983); 16, L525 (1983) for all d (where d_l is denoted d_f/d_{\min}); and see the recent calculations of J. Vannimenus, J-P. Nadal, and C. Martin, *ibid.* (to be published); and H. J. Herrmann (unpublished) (where d_l is denoted \hat{d}).

¹³S. Havlin, Z. Djordjevic, I. Majid, H. E. Stanley, and G. H. Weiss, Phys. Rev. Lett. (to be published).

- ¹⁴G. Pakes, Adv. Appl. Prob. 3, 176 (1971).
- ¹⁵D. Ben-Avraham and S. Havlin, J. Phys. A 15, L691 (1982);
 I. Majid, D. Ben-Avraham, S. Havlin, and H. E. Stanley, Phys. Rev. B (to be published); D. C. Hong, S. Havlin, H. J. Herrmann, and H. E. Stanley (unpublished).
- ¹⁶Clusters used had typically 300 sites, which is a smaller size than used for many percolation studies. The reason such relatively small clusters are sufficient is that we work in a constant-*l* ensemble, with $l_{max} = 150$ typically. We found that changing l_{max} from 100 to 170 had *no effect* on the quantities calculated.
- ¹⁷S. Alexander and R. Orbach, J. Phys. (Paris) Lett. **43**, L625 (1982).