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The three-dimensional random Ising model with a Gaussian distribution of nearest-neighbor interactions
is studied for the pure spin-glass case where the average interaction vanishes. The distribution of domain-
wall energies at zero temperature is calculated using a Monte Carlo—quench algorithm to find the ground-

state energy for finite lattices.

A renormalization-group transformation is set up which preserves the
domain-wall energy distribution when the lattice parameter is changed.

In the strong-coupling regime

(zero temperature) the model iterates toward strong coupling and therefore exhibits a spin-glass phase
transition at nonzero temperature. The thermal exponent is v = 3.0 £1.0 and the heat capacity exponent is

a=—T7%3.

I. INTRODUCTION

The two-dimensional random Ising model has been stud-
ied by a variety of techniques including Monte Carlo simula-
tion,'"* transfer matrix simulation,”* and a domain-wall
renormalization-group (DWRG) method.’ All studies agree
that there is no spin-glass phase transition at nonzero tem-
perature but that the correlation length diverges algebraical-
ly at zero temperature; one says that there is a ‘‘phase tran-
sition at zero temperature’’ and that the dimensionality is
less than the lower critical dimensionality for a phase transi-
tion at nonzero temperature. There have been several sug-
gestions®? that the lower critical dimension for the random
Ising model is four. Binder and Young!® have analyzed
Young’s Monte Carlo data!! for the three-dimensional
( £J) random Ising model and find that the data are con-
sistent with the transition temperature being zero.

The DWRG?® method has proved to be the most powerful
method in two dimensions. For the two-dimensional ran-
dom Ising model a transfer matrix approach provides a nu-
merically feasible way to calculate the domain-wall free en-
ergy; in three dimensions the transfer matrix method is not
feasible and we use instead a Monte Carlo—quench algo-
rithm to find the ground-state energies for periodic and an-
tiperiodic boundary conditions; the energy difference is the
domain-wall energy at zero temperature.

II. DOMAIN-WALL RENORMALIZATION GROUP

We use the DWRG method described in Ref. 5. We con-
sider a cubic lattice with n? sites with lattice spacing @ and
lattice size L = na. The Hamiltonian is

with nearest-neighbor interactions J; chosen from a Gauss-
jan distribution with zero mean and variance J We choose
either periodic boundary conditions in all three directions or
periodic boundary conditions in two directions and an-
tiperiodic boundary conditions in the third; antiperiodic
boundary conditions introduce a domain wall. For a given
configuration of interactions let £? and E? be the ground-
state energy for periodic and antiperiodic boundary condi-
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tions, respectively. The domain-wall energy at zero tem-
perature is then W= E%— EP. For each configuration of in-
teractions one obtains a different domain-wall energy and
one is interested in the distribution function of the domain-
wall energies. We characterize that distribution by its mean
W and variance W; W is zero for the model considered
here.

We set up a renormalization-group transformation by con-
sidering two systems with the same physical size but dif-
ferent lattice spacings. The first system has lattice spacing
a, n? lattice sites with L = na, and Hamiltonian parameter J.
The second system has lattice spacing a’ > a, n’® lattice sites
with L =n'a’, and Hamiltonian parameter J'. We require
that the two systems have the same macroscopic properties
and that the variances of the distribution of domain-wall en-
ergies be equal.

W, =W, . @

We choose J' so that ~(2) is satisfied and (2) is the implicit
recursion relation for J.

III. MONTE CARLO-QUENCH ALGORITHM

In order to implement the DWRG method we need a nu-
merical algorithm to generate the ground-state energy for a
particular configuration of interactions. One could use the
Metropolis Monte Carlo algorithm to move the system
through its spin-configuration space and record the lowest-
energy state visited; eventually, the system would visit its
ground state. An algorithm consisting of a Monte Carlo up-
date followed by a spin quench finds the ground state some-
what more quickly and we use that procedure here. First
the Metropolis!> Monte Carlo algorithm with Glauber!?
dynamics is used to update each spin once. Then we exam-
ine each spin in turn and reverse it if the total energy is re-
duced by doing so. We then calculate the total energy of
this spin quenched spin configuration. The Monte Carlo
spin configuration, not the spin quenched spin configura-
tion, is used for the next Monte Carlo update cycle. Let Ej,
be the energy of the lowest state visited after M iterations of
the Monte Carlo update-spin quench procedure. Then for
M sufficiently large Ef,— Ef, is the domain-wall energy,
where a and p indicate antiperiodic or periodic boundary
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conditions. We repeat the entire calculation N times (N
typically 10 to 4x 10*) with different interaction configura-
tions to obtain N samples of the domain-wall energy; the
variance is then estimated from these N samples. We find
in this way the variance in Ef,— Ef, after M cycles of
update-quench; this variance W), approaches W as M goes
to infinity. We find that the variance converges as
expl — A4 In2(M)] and we fit this form to W, for finite M
and extrapolate M to infinity. We choose the maximum M
to minimize the total statistical error for fixed computation
time. We also vary the temperature used in the Monte Car-
lo procedure to optimize the convergence. If the tempera-
ture is too low the relaxation time over the largest energy
barriers is too slow and the algorithm does not rapidly find
the ground state. If the temperature is too high the Monte
Carlo spin configuration is a highly excited state and the
spin quench rarely finds the ground state. The temperature
referred to here is the temperature used in the Monte
Carlo-update dynamics; the physical temperature is zero
since we only deal with the ground state.

IV. RESULTS

The Monte Carlo—quench results for the variance of the
domain-wall energy distribution are given in Table I for two
and three dimensions. N is the number of interaction confi-
gurations sampled to estimate W; M is the total number of
Monte Carlo-quench cycles for each interaction configura-
tion; T is the temperature of the Monte Carlo-update algo-
rithm. The errors quoted are three estimated standard devi-

ations. The scaling form for Wis
W,=An*] . 3)

In two dimensions the scaling form provides a good fit to
the data with eigenvalue A= —0.306 £0.015. The interac-
tion iterates toward weak coupling and there is a phase
transition at zero temperature with thermal exponent
v=1/A=3.2740.16 in agreement with the previous
DWRG? estimate v=23.56 £0.06. In three dimensions the

TABLE I. The Monte Carlo—quench results for the random Ising
model in two and three dimensions. d is the dimensionality, n? is
the number of the lattice sites; N is the number of interaction confi-
gurations; M is the total number of update cycles per configuration;
T is the Monte Carlo temperature; J is the variance of the interac-
tion distribution; W is the variance of the domain-wall energy distri-
bution. The errors quoted are three estimated standard deviations.

d n N M T/J w7

2 3 40000 29 1.7 1.527 £0.018
2 4 40000 29 1.7 1.394 +£0.018
2 5 40000 29 W 1.307 £0.016
2 6 40000 210 1.7 1.231 £0.015
2 8 10000 213 1.2 1.140 £0.030
3 3 40000 210 1.7 2.554 +£0.036
3 4 40000 21 1.55 2.650 £0.039
3 5 10000 213 1.4 2.780 +0.099
3 6 10000 214 1.3 2.987 £0.159

scaling form provides an acceptable fit (using the X-squared
test at the 98% confidence level) with A= +0.17 £0.05.
The interaction iterates toward strong coupling showing that
there is a spin-glass phase transition at finite temperature.
If we assume a T2 correction term to the recursion relation
at finite temperature’* we find for the thermal exponent
v=1/21=3.0£1.0. The heat-capacity exponent is a=2
—dv= —17 %3 indicating an undetectable heat capacity ano-
maly. Interpolating the eigenvalue A linearly between two
and three dimensions we find a lower critical dimensionality
(at which A vanishes) of d,=2.64 +0.10.

We therefore find that the three-dimensional random Is-
ing model exhibits a spin-glass phase transition at finite
temperature and that the lower critical dimension is approxi-
mately 2.6. The computations required 700 h on the
University of Illinois (Urbana) Monte Carlo computer.
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