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The critical Landau-level filling factor v, for the transition from Laughlin’s liquid state to a Wigner crys-
tal is determined by comparing the energies of these states. The Wigner-crystal energy is substantially im-
proved over the Hartree-Fock result by using a variational wave function which includes particle correla-
tions. The liquid-state energy is obtained from the Monte Carlo calculation of Levesque, Weis, and Mac-
Donald. We find v, to be slightly larger than % which is consistent with the experimental observation by

Mendez and co-workers that the fractional quantum-Hall effect does not occur for v < =.

L The improve-

ment in the crystal energy by correlation is essential to this agreement since without correlations, v, ~ TI(T-

In addition the crystal correlation energy explains the very low temperatures required to see the v=%

liquid state.

The discovery of the fractional quantum-Hall effect!:2
(FQHE) has brought considerable interest?-1620 to the fol-
lowing question: what is the nature of the ground state of a
two-dimensional interacting electron system at very high
magnetic fields? At low density (small Landau-level filling
factor v) the ground state is expected to be a Wigner crystal
(WC).>-517 At moderate density (v=4,%+) a special in-
compressible liquid state proposed by Laughlin® has an ener-
gy lower than the WC. One, therefore, anticipates a liquid-
solid transition at some intermediate filling v.. Since the
WC has gapless excitations (phonons) an immediate experi-
mental consequence of this transition is that the FQHE will
not be observed for v < v,.

Several developments have occurred recently which now
make a realistic estimate of v, possible as well as timely.
On the experimental front, Mendez and co-workers!®!?
have obtained indirect evidence that v, may be % or larger.
They have found in high-mobility GaAs samples that the
FQHE does not occur for v < % and suggest that Wigner

crystallization may be the cause. On the theoretical front,
accurate liquid-state energies for a wide range of v have re-
cently been calculated by Levesque, Weis, and Mac-
Donald.2® These essentially exact Monte Carlo results lie
significantly above the values obtained by Laughlin using
the hypernetted-chain approximation.” Using the Hartree-
Fock (HF) energy for the crystal and their Monte Carlo
values for the liquid-state energy, Levesque et al.,2 ob-
tained v, ~ 5.

The WC energy has until now only been computed within
the HF approximation3-%20 which neglects correlations. We
have directly calculated the WC ground-state energy using a
variational wave function which includes particle correla-
tions. This wave function is related to that recently pro-
posed by Maki and Zotos® but is multiplied by a cerrelation-
factor. This factor is chosen to be a Gaussian so that
evaluation of the energy is still relatively simple. We find
that correlations reduce the WC energy below the HF value
by 4x 10~ 3e?/ el (where € is the dielectric constant and / the
magnetic length) at v=—;—, an effect several times larger
than that estimated from second-order perturbation theory.*
Using our improved WC energies and the liquid-state ener-
gies of Levesque et al.,2® we obtain the liquid-solid transi-
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tion at v, slightly greater than % in good agreement with the
recent experimental observations of Mendez and co-work-
ers.18.19

In this Rapid Communication we will briefly discuss our
variational wave function and the procedure for evaluating
the ground-state energy. Comparison with experiment will
then be made. A more detailed discussion of the wave
function and the numerical calculation will be presented in a
longer paper. Except where otherwise noted we will use
units such that /=e?%el/=1 throughout. For compactness
of notation, both complex numbers and vectors will be used
to represent particle coordinates in the two-dimensional
space, e.g., the complex number z = x+ iy is related to the
vector Z= (x,y). Since Laughlin’s liquid-state wave func-
tion was chosen to be entirely within the lowest spin state of
the lowest Landau level, we will make the same restriction
on our variational wave function to ensure a consistent
comparison. In any case, this assumption has been shown
to be valid in the magnetic field regime of interest.*?2!

Maki and Zotos® have proposed the following wave func-
tion to describe an uncorrelated Wigner crystal (UWC)

Wizl = AT ép (2), €Y

where A is the antisymmetry operator and d)Rl( z;) a single-

particle state localized at a site R, on a triangular lattice and
is given by

ér,(z)= (2m) =12
Xexp[—%lz,—-R,lz—%—(z,-*R,—-z,R,.*)] . @

Using this ansatz for the wave function, Maki and Zotos ob-
tained essentially the same results as the HF calculation.>*
The wave function given by Eq. (1) has its largest amplitude
when the particles are at the equilibrium lattice sites R; and
decreases for fluctuations, ;= z — R; away from these sites.
Because ¥ is a single Slater determinant, there are no
correlations between these fluctuations.

The Coulomb energy can be lowered by correlating the
fluctutions in particle positions in such a way that energeti-
cally favorable fluctuations are given large amplitudes while
unfavorable fluctuations are given small amplitudes. To ac-
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complish this we write our variational wave function for a
correlated Wigner crystal (CWC) as

¢°[21]=CXP[% zfiBijfj)H d’Ri(Zi , 3)
i U

where the By are (complex) variational parameters which
determine the correlations and By is a shorthand notation
for

B,=B(R,R))=B(R,—-R)). )]

The last equality follows from the lattice translational sym-
metry. We have dropped the antisymmetry operator be-
cause we have found that exchange is negligible for v < %

(due to the rapid falloff of the Gaussian wave function) and
this greatly simplifies the calculation.
The quantity to be minimized for N particles is

1 1
—_— [ P c 4 4 . 5
E 2N,§j<¢ |zi—z,.|}‘”>/<"’ e) 5)

The kinetic energy contributes an irrelevant constant to E
since ¢ contains only states from the lowest Landau level.
Since it is a nontrivial numerical problem to find the op-
timal set {By} which minimizes E, we adopt the following
strategy. We first expand the Coulomb potential to second
order in the fluctuations &;. Within the harmonic approxi-
mation it is possible to obtain analytically the optimum {B,j}.
We then use the resulting variational wave function ¢ to
evaluate E in Eq. (5) exactly (i.e., without making the har-
monic approximation). Hence, this procedure yields a
rigorous variational bound on the energy. One can show a
posteriori that this procedure yields a nearly optimum bound
on the energy since the anharmonic contributions to the en-
ergy turn out to be very small. This is reasonable since at
least for small v, the fluctuations &; which are of the order
of the magnetic length are much smaller than the nearest
neighbor distance.

In the harmonic approximation the optimal {B;} are relat-
ed to the phonon frequencies of the classical (point charge)
Wigner crystal. We define

B@=3e T EBR) =B, ©)
R

where @ = (gy,9,) is a vector in the Brillouin zone. We find

that the optimal B(Q) is given by

=@ —er@ D
o (d) +or(d)

where w; (q) and w7(q) are the longitudinal and transverse
classical phonon frequencies, respectively, and 6, in Eq. (6)
is a phase related to the classical dynamical matrix. The
reason that B, is related to the phonon frequencies is that
the fluctuations &; can be expanded in terms of the phonon
eigenmodes of the classical point-charge Wigner crystal.
The correlations induced by the B(Q) lower the energy by
favoring fluctuations which correspond to transverse modes
and disfavoring fluctuations corresponding to longitudinal
modes.

The energy per particle for the CWC given by Eq. (5) was
evaluated numerically using the B(q) given by Egs.
(6)-(7). For v< 7 the result can be expressed as

Efyc = —0.782133vY2+0.24100¥2+ 0.164%2 . ®)

The first term corresponds to the classical energy?? and the
remaining terms correspond to the harmonic and quartic ex-
pansion of the Coulomb potential. The coefficients of the
first and second terms can be evaluated as accurately as
desired. Only the coefficient of the last term is obtained by
fitting Eq. (8) to the calculated energies. The error in this
fitting does not exceed 10~3. The Hartree-Fock WC energy
forv=< %— can be represented by

EYE = —0.782133vY240.28231%2
+0.18v52—1.41201v )

The first three terms have the same meaning as in Eq. (8)
and the last term approximates the exchange. This expres-
sion is somewhat more accurate than the form chosen by
Levesque et al.?® Laughlin’s liquid state® with filling factor
v=1/m where m is an odd integer has an energy accurately
given by the interpolation formula of Levesque et al.?®

E;=—0.782133v/240.165»124—0.009»22 . (10)

Table 1 presents a comparison between the CWC, the
Hartree-Fock WC, and the liquid-state energies for v=§,

-é—, and 7’—

TABLE 1. Comparison between the Wigner-crystal energy and the liquid-state energy at v = % % and

1

5 The liquid-state energy Ef is from the Monte Carlo calculation of Levesque et al. (Ref. 20) and E[ is

from the hypernetted-chain approximation of Laughlin (Ref. 9). The crystal energy is from the present cal-
culation. Energies are in units of e%/e/. Numerical accuracies quoted from the references are indicated in

parentheses.
14
1 1 1
3 N 7
EdE —0.3885 -0.3219 —-0.2794
(£ <1079 (£<107% (<1079
Eyc —0.3948 —0.3258 —0.2816
(£ 0.0005) ( £0.0005) ( £0.0005)
Ef —0.4100 -0.3277 —0.2810
(£ 0.0001) (£0.0002) (£0.0002)
E} —0.4156 —0.3340
(£0.0012) (+£0.0028)
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Experimentally’- 21819 the filling factor is varied by chang-
ing the magnetic field at fixed electron density (in GaAs-
AlGaAs systems). In Fig. 1 we plot Efc, EWE, and Ej
referenced to the classical energy as a function of magnetic
field for a typical density of n =10!'/cm? and dielectric con-
stant e =13. Energies are here expressed in kelvins.

At v=1% Ef§ is slightly greater than E¥E because ex-

_change has not been included in Efyc; however, for v < %

exchange is negligible and correlation dominates. The
crossover between the (interpolated) liquid energy and the
WC energy occurs at 1/v.=6.5 £0.5. This crossover point
is in agreement with the experimental results of Mendez
and co-workers.!®19 They searched for the FQHE in high-
mobility GaAs samples at temperatures of 0.5 and 0.068 K.
No effect was observed for v < % suggesting that Wigner

crystallization has occurred. At v=+ a broad structure in

Px consistent with the FQHE was observed but only at the
lower temperature. Our calculations show E{c —E; =0.3
K at v= % (for the electron density of their sample,

n=6x10%cm?) which seems to be consistent with the ab-
sence of the FQHE at 0.5 K. Improvement on the WC en-
ergy by correlation is essential to the agreement between
theory and experiment since without correlation the liquid-
solid transition point would have been at v,~ 15 and fur-
thermore EHE — E, =1Katv=1.

Several caveats are in order. We have treated here only
the zero-temperature limit. A second point is that because
of the finite extent of the electron wave functions in the
direction normal to the plane of the inversion layer the ef-
fective Coulomb potential deviates from 1/r at small dis-
tances. MacDonald and Aers?® have estimated the correc-
tions to v, due to this effect and found them to be negligi-
ble. For the purpose of consistent comparison with the
liquid-state energies we have neglected Landau-level mixing
but this appears to be a good approximation.*#?! Finally we
note that we have neglected possible effects due to the small
but nonzero static disorder in the samples.

In conclusion, we have determined the liquid-solid transi-
tion point of a two-dimensional electron gas in a quantizing
magnetic field by comparing accurate variational estimates
of the ground-state energies of the liquid and solid states.
Our theoretical results for the critical density and the
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FIG. 1. Energy per electron vs magnetic field strength at a fixed
electron areal density, n=10'"/cm? The upper horizontal axis
shows the corresponding Landau-level filling factor. The energies
are referenced to the classical Wigner-crystal energy and measured
in units of equivalent temperature in kelvins. The curves E&E and

E$yc are the Hartree-Fock and correlated Wigner-crystal energies,

respectively. The two solid circles are the liquid energies at v=%

and + obtained by Monte Carlo calculations (Ref. 20) and the
5

curve E; is the interpolation formula given in Ref. 20. The two
crosses are the liquid energies from Laughlin’s hypernetted chain
calculation (Ref. 9).
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8.28 33.12

relevant energy scales are in good agreement with the
presently available experimental data. Correlation effects
which were previously believed to be relatively unimportant
for the Wigner crystal were shown here to be significant and
in fact essential to reconcile theory and experiment. We be-
lieve that these results represent strong indirect evidence for
Wigner-crystal formation at filling factor v < % Experi-
ments attempting to directly observe this phenomenon
would be of great interest.

The authors are grateful to A. H. MacDonald for supply-
ing them with the liquid-state energies calculated in Ref. 20.
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