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This paper presents a general approach to the calculation of single-particle excitations in insulat-

ing crystals, with application to silicon and diamond. The method includes the energy dependence
of the self-energy which is evaluated in the Green s-function —screened-Coulomb-interaction
("GW") approximation of Hedin [Phys. Rev. 139, A796 (1965)],which is applied in the local-density
approximation of Sham and Kohn. This self-energy describes changes in exchange-correlation. ef-
fects beyond those described by the ground-state exchange-correlation potential. The essential in-

gredient is the model of a homogeneous insulating electron gas, built on the ideas of Penn and of
Levine and Louie. It is shown that this quasiparticle local-density-approximation (QPLDA) self-

energy for an insulator with gap E~ is topologically distinct from its metallic counterpart due to a
nonanalytic contribution to the self-energy proportional to Es(k —kr)ln~k —kr ~. This gives a
discontinuity in the energy derivative of the dynamic self-energy, which, in turn, leads to an increase
in band gaps over the ground-state values. Both effects can be related directly to the gap between

occupied and unoccupied states; charge inhomogeneities play only a minor role in this approach.
Direct and indirect band gaps in both silicon and diamond are in much better agreement with exper-
iment than are the results from the ground-state theory. The zone-boundary optical gaps and the
valence-band width in Si appear to be predicted very accurately by the QPLDA, while a 0.24-eV
discrepancy remains in the indirect band gap. In diamond the valence-band width and fundamental
direct and indirect band gaps are within 5% of the experimental values. To provide a basis for an
intuitive grasp of exchange-correlation corrections to excitation energies, the full nonlocal interac-
tion for the model homogeneous system is presented and analyzed in some detail.

I. INTRODUCTION

Theoretical studies of the electronic structure of solids
are based almost entirely on the Hartree-Fock (HF) and
density-functional (DF) methods. However, both of these
methods provide variational equations for ground-state
properties (viz. , energy), while most experimental probes
sample the electronic properties through excited states.
While the DF method in the local-density approximation
(LDA) is known to give a reasonable description of excit-
ed single-particle ["quasiparticle" (QP)j states in many
metals, the resulting energy bands typically underestimate
gaps in semiconductors and insulators by 20—50%. The
HF method, on the other hand, produces gaps which can
be as much as a factor of 2 too wide.

In this paper we shall concentrate on taking steps to
transcend the deficiencies of the DF-LDA approach. DF
theory provides an effective one-electron potential
uDF(r;n) which describes the effects of exchange and
correlation on ground-state properties. Hohenberg and
Kohn' established a one-to-one correspondence between
the external potential U,„, and the ground-state charge
density n (within certain restrictions, which appear not to

concern the present work). Thus all properties of the in-
teracting system, which are functions of u,„, a priori, may
just as well be considered functionals of n The effect. ive
potential uDF may depend on n in a very complex
manner; however, it is a local operator in real space. The
LDA is based on the supposition that this one-electron
potential can be approximated locally as that of a homo-
geneous system at the same density:

u DF( r; n )~is,„(n ( r )),
where p„,(n) is the exchange-correlation (xc) potential of a
homogeneous electron gas of density n. This approxima-
tion is formally justified if the density is slowly varying
on the relevant length scale (i.e., Fermi wavelength or
Thomas-Fermi screening length).

The breakdown of LDA in semiconductors has most
often been ascribed to a violation of the "slowly varying
density" criterion. From this point of view, the remedy is
to "go beyond" LDA by constructing ground-state
exchange-correlation potentials which depend nonlocally
on the density. The weighted-density approximation
(WDA) represents one such approximate nonlocal-density
representation of the ground-state exchange-correlation
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potential. In his application of the WDA to Si, Kerker
introduced a numerical simplification to make ihe calcu-
lation tractable. In the homogeneous limit his simplifica-
tion increases the Kohn-Sham exchange (a= —', ) to Slater
exchange (a=1) and increases the correlation potential
correspondingly, an alteration which is known to widen
band gaps in semiconductors. Therefore the increased
band gaps found by Kerker are not representative of the
full WDA, which itself reduces to the LDA [a(n) & 1] in
the homogeneous limit. More recently, Langreth and
Mehl have constructed a nonlocal-density potential
which interpolates between the correct small- and large-
wavelength contributions to exchange and correlation.
Although this potential appears to improve ground-state
properties, it leads to only small increases in the band
gaps of semiconductors and insulators.

Two observations suggest that violation of the "slowly
varying density" criterion may not be the paramount con-
sideration. First, variations in density are no more rapid
in covalent semiconductors than in transition-metal sys-
tems which are often described rather well by the LDA.
Second, the recent determination within the LDA of
several true ground-state properties (cohesive energy,
crystal structure, lattice constant, bulk modulus, and pho-
non spectra), all in good agreement with experiment, sug-
gests that the breakdown is with DF theory itself—the ap-
plication of a ground-state formalism to excited states—
rather than with the LDA itself.

In this paper we investigate excited states directly via
the construction of the Green's function 6 ( r, r ';E),
which describes the propagation of an excited electron or
hole at energy E from r ' to r. G is the solution to the
Dyson equation

E — V —+uc(r) G(r, r ';E)2'

+ I dr "M(r, r ",E)G(r ",r ';E)= —5(r —r '), (1 2)

where M is the mass operator. %e separate the "classi-
cal" Coulomb potential uc (arising from ionic and elec-
tronic Hartree contributions) from M and treat it exactly.
The remaining mass operator arises from exchange and
correlation among the electrons.

A formal solution to the Dyson equation is given by

X„(r,E)X„(r ',E)
G(r, r ';E)=g, (1.3)E —e„E

where X„and X„are the right ("column" ) and left ("row")
eigenvectors, respectively,

e„(E) V' +u—c(r) X—„(r,E)

+ I dr 'M(r, r ',E)X„(r ',E)=0, (1.4)

e„(E) — V' +uc(r) X„—(r,E)—

+ dr 'g„r ',EM r ', r;E =0, 1.5

corresponding to the eigenvalue e„(E), which is complex
in general. In these Schrodinger-type equations (1.4) and
(1.5), M assumes the role of a complex, non-Hermitian,
energy-dependent, nonlocal potential operator.

The terminology "nonlocal" deserves comment and
clarification. A local potential is a function of a single
variable r alone and operates multiplicatively on the wave
function. In general, any more general operator may be
referred to as nonlocal For example, energy-dependent
pseudopotentials of the form V„,(r,E) are often called
nonlocal. However, we will refer to this form as an
energy-dependent local potential, and reserve the term
nonlocal for those operators such as M(r, r ';E) which de-
pend on two real-space variables and therefore require a
nontrivial real-space integral in Eqs. (1.4) and (1.5). (It
need not be energy dependent. ) Finally, in attempting to
go beyond the LDA, non local d-ensity-, (NLD) potentials
are constructed. This is distinct from the nonlocal opera-
tor defined above; for example, for the homogeneous elec-
tron gas [n(r)=const] M is still a nonlocal operator.
Conversely, the non-local-density potential of Langreth
and Mehl is a local operator since it depends on n ( r ) and
its derivatives only at a single point in space.

Hedin provided the first approximate evaluation of M
for the electron gas in the Green's-function —screened-
Coulomb-interaction ("GW") approximation, which is
described in Sec. II. Several variants of the 6%' approxi-
mation have been applied to investigate the gaps in semi-
conductors. The "Coulomb hole plus screened exchange"
(COHSEX) model of Hedin has been applied by Brink-
man and Goodman, Lipari and Fowler, ' Kane, "
Brener, ' and Bennett and Inkson. ' The COHSEX
model consists primarily of a static approximation for M
(evaluated at the chemical potential) which neglects renor-
malization of the single-particle spectrum by electron-
hole —pair excitations, but includes the effects of virtual
excitation of plasmons. More recently, Strinati et al. '

have utilized a localized-orbital representation to provide
a more sophisticated evaluation of M in the dynamic GW
approximation. Each of these calculations present M as a
correction to the HF approximation, and, typically, a size-
able correction to the gap is found. Fulde and collabora-
tors' have approached the problem from the viewpoint of
correlated wave functions, both for the ground state and
for excited states.

These studies must be contrasted with the situation
when M (minus its value at the Fermi level) is applied in
metals as a correction to the LDA. Reported eigenvalue
changes' are usually less than 0.1 eV. Several considera-
tions invite an adaptation of this historically metallic
based approach to insulators. First, the magnitude of the
correction in the fundamental gap is much smaller —1.8
eV (upward) for the LDA versus 7.5 eV (downward) for
the smallest direct gap at I in diamond (see Sec. V), for
example. The approximations which must be made (Secs.
II—IV) will then produce smaller absolute errors, or, alter-
natively, more simplifying approximations may be made
in attaining the same accuracy. Second, the initial LDA
(or its NLDA derivative) calculation produces quite real-
istic ground-state properties; particularly important from
our point of view is the ground-state charge density which
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is needed to evaluate M. Third, building a rigorous
theory of excited states on a ground-state formalism al-
lows a more direct investigation and understanding of the
excitation process.

In this paper we develop a local-density approximation
for the excited states in semiconductors and insulators. A
brief report'" of our results has already been published.
The mass operator is evaluated in the G%' approximation
of Hedin discussed in Sec. II. Section III is.a description
of our point of departure, for which the electron gas is re-
placed by a model semiconducting electron gas whose
dielectric response corresponds to a simplified analytic
Penn model' introduced recently by Levine and Louie. '

In Sec. IV we present calculations of M for homogeneous
systems. The semiconductor mass operator is compared
to the metallic analog studied in detail by Hedin,
Lundqvist, and Lundqvist. This leads to a discussion of
the local-density condition ' for quasiparticles, whereby it
is shown that, within our model, (a) the gap typically in-
creases the eigenvalue correction by an order of magni-
tude, and (b) the true gap will always be larger than the
one obtained from ground-state DF calculations. It is
also shown that, within the present theory, M for a semi-
conducting system differs qualitatively from its metallic
counterpart, even for an extremely small gap. This non-
analytic change appears to be related to the discontinuity
of the (exact) exchange-correlation potential with respect
to electron number at that number which exactly fills the
valence bands, discussed recently by Perdew and Levy
and by Sham and Schluter.

In Sec. V we apply our model to silicon and diamond.
Compared to the ground-state eigenvalues, the present
model represents a substantial improvement. For exam-
ple, we find the direct band gaps in Si widen by 0.5 to 0.8
eV over the LDA value, resulting in close agreement with
experiment. The remaining discrepancies and their possi-
ble origin are discussed. Section VI is devoted to a critical
review.

II. M IN THE GW APPROXIMATION

Formally, M is given in terms of the renormalized
Green's function G, the screened Coulomb interaction 8',

I

and the vertex function I, all of which must be deter-
mined simultaneously and self-consistently. Even for the
relatively simple homogeneous electron gas this problem
has never been solved. Hedin suggested keeping only the
first term in an expansion for Mh (h denotes homogene-
ous) in terms of fully renormalized electron and
Coulomb-interaction propagators, 6 and 8' respectively,
thereby implicitly assuming I -1. While Hedin has given
plausibility arguments why this may be a reasonable ap-
proximation for M, and some perturbative investigations
have been made, its accuracy and range of validity remain
unclear.

Hedin's G%' approximation for the Fourier transform
Mt„ then, is (with A'=1)

Mg(k, E)=
4 f de' f d k'G(k —k', E —co')

(2m)

X W(k', to')e', (2.1)

V (k) 41re

&(k, tv) Qk e(k, co)
(2.2)

G( k,E)='[E E„Mt,(—k,E)]— (2.3)

As noted by Hedin, it is a very difficult numerical prob-
lem to include the full (k, co) dependence of M~ in the
Green's function appearing under the integral in Eq. (2.1),
and the resulting behavior of M~ is not expected to be
sensitive to fine details in the integrand. We therefore fol-
low Hedin by approximating ~~ in Eq. (2.3) by its value
at the chemical potential Mh(k~, p~ ) =p„„the exchange-
correlation contribution to the chemical potential p~.

The expression to be evaluated is

Here, v is the Fourier transform of the Coulomb potential,
e is the dielectric function, and 0 is the normalization
volume. The Green's function itself is defined in terms of
Mg by

Mt, (k,E)= f(2m. )

e
—lN 0+

e(k' co') E co' E-,+i—5sgn—(
~

k —k'
~

—kz)
k —k'

(2.4)

This expression has been separated by Hedin into the static "Coulomb hole plus screened exchange" part M~, and the
term involving dynamic screening M~ ..

~t, (k)= f dk'[e '(k', 0)—1] f dk' f, dge '(k', 0)6(p E-„-„,)— (2.5)

T

M/, (k,E)= f dk' f dg [e '(k', E E-„-„,) —e '(k', 0—)][e(E E-„-„,) —e(p —E—„)]
I
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FIG. 1. Schematic representation of the GW approximation
to the Coulomb self-energy.
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I ) and e is the unit step function].
The remaining integrals must be computed numerically.
These expressions have been written in terms of a general
unrenormalized, spherically symmetric spectrum E-,k'
which will be discussed further in the next section.
Denoting the corresponding Green's function by G, the
relevant approximation for M» is pictured schematically
in Fig. 1.

III. SEMICONDUCTING HOMOGENEOUS
ELECTRON GAS

where

0, I~I &XEF

e2 (k, ro ), Iro
I

&A,EF
(3.1)

To generalize the treatment of Hedin and Lundqvist '

to a system with a gap between occupied and unoccupied
states, both the dielectric function and the single-particle
spectrum appearing in G under the integral (i.e., G) in
Eq. (2.1) must be modified. To model semiconducting or
insulating behavior in the dpnamicai screening, we use the
dielectric function e" =e& +ie2" of Levine and Louie'
(LL), which is defined in terms of the random-phase-
approximation (RPA) dielectric function e of
Llndhard

TAL

UCTOR

FIG. 2. Spectrum of the model homogeneous semiconductor,
compared to its metallic counterpart.

way, is contrasted with the free-particle spectrum in Fig.
2. Eg is distinct (numerically) from AEF, but , is certainly
the same order of magnitude. In the application of the
self-energy to solids (Sec. V), we take the viewpoint that
Es is an average over the Brillouin zone of the direct gap
between occupied and unoccupied states. Therefore in
solid-state calculations Eg is determined self-consistently

.and A, is taken from e0 and thus no free parameters ap-
pear.

IV. LOCAL-DENSITY APPROXIMATION

Sham and Kohn ' considered the case of a system with
a slowly varying density n(r). Since M(r, r ',E) is short
range ' in

I
r —r '

I, it depends only on the density near
(r+ r ')/2. This suggests that it can be approximated by
the replacement

co =(co —A, EF ) sgnco,
M( r, r ';E)~M»(r r', E p+—p»(n—);n), (4.1)

k2E-= + sgn(
I
k

I
kF) ~

2m 2
(3.3)

and e& (k, co) can be obtained analytically'9 by Kramers-
Kronig transformation. .This function satisfies the impor-
tant f-sum rules on both e and e ' and reduces to e
for A, ~O. The dielectric gap A,EF, which will be larger
than the minimum direct gap, is determined from the ex-
perimental value of the static, long-wavelength dielectric
constant Eo,

A, EF coF /(e0 I)'~, ——coF 4mn—e /——m . (3.2)

Figure 1 of Ref. 17 illustrates that e""provides a reason-
able model of both the k and co behavior of screening in Si
(r, =2, A, =0.4).

For the approximate single-particle spectrum E ap-
k

pearing in 6, we introduce a gap Eg between occupied
and unoccupied states in an otherwise free-particle spec-
trum,

where M»(r r ',E;n) is—the. mass operator of the homo-
geneous electron gas with density n, and
n=n[(r+r ')/2]. The local-density approximation is ob-
tained by treating X(r,E) in Eq. (1.4) as a superposition of
locally plane-wave-like functions,

ei k( r,E) r (4.2)

where p and p~ are the chemical potentials of the inho-
mogeneous and homogeneous systems, respectively. Us-
ing the Thomas-Fermi —type relation, valid for slowly
varying density,

Inserting this expression into Eq. (1.4) and neglecting non-

local terms (i.e., the r dependence of k) gives the solution
e(E)=E if k satisfies the local density co-ndition k =kLD,
with

E+ k LD+uc(r)+M—» (kLD, E @+p»(n); n—)=0,1

2&i

(4.3)

This spectrum, which was used much earlier by Calla- uc(r) =p —
1M» (n (r )), (4.4)
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These pseudopotentials are nonlocal, being comprised to
separate s, p, and d potentials. For Si the published form
of Bachelet, Hamann, and Schliiter was used. The dia-
mond pseudopotential is discussed in Sec. V B. For Si (di-
amond), the cutoff in plane waves (PW's) for expansion of
the Hamiltonian was taken at an energy of 11 Ry (38 Ry),
resulting in matrices of approximately 170)& 170
(300X300). The charge density and screening potential
were expanded in 609 PW's for Si and 1153 PW's for dia-
mond. Self-consistency to a high degree of accuracy on
the 10-special-point grid was achieved within 6—7 itera-
tions.

For the calculation of the self-energy correction it is
necessary to determine A, and Eg. For the latter we take
the zone-average direct gap, equal to 3.5 eV in Si and
12.75 eV in diamond. This latter value was obtained by
adding ta the 10-special- k-point average of the LDA cal-
culation (10.22 eV} in anticipated 2.5-eV self-energy
correction. We follow Levine and Louie' in using A, =0.4
for Si. For diamond, eo ——5.7 leads to A, =0.5.

For both Si and diamond we have carried out three cal-
culations. The first and second consist of self-consistent
LDA calculations using Hedin-Lundqvist and Levine-
Louie exchange-correlation potentials, respectively. The
third (and ultimate) results include QPLDA corrections to
the Levine-Louie band structure, which we consider the
best currently known approximation to the exact
exchange-correlation potential for systems with a gap.

In this section we neglect ImhLD (see Sec. VIA}, in
which case the spectral function becomes sharp. In this
case Rehqo can be included in existing band-structure
codes with little modification, since the "Hamiltonian"
remains Hermitian. The only modification arises from
the energy dependence of b,r D. In the calculations for Si
we have rediagonalized the energy-dependent QP Hamil-
tonian iteratively for each QP energy of interest, evaluat-
ing b,LD at the eigenvalue obtained from the previous di-
agonalization. Three iterations were sufficient to deter-
mine an excitation energy to better than 0.01-eV accuracy.
For diamond this direct approach becomes very time con-
suming (three additional 300X300 diagonalizations for
each eigenvalue sought), so the following efficient method
was developed.

We first use the result (Ref. 17, and below} that most
(75—95%%uo) of the self-energy correction arises from the

constant (G=0 ) term in b i D( G,E), the Fourier
transform of b,iD(r, (r ),E). Therefore we solve the scalar
equation

A. Silicon

The numerical results for Si have been presented previ-
ously. ' These results are presently graphically in Fig. 5.
The (Hedin-Lundqvist ) LDA bands are superimposed
on the QPLDA bands (self-energy added to Levine-
Louie' exchange correlation), with chemical potentials
(taken to be at gap center) aligned. The separation be-
tween valence and conduction bands is increased every-
where. The effect of the Levine-Louie exchange-
correlation potential (results not shown in Fig. 5) is very
small, except for the lower conduction bands, where it
raises the L, 3 and I.

&
eigenvalues by about 0.10 eV and the

Xi eigenvalue (and thereby increases the indirect gap) by
0.15 eV. The self-energy correction is primarily an
energy-dependent factor, behaving roughly as

bE =g(E —p),
~

E —p ~

(4 eV, (5.3)

with g= —,
' . The energy dependence of bE decreases for

~

E —p ~
&4 eV. Superimposed on this energy depen-

dence is an additional density dependence which lowers
the uppermost valence bands and raises the lowest con-
duction bands, in each case by roughly 0.1 eV. This
behavior has been presented in Fig. 2 of Ref. 17.

SILICON BAND STRUCTURE
QPLDA (EXCITED STATE)——LDA {GROUND STATE)

L'2-'

L3~~ L3

exact solution. We have found, however, that only the
lowest 20 (or less) eigenstates

~

i ) are required in (5.2) due
to the smallness of br D and to its short range in recipro-

cal vectar space [only its G=(2m. /a)(1, 1,1) camponent is
important]. Typically, only two iterations of (5.2) are
necessary to determine QPLDA eigenvalues to better than
1 mRy. Using this procedure, six eigenvalues (see Table I)
can be determined in less than the time required for a sin-

gle additional diagonalization of the full 300X 300 matrix.

e =E+bi D(G= O, e) (5.1)
X4 X)

1

iteratively for the first approximation e to the QPLDA
eigenvalue e corresponding to the LDA eigenvalue E.
This requires negligible time. Then, noting that ' EXPT. DATA

r X
)&

EXPT. TRANSITION

& i
I (HLDA+ OLD) IJ & =E & g+ &&

I bLD I J & (5.2)

in terms of the eigenvectors
~

i ) and eigenvalues E; of the
ground-state Hamiltonian Hz DA, the Dyson equation
e=E+b,LD(e) is solved iteratively from Eq. (5.2) begin-
ning with the initial value F from Eq. (5.1). If all af the
eigenstates are used in Eq. (5.2), this procedure leads to an

FIG. 5. QPLDA excited-state Si bands (solid lines) superim-
posed on the LDA ground-state bands (dashed lines) using the
exchange-correlation potential of Hedin and Lundqvist. Dots
and arrows indicate experimental eigenvalues and transitions,
respectively, and were obtained from the literature as described
in Ref. 17. The experimental transitions have been placed adja-
cent to the corresponding initial- and final-state bands.
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In Fig. 5 experimentally inferred values of the excita-
tions at X and L are shown as dots, relative to the QPLDA
valence-band maximum. From this comparison
discrepancies of the order of 0.2 eV remain. A table of
eigenvalues has been published previously. ' Also shown
in Fig. 5 are experimentally determined transitions, which
are simply juxtaposed with the corresponding region of
the QPLDA band structure. These transition energies are
less open to inaccuracies due to interpretation than are the
corresponding initial- and final-state eigenvalues. The
X4—+X), L'3~L3, and L3~L& zone-boundary transi-
tions are reproduced extremely accurately by the QPLDA.
The zone-center transition I'z5~1 i5 (the worst case) is
underestimated by about 0.25 eV. The I z5

—+I q transi-
tion also is reproduced by QPLDA. However, this transi-
tion involves the unusual antibonding I q state, which is
inordinately sensitive to computational details and which
other ab initio LDA calculations' 3 find to lie about 0.3
eV lower than our result. (Except for the I i state, our
bands are very close to previous calculations. '

) Thus
the perfect agreement here may be somewhat fortuitous.
It is clear, however, that the QPLDA self-energy gives
essentia. 1 increases in transition energies which bring them
into quantitative. agreement with experiment. The calcu-
lated indirect gap of,0.93 eV, although much improved
over the LDA value, still underestimates the experimental
value by 0.24 eV. This discrepancy suggests some remain-
ing density dependence, either in the exchange-correlation
potential or in the self-energy, which has not been ac-
counted for in the present theory. The I i5 and Xi states
are known, from contour plots by Kerker and by Zunger
and Cohen, to sample very different regions of density.
To quantify this difference we have calculated the average
value r, of r„as well as the deviation 5r, from the aver-
age, for the high-symmetry states near the gap. For the
I'z5 (Xi) state we find r, =1.75 (2.30) and 5r, =0.32
(0.65). Each of these values represents the extremum
(minimum and maximum, respectively) for states within 5
eV of the gap, although the energies of these states differ
by only about 1 eV. As a result an additional density
dependence will affect the separation of these states more
than for any other two states. It is for this reason that we
assign the discrepancy in the indirect gap to some, as yet
unknown, density dependence which may involve nonlo-
cality in the self-energy or nonlocal-density corrections to
the ground-state eigenvalues.

4-
r(a.u. )

-4-

-8-

finding a valence-band width of 20.4 eV and an indirect
gap of 5.5 eV. Their calculation shows a sharp upward
dispersion of the lowest conduction band near the
conduction-band minimum [near k = (2n./a)(0. 75,0,0)]
which is not shown by any other calculation. Using over-
lapping atomic and interstitial spheres within which the
charge density and potential are spherically averaged,
Glotzel et al. obtain an indirect gap of -4.5 eV using
the Hedin-Lundqvist exchange-correlation potential. The
eigenvalues of Zunger and Freeman" and of Glotzel
et al. ~ are presented in Table I.

Of more interest for comparison here are the calcula-
tions of Yin and Cohen ' and Bachelet et al. Both of
these studies used pseudopotentials generated according to
the Hamann-Schliiter-Chiang "norm-conserving" pre-
scription; however, each used pseudopotentials which
were generated independently and represented differently
than the Bachelet-Hamann-Schliiter potential. The differ-
ences in the resulting self-consistent eigenvalues (comput-
ed exactly) resulting from these "different" potentials are
not known, but they are expected to be negligibly small.
Bachelet et al. , using the potential shown in Fig. 6, have
reported calculations using (a) 200 PW's and (b) 20 local-
ized orbitals per atom, as well as a (full-core)
linearized —augmented-plane-wave (LAP W) calculation
using the method of Hamann, finding differences in
eigenvalues of 0.4 eV or less. The sufficiency of 20 local-
ized orbitals was justified by Bachelet et al. upon com-
parison to their results using 200 PW's. The most highly
converged (with respect to basis set) plane-wave calcula-
tions are those of Yin and Cohen, who used 350—400
PW's. All of these eigenvalues are presented in Table I.

Initially, we attempted to use the "pseudopotential that

B. Diamond

We first review existing self-consistent calculations for
diamond. The first self-consistent calculation carried out
without making severe shape approximations to the
charge density and potential were by Painter et al. ' Us-
ing the Xa scheme (a=0.76) they obtained an indirect
gap of 5.4 eV and a bandwidth of -21 eV. Euwema
et al. carried out a Hartree-Fock calculation, which was
found to overestimate the fundainental gap by a factor of
2. Heaton and Lafon performed a Slater exchange
("a=1")calculation, obtaining an indirect gap of 5.2 eV
and a valence-band width of 21 eV. Zunger and Free-
man carried out a Hedin-Lundqvist LDA calculation,

CQ—-16-
0)
O

-20-

-24-
Ze'

r
-28-q I/

Bachelet,
Greenside,
Baraff,
Schloter

-32-
FIG. 6. Norm-conserving pseudopotentials for carbon from

Refs. 29 and 37, as discussed in the text.
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works" published by Bachelet, Hamann, and Schliiter 9

(BHS), shown as dashed lines in Fig. 6. However, using
300 PW's we obtained eigenvalues which differed from
those of Yin and Cohen by as much as 0.5 eV. These
discrepancies were due to lack of convergence, which
could only be surmounted with an unacceptably large
(perhaps 500—600 PW's) basis set. Thus this pseudopo-
tential, chosen with a very coriservative I= 1 core radius,
does not really "work" for a plane-wave basis.

In the calculations described below and in Table I we
have used the carbon pseudopotential constants published
by Bachelet, Greenside, Baraff, and Schluter. 7 Using 300
PW's we obtain eigenvalues (Table I) similar to both those
of Bachelet et al. and of Yin and Cohen. In particu-
lar, the eigenvalues involved in the smallest direct and in-
direct gaps are within 0.1 eV of those of Yin and Cohen.

For diamond the (Levine-Louie) LDA bands and the
corresponding QPLDA bands are shown in Fig. 7. Here,
the difference results only from the dynamic self-energy
correction. The Levine-Louie correction alone increases
the indirect gap by 0.26 eV. Before proceeding to a com-
parison of the QPLDA bands with experiment, we men-
tion that the self-energy corrections again are primarily
energy dependent. Equation (5.1) holds for diamond as
well, but with (=0.3.

The experimental indirect gap in diamond is 5.47 eV.
The QPLDA leads to the slight (S%%uo) overestimate of 5.74
eV, compared to the large (Hedin-Lundqvist) LDA un-
derestimate of 4.05 eV. The I zz ~I &5 gap is about '
7.3 eV, and the QPLDA gives 7.36 eV (compared to the
HL value of 5.51 eV). For most other transitions there

Q PLDA

remains considerable disagreement among the experimen-
tal interpretations. Generally, angle-resolved photoemis-
sion results have been considered as one of the most reli-
able standards for comparison, and Himpsel et al. ' have
reported a limited study for diamond. Their value of
(6.0+0.2) eV for the I"25 ~I » transition disagrees consid-
erably with all other data, and their quoted valence-band
width of 21 eV is smaller than the 24-eV value found by
McFeely et al. They assign a 15.3-eV value to the
I'25 ~I 2 transition, for which the QPLDA value is 16.10
eV.

VI. DISCUSSION

Up to this point we have defined the quasiparticle
local-density theory and presented the principal results for
silicon and diamond. In this section we provide a general
critical discussion, aimed at understanding the QPLDA
self-energy and its possible limitations, suggesting refine-
ments which are possible within the local-density approxi-
mation and providing a more intuitive notion of the origin
of the energy-dependent. potential. We also compare our
results with the recent work of Strinati et al. ' and
Horsch et aI. ' on exchange-correlation effects on excita-
tions in insulators.

A. Negative energies and the valence-band width

The reader will not have failed to notice that the pre-
sentations of the QPLDA bands in silicon and diamond in
Figs. 5 and 7 do not include the lower part of the valence
bands. For these bands the hole excitation energy E —p
is sufficiently negative that the quasiparticle local-density
condition, Eq. (4.6), has no solution for positive kz D (i.e.,
for real kLD) for the low-density region in the diamond-
lattice interstices. The solution to this situation is simple
and was foreseen by Sham and Kohn: ' simply analyti-

12-

I

LU

—12

~ Clark et al.
a Himpsel et al.

FIG. 7. QPLDA bands for diamond (solid lines) superim-
posed on the ground-state bands (dashed) lines using the
Levine-Louie exchange-correlation potential. The experimental
data, placed relative to the QPLDA valence band maximum, are-
from Clark et al. (Ref. 38) and Himpsel et al. (Ref. 40).

(IIO) PLANE

FIG. 8. Contour plot of r, in the (110) plane of silicon.
Numbers label the contour values and dashed lines connect the
atom sites.
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0.2- Silicon, r, "=2.06
————-Diamond, r,M "=1.32

0.1-

Re nLo
-2

LLI

lD

L —0.1-
D

m LD

1.0

--1

-0.2-

I I I 'I I I I I I-1.0 —0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
(E-1)/~~

FIG. 9. Real and imaginary parts of the self-energy OLD of silicon and diamond in the mean-density approximation (MDA). Solid
(dashed) lines refer to silicon (diamond), and the dotted lines indicate an extrapolation. Arrows indicate band edges {valence-band
minimum and fundamental band gap).

cally continue the mass operator to complex momentum.
We have not yet carried out this task.

The situation can be visualized using Fig. 8, which
displays a contour plot of r„proportional to (densi-
ty) '~, for Si. In Si, r, ranges from 1.4 in the bond
center to 4.4 at the interstitial site of tetrahedral symme-
try (the corresponding extrema in diamond are 0.9 and
2.1). The corresponding value of kF/2m ranges from 25
eV down to 2.5 eV. When E —p drops too far below
kp(r, )/2m, our present codes cannot assign a value to
ELD(r„E). The strongly bonding states in the upper
valence bands do not sample the interstitial region appre-
ciably, which allows accurate self-energies to be obtained
down to E —p= —5 eV in Si and down to ——10 eV in
diamond. We emphasize that this is merely a constraint
imposed by the present computer codes rather than a fun-
damental limitation on the QPLDA.

The QPLDA self-energy is dominated by a position-'
independent contribution; the only appreciable spatial
dependence arises from a much smaller part with

G=(2m/a)(1, 1,1) (which also tends to increase the in-
direct gap). This suggests the use of a quasiparticle
mean-density approximation (QPMDA) to obtain band
shifts in the lower valence bands. We have used the
values r, =2.06 (1.32) for silicon (diamond) to obtain
the shift in the lower-valence-band eigenvalues. The cor-
responding self-energies over the range

~

E —p ~

(co& are
shown in Fig. 9.

For Si the QPMDA gives a downward shift of the I
&

'

eigenvalue of 0.8 eV, leading to a valence-band width W
of 12.5 eV, in excellent agreement with the experimental
data of Grobman and Eastman [(12.4+0.6) eV] and of
Ley et at. [(12.6+0.6) eV]. For diamond the shift is 2.2
eV (see Table I), leading to %=23.4 eV. This is in good
agreement with the photoemission results of McFeely
et al; who found W=(24.2+1.0) eV. Himpsel et al. '

have reported the value 8'=21 eV, which we believe to be
less soundly based.

From Fig. 9 the QPMDA value of the half width of the
I

~ state, given by
~

Imb, LD(Er ) ~, is 0.7 and 0.25 eV for

silicon and diamond, respectively. Unfortunately, there
seems to be no experimental determination of these
widths. The QPMDA gives a vanishing width for hole
excitations below about 7.0 and 16.5 eV in silicon and dia-
mond, respectively. In the QPLDA the variation in densi-
ty sampled by these hole states will lead to a finite life-
time for substantially lower energy excitations, although
the lifetime should remain long. Since the I

~ states have
a very diffuse density (especially in silicon) the QPMDA
result quoted above may be similar to the QPLDA value.

The ground-state charge density, usually determined
from the Hohenberg-Kohn-Sham ground-state procedure,
can be determined equally well from the single-particle
Green's function by the relation

n (r) = ——I dE ImG(r, r;E) . (6.1)

In the QPMDA (and ignoring the imaginary part of the
self-energy) the energies of the single-particle eigenfunc-
tions are shifted, but the eigenfunction is left unchanged.
Thus the QPMDA leads "trivially" to the same density as
the ground-state density functional gives, upon which the
QPLDA (and the QPMDA) is built. Of course, both
prescriptions, if carried out exactly, must lead to the same
density. It remains an intriguing question whether a
fully-self-consistent QPLDA will lead to appreciable
corrections to the LDA density.

B. Comparison with other work

Strinati, Mattausch, and Hanke' (SMH) have used a
localized-orbital representation to evaluate the eryslalhne
mass operator (minus the exchange term, which is includ-
ed in their reference system) also in the GW approxima-
tion. M is then used to give the necessary corrections to a
reference Hartree-Fock band structure. As noted in the
Introduction, Hartree-Pock overestimates the direct gap
in diamond by about 7.5 eV, i.e., a factor of 2. Thus the
dynamic corrections necessary to reproduce the experi-
mental gap are 4 times as large as in our approach (and of
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the opposite sign). Furthermore, the computational utility
of their theory is most suitable for (and may be restricted
to) systems which are easily described by localized orbi-
tals, i.e., wide-gap solids. For diamond with a minimal
basis set, numerical simplifications were made to make
the calculations tractable. No corresponding numerical
approximations are necessary in the QPLDA.

The approach of SMH does, however, have the merit
that if the numerical procedures are carried to conver-
gence, the resulting mass operator is the appropriate one
for the crystal [subject to the GW approximation and to
independent knowledge of what interactions to include in
e(q, co)]. Therefore the approach is amenable to systemat-
ic improvement. The QPLDA, on the other hand, is an
ansatz (just as the LDA is), and "higher-order" correc-
tions may be difficult to obtain (see Sec. VI. D).

Some features of the two approaches are readily recon-
ciled. For example, the inhomogeneity of the density is
included by SMH as "crystalline local field effects" [ma-
trix nature of e(q, r0)], where the QPLDA accounts for it
through a local-density-dependent self-energy. As correc-
tions to the gaps of the reference system are of opposite
sign, however, it is difficult to compare the "corrections"
in the two approaches. A large part of the corrections to
Hartree-Pock bands (reference system for SMH) are in-
cluded in an average manner in the ground-state density-
functional bands (reference system for the QPLDA).

Nevertheless it is easy to compare the results, the quasi-
particle energies. Strinati, Mattausch, and Hanke obtain a
direct gap at I of 7.4 eV and a valence-band width of 25.2
eV, in good agreement with experiment. They also find a
I i half width of the order of 1 eV, considerably larger
than our (QPMDA) estimate of 0.25 eV. It would be of
great use to have an angle-resolved-photoemission and/or
bremstrahlung isochromat spectrum study of diamond to
assess the accuracy of higher QPLDA and SMH eigen-
values, listed in Table I, which differ by as much as 2.5
eV.

Horsch, Horsch, and Fulde' (HHF) have approached
the quasiparticle problem using a correlated wave-
function method. Their approach, also based on the
Hartree-Pock reference system, included only interatomic
correlations (which are expected to be dominant} within a
minimal basis set of Gaussian orbitals. Horsch, Horsch,
and Fulde obtained a direct gap of 7.4 eV and a valence-
band width of 23.8 eV, again similar to experiment.
Again, it can be said that comparison of the contributions
to the gap with the QPLDA and with the theory of SMH
is difficult. Horsch, Horsch, and Fulde conclude, howev-
er, that the major correlations in their theory are due to an
electron-hole polarization cloud, in qualitative agreement
with current implementations of the Green's-function ap-
proach by SMH and ourselves.

Sterne and Inkson have applied a tight-binding repre-
sentation to the GW mass operator to derive approximate
exchange-correlation potential separately for the valence
and conduction bands. Their approach appears to give
approximately the correction necessary to account for ex-
perimental gaps.

The COHSEX approximation (see the Introduction),
which essentially consists of using the static screening

limit co—+0 in e(q, co), has been applied to diamond in
varying degrees of numerical complexity. 9 'z Strinati,
Mattausch, and Hanke' have summarized this approach
as leading to approximately the correct gap, but leaving
the Hartree-Fock bandwidth almost unchanged.

MI, (r r', E)-——const&(,
~

r —r '
~

+0, —
/r —r'/

(6.2)

and Ms quickly vanishes beyond
~
r —r '

~
/r, =2. When

the gap is introduced, this gross behavior is unchanged,
and a graph such as Hedin presented, but including ef-
fects of the gap (the size of silicon's, say}, would be diffi-
cult to distinguish from the metallic case We th. erefore
focus on differences, presented in terms of the dimension-
less function

U(r/r, E,r„A,, V) =47Tr agM/, (r,E;rg )/Ep, (6.3)

where v=E&/Ez. This representation builds in the scal-
ing of real-space structure with r„nad accounts for the
volume factor 4n.r which arises in the integral in the QP
Schrodinger equation (1.2).

In Fig. 10(a) we plot the difference in U between insu-
lating and metallic systems, evaluated at E =p. The insu-
lator is represented by the constants A, =0.45 and v=0.35,
which are midway between the corresponding values for
silicon and diamond. This difference, arising from the
gap and only weakly dependent on r„ is oscillatory and is
long ranged compared to r MI, itself. The real-space po-
tential Mz(r, p) is somewhat less attractive for r ~r„
however, it is considerably more attractive for
1 & r fr, & 2.5, especially for the higher densities.

In Fig. 10(b) we illustrate the dependence on excitation
energy of MI, for an insulator by displaying the difference
between the value of Uat

E =IJ, + —,
' vEF ——p+ —,

'
E&

C. Interpreting the self-energy

Naturally the question arises of how one is to interpret
the self-energy corrections in order to have, or to develop,
an intuitive understanding which can be applied to other
systems. Sometimes the question is posed from an an-
thropomorphic viewpoint: If I were in excited electron (or
hole) moving through the crystal, how would I see the
other electrons behaving? In this subsection we present
calculations aimed at understanding the effect of the ener-

gy gap on exchange-correlation processes involved in exci-
tations.

Levine and Louie' have shown that their model dielec-
tric function, used here in the QPLDA self-energy, leads
to a ground-state exchange-correlation functional which
differs from its metallic counterpart by arising from a
smaller exchange-correlation hole. To investigate the
real-space manifestations of exchange-correlation effects,
we turn to the nonlocal mass operator Mz(r —r ',E) of
our homogeneous insulator, which is the Fourier
transform of Ml, (k,E). Hedin has found, for the elec-
tron gas, that



30 LOCAL-DENSITY APPROXIMATION FOR DYNAMICAL. . . 4731

U(p, r. ; 0.45, 0.35)-U(p, r.;0,0)
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~ ) v ) ~ $

~ ) 0
1

~

and its value at E =p. Again, this difference is oscillato-
ry and weakly dependent on r, . One might expect that
this difference is dominated by its negative shift for
rlr, & 1.5, but once the QPLDA condition, Eq. (4.6), is
applied, the energy shift in the eigenvalue is positive. The
corresponding plot for E =p —,' Es (not shown) is—essen-

tially the negative of Fig. 10(b), reflecting the near sym-
metry between electrons and holes as long as

~

E —p ~

is
not too near Ez.

Finally, in Fig. 10(c) we illustrate the effect of increas-
ing gap size on the nonlocal potential at E =p for r, =2.
This is a variant of Fig. 10(a) with gap size rather than
density being varied, so the qualitative (long-range oscil-
lating) behavior is similar. It is evident that, for gaps less

0 1 2 3 4 5 6
r/rs

FICx. 10. Difference plots involving U(E, r, ;A, ,v)
—:4~r a~M~(r, E)/E~ versus r/r, . (a) Effect of the gap for
various densities. (b) Energy dependence for various densities.
(c) Dependence on the gap for r, =2.

than half the size of EF, the correction is very closely pro-
portional to gap size

It must be kept in mind that the differences being dis-
cussed here are quite small (a few percent) compared to
the mass operator itself, which is in many respects
changed very slightly from its behavior in a metal. The
value M&(p, r, ) at E =)Lt gives the local-density ground-
state potential, viz. , Hedin-Lundqvist potential for metals
or Levine-Louie potential for semiconductors. The fact
that the differences in eigenvalues for these exchange-
correlation potentials, & 0.15 eV ( & 0.2 eV) in silicon (dia-
mond), confirms their overall similarity.

These observations allow some insight into the nonlocal
behavior of the homogeneous insulating electron gas. In
this paper we have applied this model self-energy in the
QPLDA, which replaces M ( r r', E)— by
MLD(E)5( r —r '), and approximates Mi D(E) by
p„,+OLD(E). [We emphasize that the Hedin-Lundqvist
and Levine-Louie exchange-correlation potentials p„, are
more sophisticated than the GW approximation to Mh
gives. Hence the use of the GW approximation only for
the small difference b.i.D(E)=M~ (E)—Mt, (p, ) in the
QPLDA. ] It is essential that this local approximation be
used in applications to inhomogeneous systems, since the
vertex correction to Ml, (k,E), neglected in our calcula-
tions, is important in the short-wavelength limit. This
problem is avoided in the local-density approximation
since kLD does not become too large for the energies of
interest. In a full nonlocal calculation there are substan-
tial cancellations among large matrix elements of
Mq(k, E) which require an accurate estimate of Mt, (k,E)
for the crystal to give a meaningful result. Our applica-
tion of the full nonlocal self-energy [i.e., no QPLDA ap-
proximation, Eq. (4.7)] to silicon was found to lower the
conduction bands at the zone boundary, tending to des-
troy the gap, even though the direct gaps are increased as
in the QPLDA. One source of the strong nonlocality,
viz. , the k dependence of b, (k,E), arises from the existence
of a gap in the model insulator only at k =kr, whereas
crystalline insulating systems have a direct gap of -Es at
all k points in the zone. In this respect the QPLDA point
of view is consistent with the results of SMH, ' who cal-
culate the nonlocality of M in diamond and find it to be
quite small.

The foregoing discussion leads to a novel viewpoint on
the effect of exchange-correlation processes on single-
particle excitations in insulators. The usual point of view
has been described in some detail by Sterne and Inkson.
It is based on the Hartree-Fock reference system which is
used as the point of departure for all the previous calcula-
tions discussed in the Introduction and in Sec. VIB. An
excited particle, assumed for definiteness to be residing in
the bond at the origin, polarizes other bonds. (This
viewpoint is implemented directly in the correlated wave-
function approach of HHF. '

) This polarization is long
ranged and arises from the Coulomb interaction which is
incompletely screened in an insulator. This polarization
cloud makes up the long-range correlation which compen-
sates the long-range exchange interaction, thereby consid-
erably reducing the size of the region which actually is
disturbed in the presence of the excitation.
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Although this viewpoint is usually restricted to insula-
tors, when it is applied to a metal, as follows, the net ef-
fect is similar. Consider an excitation in a metal
described initially in the Hartree-Fock approximation.
Hedin has noted that the exchange interaction is long
ranged, but that when correlation effects are included, the
resulting total interaction M(r r', E—) is short ranged.
Therefore in metals as well as in insulators correlation ef-
fects alone are long ranged (the infinitely better screening
is compensated for by the infinitely more polarizable
medium). Strinati, Mattausch, and Hanke' indeed have
found the resulting total interaction to have negligible
nonlocality, and have suggested that some local theory
should be adequate. The present approach realizes such a
theory. Instead of an impuritylike viewpoint, the result-
ing picture is one in which, as long as the excitation is
bandlike, the electronic system is rearranged from its
ground state in a manner which is describable in a local-
density approximation.
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D. Refinements in the QPLDA

Like Hedin and Lundqvist in the metallic case, we
have not calculated a self-consistent G for the homogene-
ous system to use in the GW expression for ~1,. In Fig.
11 we show the result of determining the homogeneous
QP spectrum from ~~, that is, the first step in determin-
ing G self-consistently. The results are shown both in
eluding the nonlocality (denoted QPNL),

ek Ek+ A(k, e——k ),
and within the QPLDA,

&k =Ek+ ~LD(&k ),

(6.4)

(6.5)

where Ek is given by Eq. (3.3) and parameters appropriate
to Si were chosen for illustration. As noted above, the
QPLDA widens the gap (by about 0.3 eV in this case).

In an exact theory the full nonlocality of Eq. (6.4)
should be taken into account. Figure 11 shows that the
QPNL gap is decreased by about 15%%uo, and states with
0.93 & k/kF &1.15 are pulled nearer the gap while states
outside this range are repelled from the gap. As these
changes tend to cancel in the integrals for M~, we expect
that the self-consistent QPNL spectrum will not differ
significantly from the first iteration, shown in Fig. 11.

The other type of refinement would be to derive, or cal-
culate, a better dielectric function. Although other
models have been derived, for example, by Milchev, we
know of none which are superior to the ad hoc model of
Levine and Louie. ' Using a numerical dielectric function
requires a three-dimensional numerical integration (as op-
posed to the two-dimensional integration we have imple-
mented), and therefore severely increases the computation-
al effort, although this approach may not be beyond ques-
tion.

The dielectric function can also be improved by includ-
ing the "local-field, " or exchange-correlation, correction
to screening, corresponding to the use of an electron, rath-
er than a test charge, dielectric function. Strinati, Mat-
tausch, and Hanke have found small but significant
corrections to their gap from the "local field. " Within the

FIG. 11. Unrenormalized spectrum for the model homogene-
ous insulator (solid line) and the resulting spectrum for both the
nonlocal (QPNL, dashed line) and local (QPLDA, short-
dashed —long-dashed line) theories.

QPLDA approach these corrections are included with
considerable sophistication in the ground-state bands, and
as a result we expect these "local-field" exchange-
correlation corrections to be even less than the factor of 4
smaller which would be expected from the overall magni-
tude of band shifts in the two approaches.¹teadded in proof. P. A. Sterne (private communica-
tion) has found that the I 2 state in silicon is lowered by
-0.2 eV when 300 plane waves are used in the local-
density calculation, while all other states are almost unaf-
fected. As a result of this change the QPLDA overesti-
mates the I 25

—+I 2 transition by -0.2 eV. This result
supersedes the perfect agreement with experiment for this
transition which would be inferred from Fig. 5 and Ref.
17.
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