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The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in de-
tail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic
stability. Only those solutions for which the amide I energy is concentrated near a single molecule
were found to be stable. Exciton modes were found to be unstable to decay into solitons.

I. INTRODUCTION

When crystalline acetanilide (CH;COHNC¢H;), or
ACN, is cooled below room temperature, a new amide I
band (essentially CO stretching) appears in both Raman
and infrared-absorption measurements with a red shift
from the main peak of about 15 cm~!.2 It has recently
been suggested that this new peak may be assigned to a
self-trapping of amide I vibrational energy in a manner
similar to that proposed by Davydov for a-helix in pro-
tein.> In the preceding paper* spectroscopic evidence is
presented that precludes an assignment of the new band
to: (i) a conventional amide I mode, (ii) crystal defect
states, (iii) Fermi resonance, or (iv) frozen kinetics be-
tween two different subsystems. This conclusion is sup-
ported by detailed measurements of the crystal structure
and specific heat as a function of temperature. Here, we
assume that the self-trapping assignment is correct and
discuss the theory in detail.

The self-trapping mechanism described here arises from
an energetic interaction between amide I quanta and low-
frequency phonons. Through this interaction, an amide I
quantum causes shifts in the average positions of the
ground states of the low-frequency vibrations. These
shifts, in turn, act as a potential well to trap the amide I
energy and prevent its dispersion by dipole-dipole interac-
tions.

Self-trapping is not a new idea. It was introduced a
half century ago in a note by Landau on the motion of an
electron in a crystal lattice.” He suggested that an effect
of the electron would be to polarize the crystal which, in
turn, would lower its energy. Landau’s suggestion was
discussed in detail by Pekar® (who seems to have coined
the term “polaron” for the localized electron plus lattice
distortion), by Frohlich,” and by Holstein.? Since 1970
the polaron has been studied by a number of authors.’ In
1973 Davydov and Kislukha introduced the idea’ that
molecular vibrational quanta can be self-trapped by acous-
tic phonons,!® and Davydov suggested that this effect
could be important in bioenergetics.!!

What should these self-trapped states be called? Here,
we use the term soliton to denote all self-trapped states
(including the polaron) and many other localized, non-
linear states.'?

The theory developed here follows closely the work of
Davydov,* but we find that for reliable quantitative re-

30

sults it is necessary to account for the crystal structure
and this introduces some novel aspects into the soliton
theory. Our analytical and numerical methods are
described in detail because they may be helpful in the in-
- vestigation of similar effects in other crystals.

The basic quantum formulation of the problem is out-
lined in Sec. II and an exciton theory which accounts for
the conventional ir and Raman bands is presented in Sec.
III. In Sec. IV we determine the stationary (i.e., not mov-
ing) self-trapped states and discuss their dynamic stability.
A dynamic calculation that suggests a tendency for exci-
ton states to decay into solitons is presented in Sec. V.
The appendices record details of our numerical codes and
the crystal structure of ACN.

II. BASIC THEORY

The basic idea of Davydov’s soliton theory is that
amide I vibrational energy becomes self-trapped through

interaction with low-frequency phonons.® Thus, the
Hamiltonian operator is written
AB=8+8+H, . @.1)

Here, A 1 is the energy operator for amide I vibrations in-
cluding dipole-dipole interactions, thus

H=73 |EoB B

n,a

+ X V(n,a{n',a')[ﬁﬁaﬁnra:+§lra/§na] ,

n',a'
(2.2)

where (see Fig. 1 and Appendix C) n is an index that
counts unit cells in the b (or hydrogen-bonded) direction
of the crystal and a(=1,2,3, or 4) specifies a particular
molecule within one-half of the unit cell. In (2.2), E, is
the energy of an amide I vibrational quantum excluding
dipole-dipole interactions, and B :T,a(ﬁ,,a) is the corre-
sponding boson creation (annihilation) operator.!* (In in-
terpreting Fig. 1, the reader may find it helpful to study
the stereogram in Fig. 2.) The dipole-dipole—interaction
energies are calculated from standard electromagnetic
theory as
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FIG. 1. Double hydrogen-bonded chain in ACN. In (2.2) the index n counts unit cells in the b direction. The index a(=1,2,3,4)

specifies a particular molecule within the unit cell.

Vina|n',a')= €€ —3(1-€; (T € )]

D2
—[€
417'K60R3[ J
=V ' (2.3)

where €; is a unit vector in the direction of the transition
dipole moment of molecule (n,a) and & is the corre-
sponding vector for molecule (n',a’). Also 1 is a unit
vector in the direction joining the two dipoles, R is the
dlstance between dipoles, and D (=0.24 D or 8.0x 10~
Cm'*) is the transition dipole moment. From Ref. 15 this
dipole is centered at a point 0.4 A from O in the O—N
direction, and from Refs. 16 and 17 it is oriented in the
N—C=0 plane about 20° from C=0 toward the N—C
direction. The intermolecular relative dielectric constant,
K, is assumed to be equal for all the interaction energies
considered.

The low-frequency phonons are assumed to be a collec-
tion of R intramolecular and optical-mode vibrations
which are described by coordinates g,,; (j=1,...R).
Neglecting contributions to optical-mode energy from in-
teractions between unit cells, we write

fﬁ—:z:z

.l A2 A2
Pnaj"" 2 I/qun,aj
na j=1

(2.4)

The interaction Hamiltonian takes into account that the
site energy E; depends on local distortion in the phonon
field g,q;. Expanding E; to first order in q,,‘a] yields
E;=Ey+X;qpn,j wWhere X ,_aE /9Gpqj- Thus the interac-
txon Hamiltonian is

A A /\1. A
H;= 2 XanajBnaBna .

na,j

(2.5)

ACETANILIDE

Following Davydov® we write the wave function for A

as
)= ang(t)exp(@)B 1, 0) , (2.6)
ma
where
6=—(i/#) 3, [9naj(DBnaj—Pnajnas] @7
na,j
and
|0y =|L,0)|1,0), 2.8)

where | 1,0) is the ground state of A 7 and | ,0) is the
ground state of A, ;. From the normalization condition on

K28

S lanal’=1. 2.9)
na
Also
exp(8 ey €Xp(8) =Gnaj +qnaj (D) » (2.102)
exp(8 N)Pray €xp(8) =Praj+Pnaj(t) , (2.10b)
thus
(V| Gnaj | ¥) =0na;(?) (2.11a)
(¢|ﬁnaj[¢)=Pnaj(t) .- (2.11b)

The equations of motion are obtained by applying vari-
ation methods to (¢ | H | ¢¥):

i#id, =diagl(Eo+E;+ 3 Xjguy)), - - - 13,
<

1. - s
+';[Man+J_Yan+l+NTan—1] ’ 2.12)

FIG. 2. Stereoscopic projection which may help the reader appreciate the structure of Fig. 1.
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1 .. X;
;f—qnaj +Gnaj = _ ?j]— | [ ' 2 » (2.13)
where
@, =col(a,1,82,a3,dn4) (2.14)
and
’ WJ %) Wi 2
= 2 i+ =" 4naj 2.15
ES n%j 2@; q naj + 2 qnaj ( )

The 4X4 matrix M represents the dipole-dipole interac-
tions within one unit cell of the four molecules labeled n
in Fig. 1. The 4x4 matrix N (N7T) represents dipole-
dipole interactions between the four molecules labeled n
and those labeled n + 1 (n —1) in Fig. 1. The matrix ele-
ments are calculated from (2.3); thus

0  —3.9604 —3.5522 1.1287
—3.9604 O  —0.1647 —3.5522 '
M= 35500 —01647 ©0  —3.9604| (210
1.1287 —3.5522 —3.9604 0
and
—0.5490 —0.1830 0.4394  0.1466
—3.9604 —0.5490 0.6810 0.4394
N=1 03445 0.0705 —0.5490 —0.1830 (2.17)
1.7966  0.3445 —3.9604 —0.5490

in units of cm~!. Our primary purpose in this paper is to
study (2.12) and (2.13). -

III. EXCITON THEORY

As shown in Fig. 3, the ir-absorption spectrum of ACN
in the amide I region exhibits four peaks which have been
assigned as follows.*

Frequency
{em™1) Assignment Symmetry
1666 exciton (B,y) y
1662 exciton (Bj,) x
1659 exciton (By,) z
1650 soliton ?
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FIG. 3. Infrared-absorption spectrum of polycrystalline

ACN at a resolution of 0.5 cm~!. (Courtesy of E. Gratton; see
Ref. 4 for experimental details.)

The B,, mode has the property that y components of the
amide I vibrations are in phase; thus it has the symmetry
of a vector in the y direction. Modes B, and B, bear a
similar relationship to vectors in the x and z directions,
respectively.'® _ )

Since the exciton states are uniform over many unit
cells of the crystal (k=0), the normalization condition
(2.9) requires that | @, |2<<1. This, in turn, implies that
the source term —(X;/W;) | ayq | % on the right-hand side
of (2.13) can be neglected. Thus (2.12) is decoupled from
(2.13) and reduces to the linear Schrédinger equation

i, =By + (M, + Nap 1+ NTEu ) . G.D)

For k=0, 4d,=4,,;=3a,_;. With the substitution

@, = exp[ — (i /#ANEy+E)], (3.2
(3.1) takes the form
(M+N+NT—IkE)$ =0, (3.3)

which has the following eigenvalues and eigenvectors:

kE,=—10.2115, $,=col(0.8922,1.0000,1.0000,0.8922) ,
kE,=—8.4056, $,=col(1.0000,0.7939, —0.7939, —1.0000) ,
kE3=2.5509, ¢;=col(—0.7939,1.0000, — 1.0000,0.7939) ,
kE4=11.6742, $,=col(1.0000,—0.8922, —0.8922,1.0000) .

From Fig. 1 it is seen that_g?z has the B,, symmetry of
the 1666-cm!~ line. Also ¢4, which lies at an energy
1666 + 20.1/k, has the Raman-active (A4,) symmetry of
the high-frequency lines in Fig. 13 of Ref. 4.

IV. SOLITON THEORY

We now consider the details of a soliton assignment for
the 1650-cm ™! peak in the ir-absorption data of Fig. 3.
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A. Nonlinear equations

We confine our attention to stationary solitons for
which ¢,,;=0. Thus from (2.13),

X
Qnaj = — “u% Iana l 2 “@.1)
J

and (2.12) takes the form
ihan =dlag[(E0+Es""7’ ‘ an1 ! 2) e ]Hn

+Loga, e va v, @2
where
Es = 2 L ' Qpa I 4 (4.3a)
n,a 2
and
X;
v=2 5 (4.3b)
j J
With the substitution
@, =6, exp[ — (i /#NEo+E;+E)], (4.4)

(4.2) becomes
M, +N&, 1+ NT$, 1 —diag[k(E +7 | ¢n1|?), ... 18n

=0. @5

Since the 1666-cm ™! peak on Fig. 3 has energy Eo+E,
and the 1650-cm ™! peak has energy E+ E, +E, the bind-
ing energy with respect to Eq+E, is

AE=E,— 32’— S ¢t.—E . (4.6)
n,a .

Details of the soiution procedure for (4.5) are presented in
Appendix A, but the basic idea proceeds as follows. First
we normalize ¢, as

$n=(K?’)_l/2;ﬁ-n ’ 4.7)
so (4.5) reduces to
M;/;n +N@n+1+1—vmn——l“diag[(f+ t 1pnl l 2): e ]J’n
=0, (4.8)

where E=«E. Next we find localized solutions of (4.8)
which consist of the set {¢,] and its nonlinear eigenvalue
E. From the normalization condition (2.9),

ky=23 Yaa- (4.9)
n,a ! N
Finally, we determine x AE from (4.6) as

1
k AE =kE,— 27 S Yha—kE . (4.10)
As described in Appendix A, (4.8) is solved using a
Newton iteration, working at fixed E. The success of this
method depends on finding a good initial approximation
99 to the solution ¥,. Once a solution is obtained for a
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particular value of E, other solutions on the same branch
for different values of E can be found by continuation
methods.!® Other solutions on different branches can be
generated by switching branches at a bifurcation point, or
by an alternative choice of ¥\,

There are two regions where the choice of ¥’ is partic-
ularly simple. One is the linear regime, y =0, where the
E and 9, are given (as in Sec. III) by the solution of a
linear eigenvalue problem. The other region is for asymp-
totically large negative values of E, when the off-diagonal
elements in (4.8) play a small role in the solution. In this
case, we can effectively excite a fixed number of atomic"
sites by weighted & functions which give a good approxi-
mation to the final solution. Once solutions on one of
these two regions are known, the arclength continuation
method enables solution branches to be followed into re-
gions with intermediate values of E and ky.

There are many solutions of (4.8). The linear problem
has up to 100 independent eigenvalues and eigenvectors,
and many more solutions are generated as the nonlinearity
is increased. Some of these multiplicities correspond to
degeneracies related to invariance under translation (in the
approximation that boundary effects can be neglected),
but there are other solutions of interest. In our numerical
investigations, we have concentrated on solutions which
are initially localized in one unit cell. The physical
relevance and stability of these and other solutions are dis-
cussed in Sec. IVC: In the following section the discus-
sion is purely concerned with numerical evidence for ex-
istence of solutions.

B. Stationary solutions

Since we are considering solutions localized within one
unit cell, and there are four sites within our idealized unit
cell, we can attempt to create solutions where one, two,
three, or four sites in the cell are excited. For large
y(=40), solutions of all four types were found. Starting
from these four solutions, we generated solution curves in
these four cases. The results are summarized in Fig. 4,
where any point on a curve denotes a distinct solution
with the appropriate value of ¥ and AE. The solutions

()

(’I.

o0 & e W

1 T T T T

o] 20 40 60 80 1(;0
Ky
FIG. 4. Binding energy (with respect to the ir-active exciton)
of several stationary solutions of (4.2). The relative dielectric
constant (k) is assumed to be the same for all dipole-dipole in-
teractions. Only those solutions along the solid line were found
to be dynamically stable.




correspondmg to the points (a)—(1) are graphed in Figs.
5-8.

The simplest choice for 99 is to make 111;0’_0 at all
s1tes, except for the atomic site (i,a), where we set
1/1, 0)—¢. The choice of ¢ will be discussed later. These in-
itial conditions correspond physically to exciting a single
molecule in the crystal. In all cases considered, we took a
crystal of 25 unit cells (100 atomic sites). With i=13,
a=1 (site no. 1 in the central unit cell), E = —40, ¢=6.3,
the Newton iteration converged to the solution shown in
(a) of Fig. 5.

Symmetry considerations show an identical solution if
a=1 is replaced by a=4, and this is confirmed by the nu-
merical results. Very similar solutions are obtained if
a=2 or 3, but there is a slight energy shift (0.007) due to
the fact that the two sites have slightly different crystal
environments.

As v decreases, this solution becomes less localized un-
til at (b) (Fig. 5) it extends over several unit cells. The
solution curve then turns around and develops into a
curve with a solution having two adjacent sites excited, as
shown in (c) (Fig.5 ).

Since we are interested in ir-active solutions, another
choice of E;O) is to take this initial solution to be nonzero
on two sites in the unit cell, with opposite sign. Taking
¢(1%)1— — (10)4—4 5, E=—20 (other parameters un-
changed) glves after the iteration has converged the solu-
tion shown in (d) of Fig. 6.

A sxmllar solution is obtained if we take (1%) 2
= ——1,1/13 3=6, but now there is an energy shift of 0.290.
Following solution (d) (Fig. 6) as a function of y gives the
solution (e) (Fig. 6) for small 7, and another branch with a
typical solution shown at (f) (Fig. 6).

Exciting three atomic sites in the unit cell gives the
solution shown in (g) of Fig. 7. Other solutions shown on
this curve are shown in (h) and (i) (Fig. 7).

The final possible choice is to excite each atom in the
middle unit cell in an ir-active mode, by taking

©) __ (0 0) ©
P =93= 90 s=—934=3

The resulting solution, with E=—14, is shown in (j) of

#7=100.399 Ky= 14.887 Ky=102.165
KOE=422772  kAE= 21484 kAE=216913
1
@ ® ©
0.5
3
c
Ay 04
-0.5

-1

T T T T T T T T T T T T T T L LS LI
1011 121314 151610 11 12 13 44 15 16 10 1 12 13 14 15 16
cell number
FIG. 5. Soliton structure at points (a), (b), and (c) of Fig. 4.
The symbols 00, +, X and O correspond to a=1, 2, 3, and 4,
respectively, in Fig. 1.
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Ky=100.663  Ky= 27.390 Ky= 99.581
KAE=18.3854  KAE= 12978 kAE= 9.4606
1
@ O ®
0.5
g
<
S 04
—0.5

T T T T 1 T T T T T T T L 1 T T 1
1011 121314 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16
cell number

FIG. 6. Soliton structure at points (d), (¢), and (f) of Fig. 4.

Fig. 8. Other solutions on this curve are shown in (k) and
(1 (Fig. 8).

The linear forms of the curves shown in Fig. 4 away
from the turning points can be explained by asymptotic
arguments in a natural way. Assume the values of £ and
¥, in (4.8) are such that the off-diagonal elements play no
important part. Assume further that all the components
of 14, are zero except for small number (m in all) com-
ponents, which are all taken to be equal in value in order
for E to be constant over these sites. Then the equations
which describe the nonzero elements take the form

(E+ | ¥na| Mna=0, (4.11)
SO
Yna=(—E)"%. 4.12)
Hence,
ky=3 P*=— 4.13)
e

and for a fixed value of ¥, the nonzero components of ¥,
are

Ky= 97.712 Ky= 45.066 Ky=100.661
KAE= 9.7312 xKAE= 1.8664 xKAE= 8.5181
1
©) kG 0)
0.5
51
fed
S o
_0_5 -

T T T T T T T T T 1T 7T T T T T T T
10 11 1213 14 15 16 10 11 12 13 14 15 16 10 11 12 13 14 15 16
cell number

FIG. 7. Soliton structure at points (g), (h), and (i) of Fig. 4.
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Kky=102.250 Ky= 60.419 ©y=100.018
KAE= 6.6865 KAE= 2.3778 KAE= 54834
1
® ® 0]
0.5
g
Lo
€ o
—-0.5
-1

LA T T T T T 0 U ] T T T 1 T T T
10 11121314 1516 10 11 12 13 14 15 16 10 11 12 13 14 15 16
cell number

FIG. 8. Soliton structure at points (j), (k), and (1) of Fig. 4.

Yna=(ky/m)'"? 4.14)

which gives the value of the constant ¢ discussed above.
Putting these relations into (4.10) gives
AE =E,+-1— . (4.15)

2m
This result is in good agreement with the linear parts of
the curves in Fig. 4. In particular, solution curves with
only one site excited have slope 5 on the graph [ie,

(b)—(a) (Fig. 4)], curves with two sites excited have slope
+ [i.e., (0)—(c) and (d)—(e) (Fig. 4)], etc.

C. Dynamic stability

It is interesting to investigate the dynamic stability of
the stationary soliton states found in the preceding subsec-
tion. In order to do so we have used these solutions as ini-
tial conditions for a numerical integration of the equa-
tions of motion for amide I energy with full dynamics re-
tained. Details of the numerical code are given in Appen-
dix B; here, we note that the equations of motion are

da j

1

: 2
i——=—|a;|%a;+—
AN Y

ar (4.16)

Vikar
#J)
where j and k are running from 1 to N (number or pep-
tide groups) and T measures time in units of #/y. Equa-
tion (4.16) is slightly more general than (4.2), because it
takes dipole-dipole interactions between all peptide groups
into account—not only between nearest neighbors of the
unit cell as in (4.2). The dipole-dipole interaction between
peptide group j and k is given by the matrix element V.
The nearest-neighbor interaction equations (4.2) are there-
fore a subset of (4.16), and the additional dipole-
interaction terms can be viewed as a small perturbation
against which stability can be tested. On the other hand,
we can solve (4.2) by adjusting the matrix elements ¥V to
only include nearest-neighbor interactions.
We have tested the various stationary solutions found in
Sec. IV B both with and without perturbations induced by
the dipole interaction beyond nearest neighbor. Our find-
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ings can be summarized as follows. Most of the solutions
are unstable to small perturbations and decay into the
solution type shown in (a) of Fig. 5. A typical example is
shown in Fig. 9—where the solution type shown in (f) of
Fig. 6 is seen to decay into one which is focused on only
one site [(a) of Fig. 5]—in addition small amplitude “radi-
ation” is observed. A direct test of the stability of the
solution focused only.on one site [(a) of Fig. 5] showed
that this state is stable for at least 1000 time units ( ~300
ps). The solution shown in (d) of Fig. 6 is the only one
which is also stable for a similar amount of time—but
when perturbed it decays very slowly into the solution of
(a) in Fig. 5. It thus seems that only solutions where the
energy is focused essentially on one peptide group in the
unit cell [(a) of Fig. 5] are physically stable. This is con-
sistent with the fact that the binding energy .(AE) is larg-
est for this type of solution (see Fig. 4). '

D. Structure of the soliton

We now return to the fundamental motivation of this
work: an assignment for the peak at 1650 cm~! in Fig. 3.
For the spectrum of stationary solutions of (4.2) that is
displayed in Fig. 4, only those lying along the solid line
were found to be dynamically stable. All solutions indi-
cated by dashed lines are either unstable or have small
basins of attraction, but the time constants for these insta-
bilities vary widely. [For example, the decay shown in
Fig. 9 takes place in about 20 ps, while decay of the solu-
tion shown in (d) of Fig. 6 requires about 200 ps.] Thus
only the solid-line solutions are candidates for physical in-
terpretation as the 1650-cm ™! peak in Fig. 3.

Our next problem is to determine an appropriate value
for the relative dielectric constant (k). In general, this is a
difficult question because one is interested in the effective
value of k on the intermolecular distance scale which
should lie somewhere between unity and the optical value
of 2.62.2° In Fig. 10 we display the structures of two
stable soliton solutions that are chosen to have a binding
energy (AE) of 15 cm™!. The first solution is for k=2.62
and the second for k=1. Since the difference between
these two solutions is small, our ignorance of the true ef-
fective value of « is unimportant.

Chain 2

N g Chain 1
@ p o
FIG. 9. Dynamic instability of the solution shown in (f) of
Fig. 6. The parameters were k=2.51 and ¥ =30.42. The time
evolution is shown for approximately 60 ps.
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= 36.025 y= 44,682
AE=15.0000 AE=15.0000
K= 262 £ = 100
1 i
0] @

0.75 1

0.50 1

¢I’\,O(

0.25

-0.25

8 9101 1213141516 17 18 8 910 11121514 1516 17 18
. cell number
FIG. 10. Detailed structures of the dynamically stable solu-
tions of (4.2) with AE=15 cm~! and k=1 (vacuum) and 2.62
(optical).

From Fig. 10 we see that the probability of finding a
‘quantum of amide I vibrational energy is essentially local-
ized on a single molecule. As discussed in Ref. 4, the
magnitudes of the amide I transition dipole moments in
the three crystal directions (a, b, and c) are 0.303, 0.934,
and 0.191, respectively. Thus we expect the intensity of
the 1650-cm~! line to vary correspondingly as the in-
cident wave polarization is changed.

V. DYNAMIC INSTABILITY OF EXCITONS

The relevance of the self-trapped states described in the
preceding sections can also be appreciated by studying the
dynamics of (4.16) with various initial conditions. We
have found that initial conditions representing extended
states self-organize into localized states when the full
dynamics of (4.16) is taken into account. The nature of
these localized states resembles the stable stationary states
described in Sec. IV, but are in general more complex.
They are not exact stationary states, but time dependent
with oscillatory behavior.

In Fig. 11 we show an example of such a self-focusing
phenomena. The initial condition, representing one quan-
tum of amide I energy, is uniformly distributed over 25
unit cells and can thus also be viewed as a exciton with
probability amplitude equal to 0.1. The energy is seen to
focus. into two solitonlike states which, although oscillat-
ing, resemble the stable stationary state [(a) of Fig. 5]
found in Sec. IV. Where the energy is low on one chain it
is found to be high on the other.

To understand the mechanism behind focusing into
self-trapped states it is instructive to look at a simplified
version of (4.16). If we only consider nearest-neighbor in-
teraction along one chain of the ACN system and further
replace the integer variable j with a continuous spatial
variable xb (b being the lattice constant), (4.16) reduces to
the nonlinear Schrédinger equation '

ia,+Tay+|a|%a=0, (5.1
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Gr%z‘::q DA «<*  Chain 1
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FIG. 11. Self-focusing or modulational instability of a uni-
formly distributed excitation (an exciton) representing one quan-
tum of amide I vibrational energy. Two self-trapped states
[resembling that of (a) in Fig. 5] are formed. The parameters
were k=2.51 and y=18.31. The time evolution is shown for
approximately 220 ps.

where I'=J/y (J being the nearest-neighbor dipole-
dipole—interaction matrix element). It is well known
from plasma physics and fluid mechanics that this equa-
tion describes modulational (or Benjamin-Feir) instability.
This means that a monochromatic wave train is unstable
to modulations; the modulations will grow with time.

An argument due to Stuart and DiPrima?! shows this
phenomena in a simple manner. We will look for solu-
tions of the form:
ilag |27

a(x,7)=[14b(x,7)]age (5.2)

This is a spatial rglodulation, b(x,7), of the x-independent
ilag|*r

solution age . Inserting (5.2) into (5.1) we obtain to

first order in b,
ib,+Thy+ |ag | Xb*+b)=0. (5.3)

This equation is linear in b and we seek a solution of the
form

. i *
b(x’,r)=blet(kx+wT)+b2e—x(kx+w ™)

Inserting in (5.3) we find that the following relation must
hold:

0*=TkXTk*—-2|ay|?) . (5.4)

When Im (0)s£0 the waves described by b (x,7) are unsta-
ble and will grow in time. This happens when
Tk2<2|ag|% The critical wavelength is thus

Ac,=;”—(2r)'/2 ) (5.5)
0

For the solution shown in Fig. 11, we have y=18.31,
J=1.58, and ag=0.1 which yields A =13. The wave-
length found from Fig. 11 when the instability starts to
grow (¢#=300) is A.,=11—12 in fair agreement with (5.5).
At later times we enter a true nonlinear regime and the as-
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sumptions leading to (5.3) break down. The qualitative
aspects of the self-focusing mechanism are, however, still
reasonably well described by (5.1) and we conclude that an
exciton is unstable towards formation of self-trapped
states.

VI. CONCLUSIONS

From the above discussion we draw the following con-
clusions.

(i) Although there are many stationary solutions that
describe self-trapping in crystalline ACN, only those for
which the amide I vibrational energy is localized on a sin-
gle molecule were found to be dynamically stable.

(ii) The intensity of the 1650-cm~! line in an ir-
absorption measurement should stand in the ratios
0.303:0.934:0.191 as the incident beam polarization is
oriented in the a, b, and c directions of the crystal.

(iii) Our dynamical studies indicate that an exciton
mode is unstable to decay into a self-trapped solution.
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Whether this decay mechanism is sufficiently strong to
compete with other modes of exciton decay is uncertain.
In addition to these specific conclusions, we feel that
the analytical and numerical methods should be useful in
the study of other materials that exhibit self-trapping of

molecular vibrational energy, for example, para-
chloroacetanilide.*
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APPENDIX A: NUMERICAL METHODS FOR THE STEADY-STATE EQUATIONS

The equation to be solved is (4.5):

M3, +No, 1+ NG, —diag[(E+7|$n1]%), .., (E+T | $na| D=0, n=123,... 1.

Here, n, is the number of unit cells in the crystal, M and
N are 4X4 matrices, ¢, is a 4-vector, and E=«E and
Y=ky are scalars. Since we are interested in localized
solutions, we choose boundary conditions to force the
solution close to zero at the ends of the crystal:

$O=$nc+1=v6 .

In all the numerical simulations, n, was taken to be 25.
The elements of matrices N and M are given in Sec. II.
In (Ala), as elsewhere in this paper, the subscript T
denotes matrix transposition.

If we introduce the 4n, vector

$=[${7${’ BRI ar{;]T’

the 4n, X 4n, block-tridiagonal matrix A, and the diago-
nal matrix D (®):

(A1b)

1

M Af o “ e _Q
NT M N :
_Aj_= : I_VT M 1_V H
0 NT M
|¢"1|2 0
[¢1,11%  :
-.Q= : ’
0 0 '¢nc,4'2

(Ala)

I

then (A1) can be written as

ADP—E®—7D(®)®=0. (A2)

For fixed 7, Eq. (A2) is a nonlinear eigenvalue equation
for the eigenvalue E and the eigenvector ®. Since A4 is
symmetric, the solutions are all real, subject to an arbi-
trary constant phase change ®—®e’d. In the case when
7=0 (see Sec. III), (A2) reduces to a linear eigenvalue
problem for (E,®) which can be solved by standard
methods. Although our choice of boundary conditions
(Ala) is slightly different from the periodic conditions for
exciton solutions, the lowest linear eigenvalues of (A2)
agree to a good approximation to those of (3.3).

If 7 is nonzero, it is possible to transform (A2) by the
scaling ¥=% /2® to give

AVY—EV—D(¥)¥=0. (A3)

In this form we can fix E and solve (A3) as a set of non-
linear simultaneous equations. Before considering this
method of solution, we discuss briefly one method of solv-
ing the nonlinear eigenvalue problem (A2), the inverse
power method.?

In this approach, the first step is to choose an initial
guess E @, ®© to the solution, with ®® normalized ac-
cording to (2.9), i.e, ||®'?||*=1. Then solve the linear set
of equations

Aq,(p+1)_E'(p)q)(p+1)_7D(¢,(p))q,(p+l)=0, (A4)
where p=0, for the unknown vector ®?+1), The next ap-
proximation to E is then

E"(p+1)=’E'(p)+(q>(p+1),q)(p))—l , (A5)



where the inner product (u,v) is the usual scalar or dot
product (u,v)=3u;v;. The (p+ D)th approximation
-®P+1 g then normalized to length unity before repeating
the iteration beginning at (A4).

In practice, the inverse power method was found to
converge quickly to some of the solutions found. Howev-
er, in many cases the iteration converged slowly or not at
all, unless the initial guess was very close to the desired
solution. These convergence problems are due to the pres-
ence of close nearby eigenvalues and eigenvectors. In view
of these problems, the use of this method cannot be
recommended, except perhaps for the linear problem
(¥=0), when the alternative methods described below
break down.

When solving the nonlinear system (A3) for fixed E,
there are several possible methods. One approach, used by
Scott and MacNeil?® for a simpler discrete nonlinear
Schrodinger problem, is to solve (A3) by a shooting
method. Since this method proved inappropriate for our
particular problem, we shall not go into detail here. Due
to the weak coupling between some of the atomic sites in
the problem, a number of large but spurious eigenvalues
appear which make an accurate calculation by this
method extremely difficult. Another complication in this
approach is the lack of reflection symmetry.

A more useful technique to solve (A3) for fixed E is the
standard Newton-Raphson iteration for a system of

simultaneous nonlinear equations:
ye+_yo_go-1pgP) p=01,..., (A6)

where

F(W)=AY—EV—_D (V)W
and J® is the Jacobian matrix
AF, (™)

v,

(n)
Ji,j =

Here the indices (i,j) range from (1,1) to (4,n.) over each
atomic site. The matrix J has the same simple block-
tridiagonal structure as F, and hence (A6) can easily be

solvc(ed) as a set of simultaneous equations for W*+1
\l/ n

J(n)(\l,(n+1)_\I;(n))=F(\y(n)) . (A7)

In practice it was found that the iteration converged very
quickly except near singular points (J™ singular).

Once we have a particular solution W for a given value
of E, solutions for nearby values of E can be found using
continuation methods.!”” In its simplest form this tech-
nique uses a Euler predictor as a starting point for the
Newton - iteration.  Differentiating F(V,E)=0 with
respect to E gives

JF

J(¥, E)—+——O (A8)
oE

Since 3F /OE = — ¥, this gives a simple (block-tridiagonal)
set of equations for the vector 3¥/0E. Then the first ap-
proximation to ¥ at E + AE is given by
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ov

\P(O’(E+AE)—\P(E)+AE—E)E . (A9)

This approximation to W(E +AE) is then used in the

- iteration (A6) in the usual way.

In regions where J is singular or near singular, the
iteration breaks down and more sophisticated continua-
tion techniques must be used. If we parametrize the solu-
tion curves by an arclength or pseudo arclength s, this
singularity can be caused by a turning point at whlch
9E /3s=0 (a simple limit point) or at bifurcation points. '

The continuation methods introduced by Kubicek, and
Decker et al.’® can enable limit points to be treated, and
Decker et al. have also described methods for “shooting”
from bifurcation points, which enables different branches
originating from a bifurcation point to be followed. Full
details are given in the references and will not be
described here.

All the numerical codes were written in FORTRAN for a
Cray-1 computer using the banded matrix routines in LIN-
PACK. A more efficient variation would have been to use
the block-tridiagonal equation-solver package due to
Hindmarsh,?* but these routines were not implemented at
Los Alamos at the start of this study.

APPENDIX B: DYNAMICAL CODE

We have constructed a computer code GLOP (Ref. 25)
to follow amide I energy in systems with arbitrary (ran-
dom) geometry. The Hamiltonian for amide I energy in
such a system with random dipole-dipole interactions is

Vi 5

H,_zEOB*B+ }‘, >

j (5£k)

J+H c), (BD

where B ; and. ﬁj are boson creation and annihilation
operators for amide I excitation on the jth peptide group
as described in the main text. The quantity Vj is the
dipole-dipole—interaction energy between groups j and k
[see Eq. (2.3)]. A similar approach presented in Sec. II,
yields the following equation of motion for amide I ener-
gy coupled to low-frequency phonons:

v1@ '+ X Vadi.  (B2)
k (5))

., 4a; -
il =(Eo+E,)a;—

Here, the symbols have the same meaning as in Sec. II.

Introducing a;(¢t)=a;(t)e —HEo B/ together with the
scaled time variable T=vt/#i, we obtain

da;
i—L = la;|%a; +——— Vikag . (B3)
dr % Y ké}) :

The code GLOP solves (B3) with any given initial condi-
tion after the dipole-dipole interactions have been calcu-
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FIG. 12. Unit cell of ACN from atomic coordinates given ir
Ref. 20; a=19. 640A b= 9483A and c= 7979A

lated for the structure of interest, the atomic coordinates

for this structure being the initial input. The equations of

motion are integrated wusing a versatile leap- frog
26

predictor-corrector method.”® The accuracy of the in-

tegration is monitored at each time step via the conserved

J. C. EILBECK, P. S. LOMDAHL, AND A. C. SCOTT ) 30

quantity: j |a; | 2=constant. The code is fully vector-
ized for a Cray-1 computer and is very efficient.

APPENDIX C: CRYSTAL STRUCTURE OF ACN

From the atomic coordinates in Ref. 20, the structure
of a unit cell of ACN is drawn in Fig, 12. The space
group is D} (Py.,) and the unit cell or factor group is
D,;,.'"® There are eight molecules in a unit cell and at the
amide I frequency each of these has one degree of free-
dom. Thus there are three infrared-active modes (B,
B,,, and Bj,), four Raman-active modes (A4,, B, Bzg,
and Bj;), and one inactive mode (4,). All of these actlve
modes are seen in ir-absorption and Raman experiments.*

At low frequencies (<200 cm~!), ACN exhibits a com-
plex spectrum of lattice vibrations which has been dis-
cussed in Refs. 4 and 27. Each molecule has six degrees

- of freedom (three of translation and three of rotation);

thus there are a total of 48 low-frequency modes. Gerasi-
mov has assigned the 24 Raman-active modes
(6Ag +6B 15+ 6By, +6B3,) at 110 K.’ In addition there
are 18 ir-active modes (6B,,+ 6B,,+6B3,) and six (4,)
modes corresponding to the acoustic modes of translation
and rotation.

*Permanent and present address: Department of Mathematics,
Heriot-Watt University, Riccarton, Edinburgh EH144AS,
United Kingdom.
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