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Recent Monte Carlo simulations suggest that changing the shape of the nearest-neighbor XY interaction
might turn the infinite-order Kosterlitz-Thouless transition into a first-order one. In this Communication,
an alternative explanation for the Monte Carlo data is proposed which is based on the renormalization pat-
tern that results for this model in a Migdal-Kadanoff approximation.

It is well known that the conventional two-dimensional
XY model shows an infinite-order transition from a low-
temperature algebraic phase to a high-temperature paramag-
netic phase. Two types of excitations are important at low
temperatures: spin waves and vortices. The spin waves are
responsible for the algebraic decay of the correlation func-
tions in the low-temperature phase. The transition to the
paramagnetic phase is brought about by the unbinding of
pairs of vortices with opposite vorticity as first noted by
Kosterlitz and Thouless.! This mechanism is confirmed by
a renormalization-group analysis®® of the XY model. The
picture that arises from such an analysis is the following.?*
Under renormalization two things will happen: (i) The in-
teraction shape, which is originally a pure cosine of the
difference in angle of neighboring spins, changes and tends
to become quadratic. (ii) The fugacity Z that controls the
vortex density will start to decrease. The ultimate fate of a
renormalization trajectory is governed by the Gaussian fixed
line where the interaction is purely quadratic:

—BHg=—+3J¢ 3 (Xi—X;)? (1

(¥

and Z =0, i.e., no vortices are present. It turns out? that
the field Z is irrelevant only for J; > 2/m; this means that
only for low temperatures Z will continue to decrease and
the trajectory will end up at the Gaussian fixed line that
~describes the algebraic phase. When the initial coupling is
too small (i.e., temperature too high) the trajectory will be
repelled from the Gaussian fixed line and end up at a high-
temperature fixed point that corresponds to the paramagnet-
ic phase. The separatrix between these two phases is the
trajectory that ends at Jxr=2/m; the marginal eigenvalue
present at this point is responsible for the infinite order of
the Kosterlitz-Thouless (KT) transition.

In all of this the shape of the initial interaction does not
seem to play a prominent role. The reason is that devia-
tions from the quadratic shape are all irrelevant at the
Gaussian fixed line. It is indeed a simple exercise in the
evaluation of Gaussian correlations to check that the critical
index of the eigenoperator that can be constructed from a
perturbation of the potential of the form V,, = (X;— X;)*"
is given by

Yz,,,=2—2m . (2)
One expects therefore that not only the periodic (.e.,

Z =1) model with a purely quadratic interaction (the so-
called Villain’ model) but also the conventional XY model
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with

—BHyy= V(e,—6;) ,
&

3)
V() =J(cos§—1) = —5J6°

is described by the above picture.

It remains, however, an open question whether the same
can be said for interactions with a shape that differs strongly
from (2) or (3), as there might exist besides the Gaussian
fixed line other fixed points in the function space of all pos-
sible interaction shapes. This question has been put again
in the forefront by recent Monte Carlo results of Domany,
Schick, and Swendsen® who study the possibility of generat-
ing a first-order transition in the XY model by a drastic
change in the interaction shape. Their study is partly
motivated by the fact that in the analogous problem of
dislocation-mediated melting first-order transitions are com-
monly seen instead of the predicted KT transition.

Domany et al. consider a nearest-neighbor interaction

V() =2J ([cos?(6/2)172 =1} . )

When P is large, this interaction is only approximately qua-
dratic (with coupling strength JP?) in a small region |6]
< w/P around the origin and exhibits a broad plateau for
|| = #/P. In contrast to the infinite-order KT transition
expected for P =1, the Monte Carlo data for the energy per
spin suggest® a first-order transition for P2=50. In another
Monte Carlo study for the same model van Himbergen’
found that this transition is associated with a sudden in-
crease in the number of vortex pairs in the system. These
Monte Carlo results should, however, be considered with
some caution for the following reason. If the orientations
of the spins in the plane were not continuous but discrete
i.e., 9=l/P, the model would have all the characteristics
of a 2P-state Potts model which is known® to have a first-
order transition for 2P > 4. In this case the change in na-
ture of the transition is brought about by the fact that, in
addition to the interaction shape V and the vortex fugacity
Z mentioned above, a third parameter, namely, the field hp
conjugate to the operator cos(27P#6;) (that tends to discre-
tize the spins) plays an important role in the renormaliza-
tion transformation. It is this field that becomes relevant’
for low temperatures and hence destabilizes the Gaussian
fixed line. Since the XY model (4) is continuous no such
field is present in principle. However, in a Monte Carlo cal-
culation that is carried out for a finite system there is clearly
a minimal difference in angles needed to build vortices.
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The apparent discreteness brought into the problem in this
manner might explain the first-order appearance of the
Monte Carlo data.

In order to shed some light on this question I used the
Migdal-Kadanoff renormalization® to investigate the possi-
bility of new fixed points that could be responsible for the
observed first-order transition. The Migdal-Kadanoff renor-
malization is known? to describe the KT transition relatively
well. It constitutes a renormalization for the interaction
shape only and is therefore well suited for the problem at
hand. The fact that the vortex fugacity Z is not affected by
the transformation has indeed the consequence that the
Gaussian interaction is, strictly speaking, only approximately
a fixed line of the transformation. But this does not consti-
tute a real problem, neither in principle, as we know from
other sources that Z renormalizes towards zero for low tem-
peratures yielding a Gaussian fixed line even in the Migdal-
Kadanoff approximation, nor in practice, as the Gaussian
line is for Z # 0 numerically very stable in this approxima-
tion. The latter fact was recently again confirmed by
Barber!® who investigated the Migdal-Kadanoff renormaliza-
tion for XY models with various initial interaction shapes.
However, he did not explore the part of the function space
with interaction shapes resembling those given by Eq. (4).

Instead of considering the Migdal-Kadanoff renormaliza-
tion directly for the XY model it is more convenient to con-
sider this transformation for the dual of this model which is
a solid-on-solid (SOS) model.>!! (The actual Monte Carlo
calculations of Domany er al.® were, in fact, also performed
for this dual model.) Recall>!! that under duality the low-
temperature algebraic phase of the XY model is mapped
onto a high-temperature algebraic phase (the ‘‘rough”
phase) of the SOS model while the high-temperature para-
magentic phase of the XY model corresponds to the low-
temperature ‘‘flat”’ phase of the SOS model. The periodic
nature of the XY model is reflected by the fact that the sta-
tistical variables in the SOS model tend to take integer
values. The role played by the vortex fugacity Z in the XY
model is taken over by the field /4, conjugate to the operator
cos2wX;. In particular, the XY model with full periodicity
(Z =1) corresponds to h)= o0, i.e., a pure SOS model with

X;=n; and a nearest-neighbor interaction

—BHsos= 2;4)(":"'”/) %)
(i.J
given by
2w X 2w
e¢(n)=J; dee"“’)*""’/ J; doe’® )

In general, both h; and ¢ will change under renormalization
(see, e.g., Ref. 12) resulting in an attraction of the algebraic
rough phase by the Gaussian fixed line (A;=0) when
Je=<mu/2=Jgt.

In the Migdal-Kadanoff renormalization only the renor-
malization of ¢ is taken into account; it reads® %10

e¥ ™= Sexp[2¢(m) +2¢(m—n)] [ Se®™ . (1)

Notice that this transformation applied to the continuous
model (h,=0), where the sum is replaced by an integral,
does not only have the Gaussian line as a fixed line but also
reproduces exactly the indices (2) governing the stability
against a change in shape. The transformation (7) has been
studied for an initial interaction that has the characteristics
of the dual of (4). Using (6) it is seen that the Boltzmann
weights e®™ for this model are unity for n =0, have a large
almost constant plateau for 0 < |n| < P, and have a oscilla-
tory tail for larger values of n. Therefore the initial interac-
tion is taken as

¢(0)=0 ,
¢(n)=-K, 0<|n|l<P , 8)
¢(n)=—oo, |n|l=P .

The renormalization trajectories resulting from (7) are given
in Fig. 1 in a plot of ¢”(1) against ¢’(2) for the case
P =10. The Gaussian axis is represented in this plot by the
line ¢(1)=¢(2)/4. It turns out that the high-temperature
phase of the SOS model (i.e., points with initial values
K < 1.02) streams, approximately along the line ¢(1)
=¢(2), towards the Gaussian line at a much higher tem-
perature (Jg <0.2). A slight decrease in temperature
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FIG. 1. Renormalization trajectories at various values of the initial coupling K. The straight lines with slopes 1 and % represent the
“‘Potts axis’” and the Gaussian axis, respectively. The cross marks the location of the Kosterlitz-Thouless point.



RAPID COMMUNICATIONS

472 H. J. F. KNOPS 30

results, however, in a stream in the opposite direction: all
points with K > 1.08 are attracted by a low-temperature
fixed point. On the face of it this behavior might be indica-
tive for the observed first-order transition. It suggests the
existence of a new non-Gaussian fixed point at K =1
separating the algebraic high-temperature phase from the
low-temperature phase. A closer study, however, shows
that there is no true fixed point in this region of parameter
space. The difference A between initial values and renor-
malized values defined as

A2= 2(e¢'(n)_e¢(n))2 9)

exhibits merely a local minimum A =0.06 in this region of
parameter space. Further, it turns out that the trajectories
corresponding to initial values of K between 1.02 and 1.05
are still attracted to the Gaussian axis but at rapidly decreas-
ing temperatures. The trajectory starting at K =1.0508
passes close to the Kosterlitz-Thouless point Jg=7/2 (see
Fig. 1).

These findings suggest a different explanation of the
results seen in the Monte Carlo calculations®’ for this
model. Due to the finite size of the systems considered, the
Monte Carlo data corespond to only a few steps in a renor-
malization calculation. The point K =1 might then still ap-
pear as a fixed point, generating an apparent singular struc-
ture corresponding to the spectrum of the linearized renor-
malization transformation in this region. The true asymp-
totic behavior is, however, governed by the KT point lead-
ing to an infinite-order transition. The distinction with the
conventional XY model (or SOS model) is that in the
present case the KT point is rapidly approached over a very
small temperature range due to the action of the quasifixed
point at K =1. This also explains the rapid increase in the
number of vortex pairs as seen by van Himbergen.’

In order to understand the origin of the quasifixed point
at K =1 it is instructive to consider the Kadanoff-Migdal
renormalization for a (2P — 1)-state Potts model. It is again
given by Eq. (7) with the modification that the arguments
of the functions ¢ are to be taken modulo (2P —1). Insert-
ing the initial interaction (8) leads in that case to a simple
one-parameter recursion

—K'= 2€2K+2P_3

e*+2P -2 (10)

e
This transformation has for P =10 at K =1.15 a fixed point
that corresponds to the Potts critical point. The location of
this fixed point, together with the fact that most trajectories
for the SOS model (8) initially run along the Potts axis
¢ (1) =¢(2), strongly suggest that the quasifixed point, that
appears for the SOS model, is merely a remnant of the Potts
fixed point. Since the Potts model undergoes a first-order
transition this renormalization pattern leads to a different
interpretation of the Monte Carlo data: an apparent first-
order transition is suggested for small systems but the true
asymptotic nature of the transition is still of the Kosterlitz-
Thouless type.

Since the Migdal-Kadanoff renormalization used in this
Rapid Communication is, of course, an approximation, the
result obtained above is not yet conclusive but it shows at
least a mechanism by which one can compromise the (ap-
parent) first-order Monte Carlo data with a transition that
is, in fact, of infinite order. Further research is required to
see whether a similar mechanism can be at work in the case
of dislocation-mediated melting.

ACKNOWLEDGMENTS

I am grateful to the authors of Refs. 6 and 7 for sending
me the results of their work prior to publication.

13. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

2J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).

3J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys.
Rev. B 16, 1217 (1977).

4H. J. Knops, in Fundamental Problems in Statistical Mechanics V,
edited by E. Cohn (North-Holland, Amsterdam, 1980).

5J. Villain, J. Phys. (Paris) 36, 581 (1975).

SE. Domany, M. Schick, and R. Swendsen (unpublished).
3. van Himbergen (unpublished).

8R. J. Baxter, J. Phys. C 6, L445 (1973).

9L. P. Kadanoff, Ann. Phys. (N.Y.) 100, 359 (1976).
10M. N. Barber, J. Phys. A 16, 4053 (1983).

11H. J. Knops, Phys. Rev. Lett. 39, 766 (1977).

12H. J. Knops, Physica A 93, 427 (1978).



