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Macroscopic dynamical theory for spin-glasses above T~
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We argue that, due to magnetic-field- and random-anisotropy-induced order, spin-glasses at "high" fre-

quencies have the same number of macroscopic variables above as below Ts (i.e., magnetization, spin

triad, and anisotropy triad); spin-glasses behave like paramagnets only as T/Ts ~. A macroscopic

theory is constructed and applied to ESR. One longitudinal and two transverse modes, all with co —H, are

predicted. However, the longitudinal and the non-Larrnor-like transverse modes are perhaps so broad as

to be unobservable. The Larmor-like transverse mode can exhibit an effective g-value shift, if the induced

variables are not strongly damped.

One of the more unyielding problems in the area of spin-
glasses (SG's) is the anomalous electron spin resonance
(ESR) line observed for temperatures T above the suscepti-
bility cusp Tg. There is both an anomalously large shift Ace

and width I' (where Aco=co —yH, with co the center of the
resonance, y the gyromagnetic ratio, and H the static ap-

plied field). Two recent works, one theoretical and one ex-
perimental, have helped focus on the nature of the problem.
Levy, Morgan-Pond, and Raghavan' have computed b cv and
I for SG's, assuming that for T & Tg they have the same
macroscopic symmetry as paramagnets, so that the magneti-
zation R is the only macroscopic variable. Comparison with
the data of the UCLA group (Mozurkewich, Elliot, Hardi-

man, and Orbach2) shows good agreement for T ) 2Ts, but
for T & 2Tg the predicted shift and width are smaller than
observed.

The non-negligible size of the shift is a strong indication
that the system has a more complex symmetry than an ordi-
nary paramagnet. [Some other systems where this is true
are liquid 3He (Ref. 3), solid 3He (Ref. 4), and SG's for
T & Ts.s 6] For this reason we have examined some simPle
Heisenberg spin systems which, like SG's, have frustrated
and disordered exchange bonds. A system of three classical
spins subject to the Hamiltonian

~= Jgt K2+Z) K3+niCQ K3) yII (X]+%2+53)

is sufficiently complex to illustrate the more complex sym-
metry of a spin-glass. For J & 0, n = 1, and H = 0, this sys-
tem is said to be frustrated, because there is no way for %3

to satisfy the conflicting information it gets if Kt is up and X2

is down. At low temperatures, the mean-field solution gives
spontaneous ordering in a plane, with the spins at 120' an-

gles to one another. At high temperatures, and H&0,
each spin satisfies S= (C/ T)Fi, where the Curie constant C
is independent of J or H. Indeed, above the transition tem-
perature T„all the spins have the same local susceptibility
X. Letting 0& o, &1 simulates, in addition to frustration,
the effects of disorder. Above T„defined by 1+n r,
—2r,2 = 0, where r —= ( CJ/y T), the mean-field solution
yields S2= S3 and

S)/Sz=X)/X2= [1—r(2 —n)](1—r)

Evidently the local susceptibilities are not all the same.
Indeed, if n = 1+e, e « 1, then (St/Sz) —2 as
T Tg+, so Sl can align oppositely to the other spins.

Clearly this system has at least as many dynamical vari-
ables as a two-sublattice ferrimagnet. This latter has the
property that its magnetization m can change both by an
overall rotation d0q about an axis normal to m and by
internal polarization dm„, l. Thus, for two-sublattice ferri-
magnets, our simple three-spin system, and (a fortieri)
spin-glasses, the macroscopic dynamical variables include
both m and d8q. (Note, however, that because the local
susceptibilities are all equal as T ~, d0 j must become a
redundant variable as T ~.)

If we now include a weak, random, microscopic anisotro-

py, the spins will tip slightly away from A, and the system
will thus be three dimensional [as for a ferromagnet with
random anisotropy (FRA)s]. Hence, the system must be
described macroscopically by m and an orthonormal triad
(n, P, q) (called the spin triad9) which changes on rotations
by the three-dimensional angle d 0. Moreover, the aniso-
tropy is specified by an orthonormal triad (N, P, Q) (called
the anisotropy triads), which changes on rotations by the
three-dimensional angle do. The anisotropy torque I is
determined by the relative orientation of the spin and aniso-
tropy triads, being zero when they coincide. In equilibrium,
R, n, and N align with A, and the spin and anisotropy triads
are aligned.

In what follows we will derive the equations of motion for
this system, and apply them to ESR. It turns out that there
is a crucial relaxation time U2 associated with d0. Only for
coU2» 1 do the new degrees of freedom manifest them-
selves (for co U2 « 1 the new degrees of freedom relax to
values determined by the instantaneous field); they then
provide a natural framework for understanding the shifts
observed in transverse ESR. As will be seen, we interpret
the experiments to indicate that U2 is strongly dependent on
the applied field, with ~ U2 && 1 in the high-field limit.

The procedure for obtaining the macroscopic equations is
relatively standard. One begins with the differential of the
energy density (including the Zeeman interaction)

de = T dS+ (h —II) dm+ X d8 —I' dQ

where S is the entropy density, h the internal field, X a
field conjugate to d8, and dP =d9 —R sdOs (R & is the
rotation taking the anisotropy triad into the spin triad). The
requirements that dS = 0 and d e = —H d rn under rotations
of all of the spins (so that dm = d 9 x m) yields
X = —m x h. One next writes down the equations of
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motion
Qe/Qt+Btjt'=0, BS/Bt+Bjl =R & 0, Bm /Bt =y(mx II) +yI + I, 80 /Bt =co, 80 /Bt = 0

and requires that they reproduce the thermodynamics of Eq. (1) at all times. This leads, with I" =I —X =I' + (mx h),
to

0~ TR = —8,(j;—Tjp) —jpB, T J—(h„—H ) + I" [co —y(h —H )]—(I'pR p) II (3)

This is almost identical to the case for T( T~, except that we have not yet specified h or I, which differ from their

T ( T~ forms. We now express the unknown thermodynamic fluxes jl', j;, J, co, and Q, in terms of the thermodynamic

forces h —II, I, and I K, subject to the Onsager symmetry principle and the symmetry of SG's for T & T~. This yields

I = —yD p(hp —Hp)+yG[Rx (I' p)] +yG'(Rx I )

co —y(h —H ) —yC(Rx I' ) =yE pI p+yE'p (I' ~ p)p —yG'[R x (h —H)]

0 = —yF p(I' K)p —yEp I'p+yG[Rx (h —A)]

(4)

These equations differ from those for T ( T~ because the
system is no longer isotropic, so that terms which were
scalars (e.g. , D) are now tensors (e.g. , D p), and vector
terms which were previously neglected are now included.
All of Eqs. (4) have been written so that the right-hand
sides represent dissipative terms. We will not discuss the
stability conditions which the dissipative coefficients must
satisfy. Note the term yC(mx I ), which drives 88 /Bt.
Typically, it is not significant for T & T~, where C= m,
(m, being the saturation magnetization), but it cannot be

I

I

neglected for T & T~ if we are to ensure the correct (i.e.,
paramagnetic) high-temperature limit. In that case we have
C m 2 as T/T~ ~, so that Rq=HqxR for the
transverse components of m and 0. Note that C can be ob-
tained in terms of commutators of the microscopic operators
for dg &0

To complete the theory we now need only h and I . The
latter quantity can be obtained as in the case of the fer-
romagnet with random anisotropy, by rotating m and the
spin triad away from equilibrium:

I„=K2(mxN)„(m N)+ 2K, [ —2(mxN)„(m N)+(mxN)„R +(m N)E p&R p]

This result utilizes our earlier assumption that m and X are
collinear in equilibrium. Furthermore, one can show that it
is not changed, to first order in deviations from equilibrium,
if the unrotated system has a nonzero 5 m„~. For h, we as-
sume that

h=X~j'n( Rn)+Xq [R—n(m n)] (6)

To ensure that m, n, and A are parallel in equilibrium, we
require that XI] ~Xq. Note that the anisotropy is field in-

duced, so we expect that X~~
—Xq~ X~~(m/m, )'. Therefore,

for small oscillations, as needed in ESR studies, we must
employ the differential susceptibilities. For small deviations
from equilibrium, this gives

Sh=X~'SR+AX '(mSn+nSm)

where hX '=X~~' —Xt', X~~ —= B(m/X~~)/Bm, and n is con-
sidered to point along A. Note that m =m m, Sm =5m m.

Thus,

Shg=Xg'SRg+AX '80q&m, hh]] =X]]

Note that, in terms of field, temperature, and microscopic
anisotropy (D), we expect that Kt, K2cc D H / T, and

X~~ ~ T, so co,ccy(D/T)H. " Thus, the longitudinal reso-
nance will appear to have a g factor down by the (small) ra-
tio D/T. (The temperature dependence is certainly more
complex than T '. )

For the transverse variables we have (with EJ K2
+ Kt/2)

BRg/8 t = ySRg x A —yKg58 g

8e,/at = yx SR, + yax-'Se, x R

+yCmx [ —KgS&g

+gX 'Rx (SgqxR —SRq)]

so that the normal-mode frequencies are

cu g = (y/2) [(H+ am) + [(H —nm)2+4K'/Xq]'t2], (12)

where n —=KqC + AX '(I —Cm2) and Xq = X q
'- —1

+AX 'Cm2 For H » um, . (Kq/XI )'t2, (12) yields

It is straightforward to determine the ESR frequencies,
assuming fixed anisotropy, and neglecting dissipation. For
the longitudinal variables we have

o)+ =y[H+ (Kg/Xg)(H —nm)-']

co = y[nm —(Kg/xg)(H —nm) ']
(13)

Bm((/Bt= —yKtSHii, BHii/Bt=yXo 5mo

so that

~t = y (K t/X ii )"'

beau+ —= a+ —yH=o)jy '(H nm) ', u)g—= y'Kg/Xg. —
(14)

(10) Since Kq~H, (14) predicts the Larmor-like co+ mode to
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posses an altered g factor. " More important, in principle, is
the presence of the non-Larmor-like co mode, whose ob-
servation would be a strong indication that 5mj and 58&
can behave like independent variables.

%e now consider the effect of dissipation on the ESR
lines. This requires consideration of the regime where the
anisotropy is fixed, so 0 = 0. This permits us to neglect
F p, E 'p, and G. However, D &, E p, and 6' cannot be
neglected. The first describes ordinary Tj and T2 processes
[D a=Diim mp+Di(8 a

—m m&), where Dii~ T, , D~
~ T2 t ]; the second describes relaxation of the spin triad
due to its own disequilibrium, and the third describes cross
relaxation of m due to disequilibrium of the spin triad, and
vice versa. For simplicity, we will neglect the cross-
relaxation terms. Adding the damping terms to (9), and as-
suming they are small, we find that

I'i= —Im(cut) = ~y(Tt '+ Ut ') (15)

where T~ '~D~~ and U~ '~E~~ are associated with relaxa-
tion of m~~ and 0~~. Since col may be rather small, the damp-
ing may be relatively large, and thus the longitudinal mode
may be difficult to observe.

Adding the relaxation terms to (ll), for small damping
we obtain

2
—1

Q)g
o) = yH —iT2 +-

co —yam+ iU2 ~
(17)

CUr = —im(~ )=U +, ",-(T —U ) .
y'(H nm )'—

(16)

where T2 '~Dq and U2 '~Eq are associated with relaxa-
tion of mq and 8 t. Since cu varies as H (and thus may
not be very large), the damping indicated in (16) may be
relatively large, and thus the ~ mode also may be difficult
to observe. (In addition, the cu mode probably has only a
small component of net magnetization, giving it a weak
spectral weight. )

To make contact with data on the co+ mode, we note that
one can write the transverse solutions, including dissipation,
in the form

For the cu+ mode, which is usually well defined (i.e. ,
cu )) T2 ), and satisfies tu )) nm, (17) yields, with

U2 —= U2 ' —T2 ',

CUg 6)2

60)+
co2+ U2

2
- —1

Cdg U2
I + = Im(tu+) Tg +

o)2+ U2

(18)
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To compare with the actual data, we must remember that ~
depends on the vaule of H; therefore, cuz and U2 ' change
when ~ changes. Thus, for the 1—2 GHz regime of Ref. 2,
(18) is consistent with the observed apparent g-value shift,
if ~U2)) 1 in that regime. On the other hand, to be con-
sistent with the 9.6-6Hz data (which is taken at much larger
values of H), one must have cuU2((1. This implies that
U2

' has a strongly nonlinear dependence on H (It is cus-.

tomary to assume that T2 is independent of H. ) Detailed
study of the full frequency regime from 1 to 10 GHz would
permit ~~ and U2

' to be determined, as functions of Hand
T.

To summarize, we have worked out a number of implica-
tions of magnetic-field —and random-anisotropy —induced or-
der in spin-glasses, for T ) Tg. This theory differs from
two formally similar (but not identical) theories'2 '3 in that
its choice of macroscopic variables is motivated by a more
specific microscopic picture of the SG state for T) Tg. It
also differs from Ref. 1 in that it includes additional dynam-
ical variables (in particular, for ESR it includes d0). We
find that these extra variables are fully manifested only for
«o U2)) 1, where they lead to what can be interpreted as a
g-value shift in the ESR spectrum. A complete experimen-
tal study of both the shifts and widths, as a function of T
and H, would permit a parametrization of the two most im-
portant quantities in the theory: ~& and U2.
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