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Cyclotron resonance of polarons confined to a surface
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Corrections to the cyclotron resonance energy induced by electron —LO-phonon interaction for
electrons confined to a heterojunction with magnetic field perpendicular to the surface are calculat-
ed. A weak Frolich interaction with bulk LO phonons is assumed, and correlation due to the
Coulomb repulsion of the electrons is neglected. Various approximations are compared for the two-

dimensional polaron in the zero-density limit. The transition from two-dimensional to bulk
behavior is studied, and an approximate method of calculation for an arbitrary confining potential is

proposed and tested. Corrections to the cyclotron-resonance energy due to nonzero electron density
are calculated by summing the "most divergent" terms in perturbation theory to all orders. It is

suggested that correlation may be important for electrons in full or nearly full Landau levels.

INTRODUCTION

Recent cyclotron-resonance experiments on electrons at
the GaAs/Ga„Ali „As interface show that sharp cyclo-
tron absorption lines can be observed in heterojunctions
which have high electron mobilities. In addition, magne-
totransport measurements on the same type of hetero-
structures indicate that the electrons interact with the
bulk LO phonons of the GaAs. These results suggest
that it should be possible to observe in such systems "po-
laron corrections" to the cyclotron-resonance frequency,
corrections which arise from the interaction of electrons
at the interface with bulk LO phonons of the GaAs. Such
effects have been observed in InSb inversion layers.
Electron —LO-phonon interactions have long been known
to shift cyclotron-resonance and impurity transition fre-
quencies in bulk semiconductors, but, because this in-
teraction tends to be weak, sharp transition lines are re-
quired for its observation.

Of particular interest is the situation in which a pair of
unperturbed electron energy levels has energy separation
close to ficoLo, the LO-phonon energy. Then, if these lev-
els are coupled by the electron —LO-phonon interaction, a
"polaron-resonance" splitting of the upper level occurs,
giving rise to a splitting of optical transition lines which
involve the upper level as a final or initial state. In
cyclotron-resonance experiments it is possible to produce
such a pair of levels from the n =0 and n = 1 Landau lev-
els by adjusting the unperturbed cyclotron frequency co, in
such a way that co, —=coLo where, if the unperturbed elec-
tron band mass is m, then

to, =eB/me .

For the case of semiconductor heterojunctions with mag-
netic field 8 perpendicular to the interface, the upper level
( n = 1) interacts via electron —LO-phonon interaction
with every unoccupied lower level (n =0), all of which
are, to a first approximation, degenerate. Under these
conditions a polaron-resonance splitting of the n = 1 level
occurs, giving rise to relatively large shifts in the observed
cyclotron-resonance energies.

Das Sarma and Madhukar (DM) have already dis-
cussed this resonance splitting in semiconductor hetero-
junctions. In their work formal calculations are presented
for the limit of zero electron density and weak electron-
phonon coupling, and off-resonance terms in perturbation
theory are neglected.

The work described here is an attempt to improve the
DM approach for polaron cyclotron resonance in the
zero-density limit by including all significant nonresonant
terms for the two-dimensional polaron, thus giving an ac-
curate description both near the polaron resonance
(co —coLQ) and away from it. In addition, the transition
between two-dimensional and three-dimensional polaron
cyclotron resonance is studied in a simple, soluble model,
and a practicable method is proposed and tested for
evaluating approximately the off-resonance perturbation
contributions for electrons confined to a surface by an ar-
bitrary one-dimensional potential. The Frohlich model, in
which electrons interact with bulk LO phonons, is em-
ployed throughout. For cyclotron resonance in GaAs in
the two-dimensional limit, off-resonance terms are not ex-
perimentally negligible; they contribute corrections which
are typically -0.5 meV.

Another important difference between the present work
and that of DM is that here, for simplicity, the polaron
levels are taken to be perfectly sharp; no phenomenologi-
cal damping parameters are introduced into the calcula-
tions.

Finally, the effect of nonzero electron density is investi-
gated for an ideal gas of two-dimensional electrons. It is
found necessary, in principle, to sum terms for all orders
in perturbation theory to describe exactly the polaron res-
onance to lowest nonvanishing order in the dimensionless
coupling constant a when the density is not zero. This
summation gives rise, in the cyclotron-resonance calcula-
tions, to a discontinuity in the polaron correction as a
function of the filling factor v of the lower level at v= l.
Here the filling factor is defined as usual by

v =2n.p(fi/rnco, ),
where p is the number of electrons per unit area. In gen-
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eral, it is found that there is an interplay between the Pau-

li principle and the polaron-polaron interaction; it is this

interplay which determines the size of the density-

dependent part of the cyclotron frequency.
One interesting consequence of density-dependent pola-

ron corrections is that, in a given magnetic field, spin-up
and spin-down cyclotron frequencies are slightly different
when these spin states are unequally populated. Thus, for
example, when 1 & v& 2 so that both spin states associated
with the n =0 Landau levels are occupied, two distinct
cyclotron-resonance frequencies may be expected.

I. LOW-DENSITY LIMIT

Hpr =p~+(p„——,
'

A, y), Hp, p, + V——(z),

Hp Hpi+Hp—g—+ gb „b„,
k

H =Kp+ gvi, (e '"''b „+e'"''b ),
k

where b- creates a bulk LO phonon of wave vector k,
k

k =(k~, ky, kg), A, =co, /coro,
' 1/2

4ma 1 1 8k, a =— (1/e„—1/ep)
2 ~r.o rp

Vk

Let us assume, as is usual in polaron problems, that at
sufficiently low densities of electrons the cyclotron-
resonance corrections can be found from a one-electron
Frohlich Hamiltonian, which can be written in polaron
units in the form

(a=0.06 in GaAs}, e and ep denote the high-frequency
and static dielectric constant, respectively, of the semicon-
ductor in which the electrons reside, and ro is the polaron
radius, equal to (A'/2m pir.o)'

The Landau gauge has been employed in deriving Eq.
(1). In "polaron units*' all energies are in units of Rigor Q
and lengths are in units of rp W. hat is meant by "suffi-
ciently low density" in the context of the present model,
in which the Coulomb repulsion between electrons is ig-
nored, will be clarified in Sec. II.

If V(z) is sufficiently strong to confine electron motion
to a sufficiently small region in the z direction, the low-

lying eigenstates of Eq. (1) are those of a two-dimensional

polaron in a magnetic field. If, on the other hand,

V(z)~0, H becomes the Hamiltonian of a bulk polaron
in a magnetic field. Corrections to the cyclotron frequen-

cy for the transition between the lowest n =0 Landau lev-

el (k, =0) and the n =1 Landau level have already been

found by second-order Rayleigh-Schrodinger perturbation
theory (RSPT} (exact to order a in the limit a~0) for
A, & 1 in the latter case. In Sec. IA, RSPT is evaluated
for the two-dimensional polaron, and a more general and
accurate solution giving the split cyclotron frequencies ex-
act to order a at A, = 1 is described. Various approximate
solutions will also be described. In Sec. IB, methods are
proposed for calculating the cyclotron-resonance correc-
tions when the polaron has an intermediate form between
the two-dimensional and three-dimensional limits.

It is convenient to work in the representation of eigen-
states of Hpi. These are the well-known Landau wave
functions

f„,q ——[A,/(~2m 2"nL)] H„((A,/v 2)(y —yp})e e (2)

where we assume that the interface is a square with side L, yp ——2q„/A, , and the H„are Hermite polynomials. The asso-

ciated eigenvalues are (n + —,)A, . Matrix elements and related quantities involving the wave functions of Eq. (2} and use-

ful in developments to follow are listed below for future reference:

M„p( —k,q„)=(g„q i, l
e

l Ppq )=(n.) [(k„—i')/1, ]"exp[ iky{2q„—k—„)/A ]exp( —ki/2A, ),

Mp„(k, q )=—(gp q +g l
e '

l g„q ) =(n!) ' [( k+ik~) A/]" exp[ik~(2q„+k„)/iP] exp( —kz/2A, ),

l~i.(k q ) I'=—
l (fi,q„+a„ le

'
I @..q„& I'=«'} '(ki/~'}" '« —ki/~')'exp{ —ki/~'}=—lMi. {k)l',

where ki ——{k„,k~, 0), which being the component of k in the interface plane is therefore perpendicular to B.
The eigenfunctions of Hp, are denoted P, with corresponding eigenvalues E,. The ground-state wave function and en-

ergy are Pp and Ep, respectively. It is convenient to adjust the zero of energy so that Ep ——0. Useful matrix elements are
defined by

Mg, (k, )=(Pi l
e '

l P, ) .

Perhaps the cyclotron-resonance transition of greatest experimental interest at higher magnetic fields is the transition
from an n =0 Landau level to an n =1 Landau level within the lowest subband state (s =0). The initial unperturbed
electronic state is Pp q Pp and the final unperturbed state is gi q Pp. With Hp in Eq. (1) as unperturbed Hamiltonian ande
H Hp as the perturba—tion, the intermediate states in RSPT are of the form f„q i, P, b l0) where l0) is the LO-

phonon vacuum. The correction to the cyclotron-resonance frequency of interest is denoted &Fca, which is the differ-
ence between the correction to the upper unperturbed level and that of the lower. In RSPT,
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(n —x )gE,„=—g g '„
I m„(k, )

~

' g
(n —1)A,'+1+E,

X2

nA, +1+E,

2
x e2n —2 —x

nl

g„(x)
k I Os z

k

(4)

where

x=ki/A, andg„(x)=[n(n —1)—2nx +x ]x " e "/n! .

Equation (4) is the fundamental equation for the RSPT
polaron shift of the cyclotron-resonance transition energy
in the low-density limit; it is most useful when the per-
turbed cyclotron transition energy is not too close to 1

(the LO-phonon energy). Major limitations of Eq. (4) are
that it does not predict two coexisting branches of the
cyclotron-resonance spectrum and that it diverges at
A, = 1, due to vanishing of the n =0, s'=0 energy denom-
inator. Nevertheless, RSPT gives an accurate description
of the ground-state energy and well represents off-
resonance contributions (terms for which n &0 and/or
s '

& 0) to the perturbed n = 1 level.
I

A. Cyclotron resonance in the two-dimensional limit

g„(x)
~EcR = —aX f dx X

o (n —1)A, +1
The summation over n in Eq. (9) can be converted into

an integral by the method of Ref. 7. There, for perform-
ing a sum such as that in Eq. (9), use is made of the iden-
tities

e -!'!'dt,

n (n —1) =qen.

g ",q"-'=e&,
0n!

Under conditions in which V(z) confines the electron
to a region of z which is small compared to both ro and to
the cyclotron radius, the subband excitation energies obey

E;»1 and E, »k for s'&1

and

co n —1
q

n~-
(10)

and'

~
Moo(k, )

~

2=1 for k, —1 and k, -A, (6)

In the bulk-polaron problem one can always convert the
sum on k to an integral according to

(8)

The same conversion can be made in the heterojunction
and quantum-well problems, provided that the thickness
of the material supplying the LO phonon [GaAs in the
case of the conventional GaAs/(GaAl)As interface] is
much greater than r0, the cyclotron radius, and the con-
finement distance. (In GaAs, ro —40 A. )

With the replacement indicated in Eq. (8) one obtains
the two-dimensional limit,

dkiki dk,
o

so that Eq. (7) becomes

=a f "dk, ,

We regard Eqs. (5) and (6) as defining the two-
dimensional limit. In this limit we need consider only the
s'=0 term in Eq. (4), which becomes

z g„(x)
EEcR= —g vk

o (n —1)A. +1

2 —A, ftaking a =(n —1}A, +1 and q =xze '. The result, for
A, ~ 1 (hence a & 0 for all n), is

aEc„=—4az dt e 'dx x-'e-(""'-' " "1
0 0

&(sinh2

= —Mn A,a dt e 'sinh (1—e ')2 k't
0 2

This can also be written in the closed form,

ma 1 —I,aE, = — r
8A,

In the limit A, ~0, AEcR~ —(m/8)aA, , so that, adding
the unperturbed cyclotron energy, A, , the total cyclotron
energy is

[1—(m./8)a]A, z . (12)

Thus we can identify [1+(m./8)a]m with the two-
dimensional polaron effective inass in the weak-coupling
limit. This is to be compared with the better known
three-dimensional polaron effective mass, (1+—,'a)rn. [A
similar calculation of the ground-state energy of the two-
dimensional polaron as A, ~0 gives (n/2)a com—pared
to the bulk value of —a. ]

Although Eq. (11}is in a form convenient for numeri-
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(13)

Thus a form valid for all A, is

EEcR ———vn. 4x f dte
0

cal integration for A, & 1 and 1 —A. not too small, it is not
correct for A, & 1 and not convenient when A,

2 is near l.
When A, & 1 the energy denominator in the n =0 term be-
comes negative. We treat this term separately, subtracting
off its contribution in Eq. (11}and adding on the closed-
form expression for it, given by Eq. (13), in &EcR.
Evaluating the n =0 term directly, we obtain

IL,a f „,„~~IL,adxx e
A2 —1 P 4(A, —1)

(E ——,'A, )c= g vkc„(k)M&„(k, —k„), (16a)

D„c„(k ) =cvkM„&( —k, O)

+2 g v(d„(k, I )M„„(I,—k„—I„),
»', 7

M„d„(k, I )=—,
'

v( gc~(k)M„~( —I, —k )

(16b)

Here, it is anticipated that the result is independent of the
q„quantum number associated with the zero-phonon
state and q„ is set to zero. By requiring H4=E4, we
obtain

I

X stnh (1—e ')
2

+ —,vk g c ( I )M„(—k, I„),
where, in accordance with the convention of Eq. (3),

(16c)

1 A, f
4

1

4(A, —1)
(14)

M .(» e)=&—0 . q„+k„ le-' If., q„&-
and, in two dimensions,

d„(k, I )p„k ) b-„b-, ~0) .
yg, k, l

(15)

Since the integrand in Eq. (14) at large t decays like e
—(1—A,2)trather than e " ", as in Eq. (11), Eq. (14) is also more

convenient than Eq. (11) for evaluating &hzR when A, is
near l.

Examination of Eq. (14) indicates that bEc„becomes
proportional to (A, —1) ' as A, —+I; one knows that this
divergence is not a feature of the actual polaron-resonance
phenomenon, but rather an artifact of the approximations
leading to the RSPT.

A theoretical description which gives the polaron
corrections exact to order a at A, = 1 can be found in Ref.
9. In that reference the n = 1 polaron wave function exact
to order a'~ is expanded in the form

clI) p+ Q c„(k)1I„kb „
n, k

D„=E—,' An—A2, —1, , —

W„=E——,
'

A,
2—nA, 2 —2 .

There are two regions of interest for E in Eqs. (16}. If
E ——,'A, —1=0(a ), then, since vk=O(a'~ ), solutions

exist in which c =0(a }, c„(k)=0(a'~ ), and d„(k, I )

= 0(a). This is the situation away from the polaron res-
onance. It is permissible to neglect the two-phonon am-
plitudes d in this case. However, suppose that
E —2A, —1=0(a' ), which, it turns out, occurs for
A, =1, the polaron-resonance region. Then c =0(a },
cp(k)=0(a ), c„(k)=0(a'~ ) for n &0, and d„(k, I }.
= O(a' ). It is no longer permissible in this case to ig-
nore the two-phonon amplitudes in calculating energies
exact to order a. This motivates retention of the d ampli-
tudes in our calculations.

Since for m &0, c~ is always of order a'~ or smaller,
it is permissible to set c &p

——0 in Eq. (16c). Substituting
back into Eq. (16b) gives the integral equation

(E —
& A, —1)cp(k ) =cvkMp, l( k, O)+cp(k) g v(M» p( —I,—k„)Mp „(I,—k„—I» )/&„'+ T,

l,n'

where

T =vk g v(cp( I )M» p( —k —I» )Mp» ( I —k» —I» )/W»'
n',

which can be rewritten from Eq. (3),

(E —
2 A, —1)cp(k)=cvkMp ~( —k, O)+cp(k) g v&e

' (I /A~, )"/(n!&„)+T,
, n

where

(17a)

n

in(p, —pk)T =vk g v~cp( I )e
A,

2 exp
ki+ ~j. 2) s

2 2

exp — (k»ly —kyl»)+ (krak»
—Iyl )

(17b}
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c„(k)=cvkM„ i( —k,O)/D„(n &0) . (17c)

In the Appendix we show how (17a) can be reduced to a
one-dimensional integral equation and solved efficiently
by numerical methods. All previous treatments of the
three-dimensional analog of this equation start from the
approximation T =0, even though T is of order u when

co is of order a . Clearly, setting T =0 provides a great
simplification since one no longer has to solve an integral
equation; however, the energy is then not guaranteed to be
correct to order a for A, =1.

Let us now discuss various approximations to Eqs. (16)
and (17). If one makes no further approximations beyond
ignoring T then, combining (17a), (17c), and (16a) one ob-
tains the energy expression

E= ik2+ gvk ~Mi, o(k)1 /(E —Eas —5—1)

+ g g vp
~

M i„(k )
~

/(E Eas nA— —1),, —
n=1 k

with

cosPk =k„/kz, sinPk =k~/ki .

Since, for n &0, D„=O(a ), c„(k) in (16b) be approxi-
mated by

Since, as iinplied in the Appendix, 5 is expected to be
small when E is close to 1~Eas, and, for E far from
1+Eas, 5 is unimportant, being only of order a, it is a
reasonable approximation to set 5=0 in (18), giving

E = —,A + g g vk ~Mi„(k)
~

/(E Eas——1 —n&2) .
n=0 k

(19)

If one omits all two-phonon terins in Eq. (1S), setting
d„(k, I ) =0 for all n, k, and I, the equation for E be-
comes

E = —,
'

A, + g g vk
~

M i„(k )
~

/(E ——,
' 1, —1 n—A), ,

n=0 k

(20)

which is the same as Eq. (19) except that Eas is replaced
by the unperturbed ground-state energy —,A, in the energy
denominator. Equation (20) is the equation for second-
order Wigner-Brillouin perturbation theory (WBPT). If
only the resonant term ( n =0) is kept, one obtains the ap-
proximation of DM for infinitely sharp levels,

E= —,'A, + gvk ~Mio(k)
~

/(E ——,'A, —1)

(18)
', A, +aA, V —m/4(E ——,'I, —1), (21)

where 5 is defined by Eq. (A4) in the Appendix. We have
replaced —,X in the energy denominator
(E ——,

'
A, —nA, —1) for n &0 on the right-hand side of

(18) by Eas, the ground-state energy exact to order a,
where

n

Eas ———,'A, —gvk 2 e ' /[n!(n& +1)] .
k

whereas if E in the energy denominator of Eq. (20) is re-
placed by —', A, , its unperturbed value, Eq. (20), becomes
the expression for E in RSPT.

Equation (21) is a quadratic equation for E which,
when solved, leads to two separate curves for E(A, ). One
of these curves always lies below and the other above
E = —,

'
A, +1; these are denoted, respectively, the lower and

upper branches of E. Their splitting at A, =1 is n' a'
which is of order a'~ . Analogous solutions have been ob-
tained for Eqs. (19) and (20), where the energy dividing

TABLE I. Corrections to the unperturbed cyclotron-resonance frequency of the two-dimensional po-
laron, A. , as calculated for a=0.06 by various methods. The n =0 energy is taken to be the perturbed
n =0 ground-state energy in RSPT, except for EEcR [n =1 calculated from Eq. (21)] where it is the
unperturbed energy, k /2. Columns labeled "Lower" and "Upper" refer to the lower and upper
branches, respectively, of the n =1 Landau levels. EEcR [n =1 calculated from Eq. (A8)] is believed to
be the most accurate for a=0.06. All energies are in units of the long-wavelength LO-phonon energy.

~ECR
'

Lower Upper
~ECR'

Lower Upper
~ECR

Lower Upper
~ECR

Lower Upper

0.4
0.6
0.8
1.0
1.2
1.4

—0.0160
—0.0342
—0.072 15
—0.153
—0.289
—0.459

0.630
0.452
0.293
0.178
0.1175
0.0913

—0.0161
—0.0345
—0.0733
—0.157
—0.296
—0.467

0.626
0.447
0.288
0.173
0.114
0.0878

—0.0151
—0.0327
—0.0699
—0.152
—0.291
—0.463

0.625
0 AAA

0.283
0.166
0.106
0.0795

—0.0268
—0.0462
—0.0838
—0.163
—0.298
—0.467

0.627
0.446
0.284
0.163
0.0978
0.0673

'Perturbed n = 1 level calculated from Eq. (A8).
Perturbed n =1 level calculated from Eq. (18).

'Perturbed n =1 level calculated from Eq. (19).
Perturbed n = 1 level calculated from Eq. (21).
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the approximation (21), E ——,
'

A, is the assumed cyclotron
energy. The results presented indicate that inclusion of
the term T in (17a) is not very important in the region of
A, tabulated.

In Fig. 1 me compRI'e the cyclotron-resonRncc correc-
tion predicted by RSPT and that calculated from Eq. (A8)
for a =0.06 and 0.10. As expected, the RSPT is found to
cxRggcI'Rtc thc polRI'on cOI'Icct10Qs QcRI' thc rcsoQRncc I'c-

gion, but is accurate sufficiently far away. The smaller
the value of a, the larger the region over which RSPT is
useful.

We have concentrated on the two-dimensional polaron
at some length because of its mathematical simplicity,
which has allowed us to solve the cyclotron-resonance
problem to order a in the polaron-resonance region
(jE2- I). As an exercise in polaron theory one can apply
the entire array of methods originally developed for the
three-dimensional polaron to the two-dimensional pola-
I'on. It ls QRtUlR1 to Rsk» h0%vcvcI'» h0%' QcRI'1$ t%'0 d1xncn"
sional the polaron behavior is for a given confining poten-
tial V(z). We take up this question in the next section.

-i 6

05 06 07 .0,8 09 ).0 (. 1 (.2 l. 5 (.4
k

FIG. 1'. Comparison of results of calculations of the polaron
shifts of the n =O~n =I cyclotron transition in the two-
dimensional, zero-density limit. The curves marked RSPT are
calculated by second-order Raylelgh-Schl odlngel perturbatIon
theory. The remaining curves represent solutions of Eqs. (A7)
and (A8).

the upper and lower branches is Eos+1 and 2 A, +1,
respectively. Similar branches are found also in the solu-
tions of Eqs. (18) and (A8).

We shall call the energy dividing the lower and upper
branches the "pinning energy"; this energy is a kind of
asymptote, being approached from below by the lower
branch as A,2~oo and from above the upper branch as
I, —+0 and a—+0.

In TRblc I %'c comPRxc cncI'glcs on both thc UPPcI" Rnd
lower branches as calculated exactly to order a from {A8)
and from the various approximations (18), (19), and (21)
for a=0.06, which is a value beheved close to the bulk
value for GaAs. Rather than recording E we have en-
tered the deviation between the cyclotron-resonance ener-

gy calculated from the various approximations and the
unperturbed cyclotron energy )I, . For all calculations ex-
cept {21)the cyclotron energy is taken to be E —Eos', for

B. Cyc1otron resonance of polarons confined
to a slab of nonzero thickness

A more general model than that of the two-dimensional
polaron just discussed is provided by considering the cy-
clotron resonance of a polaron confined by a one-
dimensional harmonic-oscillator potential, given in ordi-
nary ilillts by U (z) = 2 ipicoHo z, wlieie e)Ho is tlie classical
harmonic-oscillator frequency associated with U. In pola-
ron units U(z) becomes V(z), where

V{z)= 4'9 z '9 =eiHo/i. o4 2 2

An i) increases, the thickness of the slab in which the
electron is confined decreases. By varying q from values
%vh1ch Rrc jess thRQ Unit/ to vR1Ucs considcrRblp gx'cRteI'

than unity we can explore the transition, within the
harmonic-oscillator model, from bulk to two-dimensional
bchRvioI'.

In this model thc sUbbRQd cnclgics E, Rnd thc sqURx'cs

of the intersubband matrix elements,
~
~0,(k, )

~

z, become

E, =srl~ and
~
Mo, (k, ) (

=—(k, /q) 'exp( k, /gz) . —

(23)
Substituting Eqs. (23) into Eq. (4) and performing the n
sUIIHRtion Rs previoUsjg described g1vcs

S

sinh Ix exp[ —x2(1 —e ~ ')]I .
2

Performing the summation on s, we obtain

AEcR — I dte 's——inh I dcos8sin 8 J dkk exp[ —k (Bsin 8+icos 8)j,
$2 O 2 O 0
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The two innermost integrals can be performed analytical-

ly, yielding

EEcR ——— f dt e 'sinh

Equation (25) is the generalization of Eq. (11) to the case
of an arbitrary harmonic-oscillator confining potential,
and like Eq. (11), is valid only for A, & 1. In the limit of
strong confinement (g ~oo), A~O and

5ECR — dt sl 11
0

g 3/2

which is identical to Eq. (11). In the bulk limit (g —+0),
A ~t and &&cR becomes equivalent to Eq. (29) of Ref. 5.
Figure 2 displays plots of ~&cR as a function of A, , com-2

puted from Eq. (25), for several values of g . Surprisingly
large values of riz appear necessary for approximating
two-dimensional behavior.

2. Interpolation formtda for cyclotron resonance
in a general confining potential

where

lnI[(A 8)'—+A' ]/8' I /(A —8)'i for A, & g
sin '[(8 —A)'~ /8'~ ]/(8 —A)'~ for 1, &g

(25)
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FIG. 2. Comparison of polaron shifts of the lower branch of
the n =O~n =1 cyclotron transition for various strengths of
the harmonic-oscillator confining potential. The confinement of
the electron to the surface increases with g, defined in Eq. (22).

The harmonic-oscillator potential does not represent
very realistically the Hartree confining potential at, say, a
heterojunction. The actual Hartree potential is more near-

ly triangular in shape. In general, it would seem prohibi-
tively difficult to evaluate &&CR exactly from Eq. (4) for
subband states appropriate to a realistic potential. On the
other hand, it is usually not very difficult to find an accu-
rate approximation to the ground-state wave function of
the actual confining potential. We seek a formula which
may give a good approximation to &&cR defined by Eq.
(4) for a realistic Hartree potential and which requires
only knowledge of the ground-subband-state wave func-
tion.

Since we do not know in advance how strongly confin-
ing the potential may be, we shall require that our formu-
la go over to the three-dimensional limit for weak confine-
ment and to the two-dimensional hmit for strong confine-
ment.

To guarantee correct strong-confinement behavior we
extract from Eq. (4) the dominant terms in the strong-
confinement limit, namely the s'=0 terms, and evaluate
them exactly. The remaining terms in Eq. (4) are then ap-
proximated by replacing E; (for s'&0) in the energy
denominator by k2, a replacement which would be exact
for these terms in the limit of zero confinement, but
which is only approximate otherwise. ' Once this replace-

l

ment is made, the sum on s' in Eq. (4) can be evaluated by
completeness using

S

for all k, if the sum is taken over all s' (including s'=0).
Thus our approximate polaron correction, denoted ~&cR,(A)

is given by

EECR' ———g vk )~op(k, ) )

p (n —1)A, +1
g„(x)—g vk(1 —

~
~oo(kg )

~
) g

o (n —l)A, +1+k,

(26)

The term

2 g„(x)
(n —1)A,'+ 1+k,'

is just the RSPT bulk cyclotron-resonance correction,
which we denote ~&CR"'. Extracting this term and per-
forming the n summation and an integration over ki in
the remaining terms, we obtain

ce —k2t5E =h, F. — f dte 'sinh2 f dk E(k ) I~oo(k, )
~

(1 —e ' ),
m.A, OO

8k~ 00

where F(k, )=1/8 k, e 'E, (Bk, ), 8 is—defined in Eqs. (24), and E, (Bk, )= f, (e "/v)dv is an exponential integral
ak,'
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which can be readily evaluated numerically by quite simple algorithms. " Equation (27) is the suggested approximate
RSpT polaron correction to the cyclotron energy for an arbitrary confining potential in the low-density limit.

~ better approximation than Eq. (27) can presumably be obtained by, for example, treating exactly the s'=1 terms in

Eq. (4) as well as the s'=0 terms. The approximate expression so derived would be valid for A, & 1+Ei.
We have compared the exact harmonic-oscillator RSPT results obtained from Eq. (25) to approximate results obtained

by evaluating Eq. (27) for a harmonic-oscillator potential. Table II compares values obtained for g =2. Similar agree-
ment is found for other values of ri .

The good agreement between exact RSPT and approximate RSPT values of EEcR indicated in Table II gives some
confidence in the accuracy of the approximation method.

Energies more accurate than those given by RSPT for A, near 1 can readily be obtained by generalizing Eq. (27) along
the lines already described for the two-dimensional polaron. We introduce a general integral for which the right-hand
side of Eq. (27) is a special case:

Ci(g)= — dte "+~sinh f dkF(k)[ ~MOO(k)
~

(1—e ' )+e * ], (28a)

and also

Bk2
Co(g)= — f dte "+~"f dk, e 'Ei(8k, )[ ~moo(k, )-~ (1—e ")+e "]. (28b)

or

E —Eos ——A, +Ci(g)+Cp(g) —Co(0),

where

(E Eos), Eos—= 2A—+Co(0) .

The required lowest-branch cyclotron energy, E —E~s, is
to be found by solving Eq. (29).

II. EFFECTS OF NONZERO ELECTRON DENSITY

In the preceding sections we have implicitly assumed
that at sufficiently low electron densities each polaron
acts as if no other polarons were present. We now investi-
gate the dependence of the polaron shifts of the
cyclotron-resonance frequency upon the density of elec-

TABLE II. Comparison of exact RSPT and approximate
RSPT polaron corrections, AEcR and KECR, respectively, to the
n =0—+n =1 cyclotron-resonance transition energy of electrons
bound in the one-dimensional harmonic-oscillator potential of
(25) with g =2. Formulas for AEcR and AEcR' used in the
computations are given by (25) and (27), respectively. The fil-

ling factor is zero.

~ECR / +

0.2
0.4
0.6
0.8

—0.0552
—0.1489
—0.3383
—0.9082

—0.0575
—0.1549
—0.3503
—0.9316

Here, Ci(0) =bECR [compare (27)] and Co(0) is the ap-
proximate RSPT correction to the ground-state energy
calculated by the approximation leading to Eq. (27). Then
an approximate equation analogous to, for example, Eq.
(19), is

1

E = —,
'

A, +Ci(g)+Cp(g),

I

trons at the surface in two dimensions, neglecting the
Coulomb repulsion —,

' g,'. . e /ear, j between electrons.
The polaron cyclotron energy depends upon the elec-

tron density because of the Pauli principle, which forbids,
in perturbation theory, electronic intermediate states
which are already occupied, and also because of polaron-
polaron interaction.

The primary effect of the Pauli principle on the cyclo-
tron resonance is to reduce the number of n =0 Landau
levels to which an electron in the n =1 Landau level can
couple via the electron-phonon interaction, since a frac-
tion v of the n =0 Landau levels will already be occupied.

The quantity v will play a central role in our discussion.
If p is the number of electrons per unit area in ordinary
units, then

v=2mpr, =4mpro/A,2= 2
(30)

where r, is the cyclotron radius (r, =A/me@, ). With this
definition v=1 corresponds to an electron density just
sufficient to fill one Landau level with electrons of a par-
ticular spin. We shall, for greatest simplicity, restrict our
discussion to the region v&2. It is convenient to intro-
duce v determined by v=v for v& 1 and v=v —1 for
1(v~2. In a noninteracting two-dimensional electron
gas at zero temperature with 1 & v~ 2, the lower spin state
of the n =0 Landau level will be filled and the upper spin
state of the same level partially filled. Since the
electron —LO-phonon interaction is essentially spin in-
dependent, all n =0 intermediate states will be forbidden
to an electron in the n =1 Landau level and lower spin
state, but only the fraction v of n =0 Landau levels of the
upper spin state will be forbidden to an electron in the
n '=1 Landau level and upper spin state. From this con-
sideration, it is expected that the- cyclotron-resonance
corrections for spin-up and spin-down electrons should
differ when v& 1 and v is not an integer, giving rise to a
"spin splitting" of the cyclotron resonance. This effect
should be particularly pronounced for A, =1 where the
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cyclotron-resonance conditions are relatively sensitive to
the n = 1 —n =0 coupling. (A spin splitting of the cyclo-
tron resonance can be expected for odd-integer values of v
because the highest Landau levels occupied by electrons of
opposite spin are different for v odd. )

It is less easy to guess, prior to calculation, how
polaron-polaron interactions will affect cyclotron reso-
nance. At large separations r two polarons will attract
each other with the potential

I
e /r

E'p (31)

(or, equivalently, Za/—r in polaron units) due to the
electron —LO-phonon interaction, and repel each other
with the potential e /e„r, giving a net Coulomb repulsion
of e /eor 'I.n our model we ignore this net repulsion. It
does not, by itself, affect the cyclotron frequency of the
gas. However, when the electronic wave functions of two
polarons begin to overlap there develops a short-range in-
teraction between them, resulting from exchange of virtu-

al LO phonons, which cannot be represented by a poten-
tial of the form U(r) in general, and which can, in princi-

ple, affect the cyclotron resonance. We shall shortly con-
sider the interaction of an electron in a n = 1 Landau level

with the sea of electrons in the n =0 Landau levels. This
interaction can be expected to be relatively important for
A, —1 since in that field region the n =1 electron has a
relatively high probability of emitting a virtual phonon.
In addition, interaction effects are expected to be favored

by a relatively high density of electrons in the n =0 Lan-
dau levels, since high densities provide a relatively high
probability of wave-function overlap between the elec-
trons.

To treat the cyclotron-resonance problem quantitative-
ly, it is convenient to write the Frohlich Hamiltonian in
terms of Landau-level creation and annihilation operators.
Let C„q create an electron in the Landau state P„q
given by Eq. (2). If we take as our zero of energy the un-
perturbed n =D Landau-level energy, then the required
Hamiltonian is

H =Hp+H'+ V,
where

Ho ——A, g nCtq C„q + gbt b„,
n, q„

with

V =a g' re ——g' v~ cos[k '( r; —r )]. .

[To see how V arises in Eq. (32) note that the more reahs-
tic Hamiltonian with electron-electron repulsion included
is the same as Eq. (32), except that V is replaced by the in-
teraction —,','-

J e 'E rj written in polaron units. Upon
subtracting —, g'e /ey;~ pur. suant to our neglect of this
interaction, we are left with —,'(1/e —1/eo) g'e /rj,
which, expressed in polaron units in Eq. (32), is V. ] Here,g' denotes summation over all pairs such that i&j

It is convenient to break up H', which we shall treat as
a perturbation on eigenstates of Ho, in the following way:

H —H) +H2+H3+H4,

Hi —— g vg[M„o( —k, q, )C„q 1, Coq b-„+H.c.],
nqx k

(33)

Hz= g va[Moi( —»qx)Co, q„-I„Ci,q b-+H c ]
q„, k

H3 —g v&[M„ i( —k,q„)C„q & Ci q b +H.c.]
n, q, k

n&0

If we denote the electron vacuum state by
~
0), then the

initial unperturbed states of interest have the following
foH11:

N

~4o(N)) ~0)= ff Coq, )0) )0) (ground state),

(34)

i@i(N)) i0)=Ciq i@o(N —1)) [0) .

I In, m, n, m

k,q, q„'

vi, M„(k, q„' )M„(—k,q„)

Cn q, +k C„q k Cm q C

H'= g vI, [M„(—k, q )C„q g C~q b

n, m, q, k

+M „(k,q )C q +I, C„q b-], (32)

In lowest order, Hi affects only electrons in the n =0
Landau level, whereas H2 and H3 affect only the electron
in the n =1 level. Clearly, H2 is responsible for the
polaron-resonance phenomenon. Let us therefore investi-
gate corrections to the energy of

~
Ni(N))

~
0) due solely

to H2, neglecting, for the moment, Hi+H3+H4+ V
Treating H2 in second-order %'igner-Brillouin perturba-
tion theory gives

(35)&=~ +(&—1) 'g~g(@o(N —1) ~(1—Co,q, Coq, ) ~@o(N —1)) ~Mo, (k) ~',
k

where we have used I Co, q —a ~ Co q 1, I =1. The exact value of the summation in Eq. (35) depends upon the set of q„
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values describing the occupied n =0 Landau levels in
~
@p(N —1)). However, for the overwhelming majority of possible

initial states
~
@o(N —1}),these values are sufficiently uniformly distributed that we can replace Cp & k Cp ~ k in Eq.

(35) by v, which is the probability that the expectation value of Cp & k Cp ~ k will be 1. (We shall use this replace-

ment henceforth wherever required. '
) Thus, Eq. (35) becomes

E —1
E=A,2+ gvk(ki/A, )exp( —ki/A, ),

k

which, as before, in the two-dimensional limit, becomes

E=A, + a f dki(ki/A, )exp( —ki/I, )=A, +E —1
(36)

Equation (36) is the analog of Eq. (21), the difference between them being the factor 1 —v, which is a consequence of the
Pauli exclusion principle. [In Eq. (36) the zero of energy is taken at —,

'
A, per electron above the lowest subband level at

zero magnetic field. ] As in the zero-density case, the splitting of the n =1 level at A, =1 is 0(a'~ ). However, if the
perturbation theory (WBPT) is continued to higher orders, one finds that at I, =1 every order of perturbation theory
contributes also in 0 (a'/ ), so that one must sum all terms to obtain the correct resonance behavior in the present model.

To see how this comes about consider the next order (fourth order) in perturbation theory. Here, an electron in an
n =1 level (gi ~ ) emits a virtual phonon, dropping into an unoccupied n =0 level (fp ~ k ); the phonon is absorbed by

an electron in an occupied n =0 level (1tp, },exciting it to an n =1 level (pi, +k ). A second phonon is then emitted

and reabsorbed to return to the initial state. The contribution is

(E —1) '(E —A, ) '(E —1) ' g vk vk5k k, Mip(k ',q„—k„)Mpi( —k', s„+k„)Mip(k,s„)Mpi( —k, q„)
k, k ',-

&&(@o(N—1}
I
(1—Co, q —k Co,q„—k„}Co,s Co,s„~ @o(N —1}) (37)

where k ' and k are the wave vectors of the two virtual phonons participating. It is easy to evaluate this contribution if
the sum on s is done first. The dependence of the product of the four matrix elements M in Eq. (37) on s„ is found
from Eq. (3) to be

exp i (k„—k» )s„
2 .

A,
2

Summing this on s„after replacing Cp, Cp, by v in Eq. (37) gives'

f ds„exp i (k» —k» )s„=—
A, 5(k» —k») .

277
(3&)

The sum on k» is now trivial, ' and the sums on k, and k,' can be performed in the two-dimensional limit as before. (No-

tice that for the virtual phonon of wave vector k ', although k„' =k„and k»
——k», k,' is independent of k, . ) What

remains is

(E —A, ) '(E —1) a A, (1—v)v f dgk f (kj /A, ) exp( —2k&/1, )=(a iP(1 —v)v/16)(E —A, ) '(E —1)
4m o 0 kg

(39)

When A, =1 this term is also 0(a'~ ) because each energy denominator is of that order. Higher-order terms are found
to obey the recursion relation

S(I+2)=—,'(vaA, ) (1+2/I)» 'S(I)/[(E —A, ) (E —1) ], (40a)

where, from Eq. (36),

S(1)=(1—v)aha'i /[4(E —1)],
and, from Eq. (39),

(40b)

S(2)=((1—v)va A, /16)(E —A, ) i(E —1) 2 . (40c)

The perturbed energy E is found by solving

1V

E —A, = lim QS(I).
N~oo I

(41)

Notice that if E —A, =0(a'» } and E —1=0(a'~ ) (A,

near 1), or if E —A, =0(a) and E —1=0(a ) (E well
away from the pinning region}, every term S(I) in Eq.
(41) is of the same order in a.

The series in Eq. (41) can be evaluated numerically by
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00 G
z Gg(R/z) =

I=0
(42)

where 6 =(E—1)S(1). Note that G is proportional to
1 —v and independent of E. The solution of Eq. (42) is

z G+R . (43)

A remarkable feature of Eq. (41) as v approaches 1 is
that, although, on one hand,

summing it exactly from I=.1 to I=N, where N is a suf-
ficiently large integer, and then approximating the
remaining infinite series by a geometric series. It is more
instructive, however, to choose a constant R such that
Eqs. (40) can be approximated by

S(I+1)=RS(I)/z, z =(E —A,')(E —1) .

[For large I, R =(vaA, ) /8e. ] Then Eq. (41) can be writ-
ten as

l.20

I .I 5

O
I .IO

5 I.O5

4J

o
I-IX

O

CJ

~ 0.95o

O~ 0.90

0.8 5

order + non-resonant terms
N

lim lim g S(I)=0,
N —+c v~( I

(44a) 0.80 I

0.2
I

0.4 0.6
I

' 0.8

on the other hand,
N

lim lim g S(I)=R .
v~( N~~ I

The result expressed in Eq. (44b) follows from Eq. (43)
and the fact that G ~ 1 —v.

The theory just presented can be "improved" by taking
into account, in second-order RSPT, H' H2 from —Eq.
(33) and V defined in Eq. (32). For v & 2 these terms shift
the unperturbed cyclotron energy from A, to I, , where

A, =A, +&&CR alan/—4(A1. ) —v, — ak, v m. /4,
1+1,

(45)

with &&cR defined in Eq. (14). Note that, because the
term proportional to (A, —1) ' cancels out the divergence
in ARcR as A, ~1, X is well behaved near A, =1. In ob-
taining Eq. (45), H' H2 is treated in —second-order RSPT,
and Vis treated in first-order perturbation theory.

A more accurate version of Eq. (41), which includes ef-
fects due to terms which are nonresonant at A, = 1, can be
obtained simply by replacing E A, whenever it—occurs by
E —A, in Eqs. (40) and (41). In Fig. 3 we compare the
cyclotron-resonance energy for A, =1 as calculated from
the lowest-order resonant term according to

E —I, =S(1),
and from Eq. (41) with A, replaced by A, as described
above. Both upper and lower branches are indicated.
[For A, =1, E —I, =O(a'~ ), so the off-diagonal part of
V contributes in order a ~ and can therefore be neglected.
However, for A, away from 1 where E —A, =O(a), cer-
tain off-diagonal parts of V contribute in order a. These
terms can be taken into account by removing them to
lowest order by a unitary transformation. ]

The large energy shifts induced by terms S(I) in Eq.
(41) for I & 1, which are indicated in Fig. 3, arise from the
shrinking of the energy denominators E —A, and E —1

as v~1. This shrinkage enhances the contribution of

FIG. 3. Comparison of results of two calculations of the
two-dimensional polaron cyclotron energy at A, =1 for both
upper and lower branches as a function of the filling factor v.
The curve marked "second order" is a plot of E solving Eq. (36).
The remaining curves include higher-order terms in v as well as
nonresonant zero-density terms as described in the text.

higher-order terms relative to lower-order terms not only
in the energy but in the perturbed wave function. Al-
though it is difficult to calculate the strength of the cyclo-
tron transition using the perturbed wave function, one can
expect that with increasingly strong admixture of unper-
turbed states (which admixed states do not connect to the
ground state by an optical matrix element), the cyclotron
transition should weaken appreciably as v approaches 1.
Thus the above discussion leads to the conclusion that the
cyclotron transition should become weak for v close to in-
teger values.

There appears to be no experimental evidence for such
an effect. '"' This suggests that the theoretical model
leading to Eq. (41) is at fault.

The problem with our model does not appear to reside
in the assumption of strict two-dimensional confinement
since recalculation of S(I) in Eq. (41) in the harmonic-
oscillator confinement model described earlier gives re-
sults similar to the two-dimensional case, although beth G
and R are smaller than in two dimensions.

More likely to cause trouble is our neglect of Coulomb
repulsion between electrons. Near integer values of v the
actual excited cyclotron state may, in the absence of pola-
ron effects but in the presence of interelectron Coulomb
repulsion, be a kind of exciton consisting of an excited
n =1 electron and its "left-behind" n =0 hole in a spa-
tially correlated state. ' Unlike the free-electron Landau
levels, the exciton states are not completely degenerate,
but form, rather, a band of nonzero width. ' For this
reason it seems possible that high-order terms in perturba-
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tion theory using excitons as unperturbed states may be
much less important than terms of similar order in Eq.
(41).

In this regard we note that impurity potentials can
broaden the cyclotron-resonance transition, an effect
which, by smearing out A, in the product of energy
denominators z appearing in the I & 1 terms of Eq. (41),
may also reduce the importance of these terms relative to
I=1.

Finally, it can be expected that, unlike the free-electron
Landau levels postulated in our model, Landau levels lo-
calized by impurity potentials will display polaron pin-

ning effects even at v=1 in second-order perturbation
theory. This occurs because a localized n =1 state which
has been optically excited from a nearby localized n =0
state (like bound impurity levels) has a nonzero polaron
shift in second-order perturbation theory, even when the
coupling is restricted exclusively to the single emptied
n =0 level (in addition to LO phonons). The second-
order perturbation-theory coupling between a free-particle
n =1 Landau level and any other single free-particle
n =0 Landau level (in addition to LO phonons), on the
other hand, vanishes in the infinite-volume limit. Thus an
n =1 Landau electron excited from a filled n =0 level

displays no polaron resonance in second order, as is evi-
dent from the fact that 6 in Eq. (42) is proportional to
1 —v.

However, unless the spacing of the two lowest subband
levels is very large compared to %col ~, the two-
dimensional approximation significantly overestimates po-
laron shifts.

At higher densities, v& 1, it appears that important er-
rors may be introduced by ignoring electron-electron
correlations and/or electron-impurity interactions in solv-
ing the polaron cyclotron-resonance problem. This is be-
cause of the enormous degeneracy of the eigenstates of
free, noninteracting electrons in a magnetic field and the
fact that the electron-phonon interaction couples these de-
generate states significantly if v is not small. Both
electron-electron and electron-impurity interactions re-
move some of this degeneracy and can thereby be expect-
ed to affect the polaron corrections in an important way.

In cyclotron-resonance experiments, the electron densi-
ty is usually held fixed and the magnetic field varied. At
low fields v, which, from Eq. (30), is inversely proportion-
al to the magnetic field, tends to be large. The small-v re-
gime (say, v&0.2) for interfaces with p-10" e/cm is
achieved at magnetic fields &20 T. Thus it would seem
that the zero-density theory presented in this paper may
be applicable for analyzing cyclotron resonance in ex-
tremely high fields and especially the polaron resonance in
GaAs/(GaA1)As interfaces of low electron density. As of
this writing the polaron-resonance experiment in these in-
terfaces remains to be done.

CONCLUSIONS

At low densities, v~~1, one can expect that polaron
corrections to the cyclotron resonance of mobile electrons
can be calculated quite well over a large range of magnetic
fields from a simple Frohlich-type model with eleetron-

impurity and electron-electron interactions neglected.
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APPENDIX

We wish to transform the integral equation defined by Eqs. (17a) and (17b) into a form suitable for efficient numerical
solution. A solution of the form

ce(k)=cvkMoi( —k, 0)f(ki)/(kJ /A)

is assumed, where f(ki ) is to be determined by substituting (Al) into (17) and solving. This substitution yields

(A 1)

(E Eos 5 1)f(k—i)=k—i/A—.+ g g I„( l )/(E ——,'A2 —nA,
' —2),

I n=0

2ikg l~

k2
»n(A —A)

5= —Eos+ 2~ & + g g vA Mon(l)
~

/(E —i ~ —n ~' —2) . .
I n

2l

kzlgI„(l )= vt e f(li ) exp i (n —1)(gt Pk)——
(A2)

(A3)

(A4)

Note that 5=0 for E =1+—,A, since the rightmost term in (A4) is equal in that ease to the RSPT eorreetion to the
ground-state energy. In general, 5 is given by

5=0.5aAV n. f dt(exp{ —[2—(E ——,
'

A, )]t j —exp( —t))/(1 —e ')'

More challenging is the evaluation of the sum on n in (A2). Our approach is to assume that for large n, say n & N, we
can approximate E —,'AnA—2b, y—repl, a—cing nAby li, then, we can rewrite the rightmost term in (A2) in the ap-
proximate form
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n=0
g g I„( 1 )/(E —

2 A, —li —2)+ g g I„( 1 )[1/(E —T~A, —nA, —2) —1/(E —
~ A, —li —2)] .

0
(A5)

Making the replacement

l~2 O
l

O
I k

and summing over n, we obtain

g g I„( l )=a f dlie ' f(lz) f dPexp e 'i' e
n=0 2m'

The integrand of the P integral can be expanded in powers of e '~. Since all terms vanish upon P integration, we have

g QI„(l)=0.
n=0

(A6)

We can also evaluate g I„( l ) for each n, obtaining
'n

a - kali.QI ( 1 )= f dli e ' f(lj ) f dPexp i(n —l)P—
2m'

l

Determining the square-bracketed integral by applying the expansion

2iki li
sing

exp( —i szi Pn)= g exp( img—)J (z),

we have
n

g I„( l ) =
, f dli z e ' f(li )J„

I

Our integral equation becomes, finally,

2k' li
A,

2

n
1 " ki4(E Eos —5—1)—f(ki ) —ki /A, +a g, f dlJ

—0 peal O

—1j~ /A, ~

e

xf(&i)J„ z [1/(E ——,'A, —nA, —2) —1/(E ——,'A, —li —2)] .

(A7)

This equation can be solved for f ( ki ), at given E, by iteration, at least for the range of A, in Table I. In obtaining the
results reported in Table I, we have replaced E —TA, in the energy denominators occurring on the right-hand side of
(A7) and (A4) by E Eos, a repla—cement which does not affect to order a the final value of E. The same replacement is
made in the integral defining 5. We find that N = 10 more than suffices for reaching five-place accuracy in E.

From Eqs. (16a), (17c), and (Al) we obtain

E —Eos=~'+ 21'—Eos+a g f, «. l~i.(k) I'/« Eos «' 1)+—a f, —«i —'e "' f(k. ),
n=1

(A8)

which can be solved self-consistently with (A7) to find E on either the lower or upper branch. Results are presented in
Table I.
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