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Influence of nonlinear conductance and cosy term on the
onset of chaos in Josephson junctions
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Chaotic behavior in a Josephson junction is investigated. Threshold curves for the onset of chaos in the
rf current-frequency plane are computed by means of Kolmogorov entropy. Both the nonlinear depen-
dence of the quasiparticle current I~( V) and the cosy term have been considered to account for previous-

ly reported experimental results.

Recently, a great interest has been addressed towards the
study of the nonlinear system describing an rf-biased
Josephson tunnel junction which can exhibit a chaotic
behavior. As is well known this can be related to the ap-
pearance of a strange attractor in the phase space. The
structure of the attractor, the power spectrum and the
threshold curves on the rf current-frequency plane for the
transition to chaos have been analyzed by both analog and
digital simulation. ' All these studies were performed as-
suming the simple resistively shunted junction (RSJ) model
in which the Josephson tunneling junction' is described by
an equivalent circuit consisting of the parallel of the junc-
tion capacitance C, the normal tunneling resistance R& and
the ideal Josephson element with a nonlinear current
Icsing. In recent experiments some discrepancies with
theory were observed. It can be reasonable to ascribe such
discrepancies to the differences between the actual Joseph-
son junction and the simple RSJ model. The essential
difference, as can be seen by the experimental current vol-
tage characteristics, is the strongly nonlinear quasiparticle
current branch Iz ( V) .

In the current work we report new results on the oc-
currence of chaos in Josephson junctions taking into ac-
count such a nonlinearity and the effect of the phase-
dependent contribution of the quasiparticle current, namely,
the "cosy term. "~

We assume the expression of I~( V) suggested in Ref. 7:

V nI (V)=
V2n + V2n

where Vo is a characteristic voltage (related in our case to
the gap voltage) and n the degree of nonlinearity. The best
agreement with the experimental I-V curve of high-quality
tunnel junction is found for n =10 and Ve=2b, /e. For low
temperatures it can be assumed that IcR&= (m/2)(A/e). '
The equation for an rf-driven Josephson junction can be ex-
pressed in terms of dimensionless variables as

28
P+ . —+&cosy +sing=ip+i~sin~t

p [(16/~')p]"+ i'"
(2)

where time is measured in a new scale
= (fC/2eIc) 'i2; P=2eIcCR~~ /t is the McCumber Param-
eter; ia=Ie/Ic and i~= It Ic are the normalized dc and rf
current, respectively, and co is the applied frequency normal-
ized to the plasma frequency ~~. This equation can be

rewritten in the form of three first-order equations:

V &2n

jp [( 16/~2) p]n +&2n

—sln~IIt + lp+ ji slnZ

Z =Cd

(3)

It is well known that the appearance of a strange attractor
implies that phase trajectories must enter into the same
phase volume where at the same time they diverge from
each other. s For the nonlinear system (3) the former con-
dition is fulfilled practically for all region of parameters of
interest since the phase volume reduces to

ef' BU ez 0
Qv gZ

As a criterion of divergence of the phase trajectories we
chose the positive sign of Kolmogorov entropy which is
determined by

K= lim k(v), k(r) = —ln
1 S'(r )

Y~ oo 1 +

where &(r) = [(pt —p, )'+ (v& —~2)']' ' is the distance
between two phase points (pt, u~) and (g2, vz) at the time

.9'(0) indicates the distance of the two points at r =0.
If there is chaos in the system neighboring points will

separate at exponential rate (K) 0). In the other case
(E & 0) we can have any periodic motion.

Solutions of Eq. (3) were generated numerically by the
fourth-order Runge-Kutta method for various values of the
parameters p, io, it, and co. For all data discussed here
there are 64 time steps per rf cycle. Starting from a given
initial condition [usually p(0) =0, v(0) =0], Eq. (3) is
computed up to r =30T (T=2vr/~). At least in nonchaotic
solutions such a time length is enough to neglect relaxation
processses. After that time a small perturbation of p and v
such that &(0)=10 3 is introduced and both perturbed
and unperturbed solutions are computed which determine
&(r) and k(r).

The dependence of k on the number of periods N for
m=0. 5, i~=0.7, ip=0 are given in Fig. 1 for three types of
initial conditions of g (0), u(0). It can be seen that k tends
to a value independent of initial conditions for large N.
Such a value is independent of the perturbation &(0) as
well. This implies that the distance between two points, ini-
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FIG. 1, Dependence of k on the number N of rf current periods

for p=25, co=0.5, i1=0.7, ~=0.5, n =10, N(0) =10 and dif-

ferent initial conditions g& (0), v (0): (0, 0) solid line, (10,10)
dashed line, ( —10, —10) dashed-pointed line. All quantities are

dimensionless.
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tially close to each other, increases exponentially with time.
For the determination of the threshold curves in the

i~ —cu plane we fix co and increase i~ by step Aij =0.02 and

compute k(N) at N= IOOT. To show how the positive sign

for k implies the onset of chaos we compute the Poincare
section of the system. This is shown in Fig. 2 for 10
periods of the rf current. The very large number of distinct
points in the phase plane corresponds to harmonics or
subharmonics existing in the system. These do not lie on a
line but in a region of the plane indicating the presence of
chaos (see, for example, Ref. 1). It is interesting to observe
that the introduction of additional nonlinearities in the sys-

tem led to a higher degree of randomness in the position of
the points on the phase plane.

In Fig. 3 threshold curves on the i ~-cu plane corresponding
to P = 25 and n = 10 are reported for different values of e.
The result using the RSJ model (n = 0, e =0) is also shown
(dashed line). The corresponding curve lies above all oth-
ers. The results of the computation for the RSJ model in-

FIG. 3. Onset of chaos (threshold curves) for ic 0, IS==25,

n =10, and different values of e. Dashed line refers to the RSJ
model (n=0, ~=0),

eluding the nonlinear dependence IJv(V) only (a=0) do
not agree with experiments. The corresponding threshold
curves in fact would imply the onset of chaos at too low

values of i ~. If we consider, in addition, the contribution of
the cosine term the situation changes quite drastically. For
values of e within 0.1 and 0.5 good agreement is found with

experimental results reported in Ref. 6. Let us observe that
while the location of the threshold curves in the i1-co plane
strongly depends on e it is much less sensitive to n for
n ~2.

In conclusion we have computed threshold curves for the
onset of chaos using the concept of Kolmogorov entropy.
The importance of considering a more realistic junction
model which takes into account the nonlinear quasiparticle
conductance has been demonstrated. Far from being con-
clusive, this investigation has shown that, for the agreement
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FIG. 2. Poincare section for P=25, 0)=0.5, i&=0.8, ~=0.5, n =10. (Dimensionless quantities. )
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with previously reported experimental results, the non-
linearity of I( V) is not sufficient unless a contribution of
the cos@ term is taken into account. Further attention
should be paid to the sign of cos$, which has been for
many years a debatable point (see Ref. 5 and references re-
ported therein).
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