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A semiempirical pseudopotential method is presented for calculating the electronic states in heavi-

ly doped semiconductors in terms of the one-electron Green's function. The present method is an

improvement on the previously published one. The theory is tested using experimental data on @-

type III-V compounds. It is shown that the impurity-band tails and the transport properties are well

described by the present theory.

I. INTRODUCTION

Description of the electronic states in terms of the
Green's function is a powerful tool for analyzing both op-
tical and electrical properties of heavily doped semicon-
ductors. The key factor affecting these properties is the
impurity-band tail which appears as a result of the heavy
doping. A number of earlier calculations' based on per-
turbation and propagator techniques have led to tails that
are cut off sharply. Kane has calculated the density of
states with the use of the Thomas-Fermi approach for the
potential fluctuation which has led to the Gaussian tail.
A disadvantage of this method is that simple exponential
tails are often observed experimentally. As the quantum
counterpart of the semiclassical theory of Kane, Halperin
and Lax have offered a minimum-counting method,
which is rigorous for sufficiently deep states. Sa-yakanit
and Glyde have improved the method with the aid of the
variational principle. Let us hereafter call the approaches
of Halperin-Lax and of Sa-yakanit —Glyde the HLSG ap-
proach. On the other hand, Bonch-Bruevich has dis-
cussed an approach based on the assumption that the po-
tential varies slowly enough. Then the fluctuation in the

energy of states mirrors closely that in the potential ener-

gy. Instead of solving directly the differential equation as
was done by Bonch-Bruevich, this author did the calcula-
tion- based on the diagram technique. The technique is
useful for taking into account various effects such as the
phonon scattering effect. Approaches by Bonch-Bruevich
and this author are frequently considered in this paper
and are called, hereafter, the Bonch-Bruevich-Takeshima
(BT) approach. It has been pointed out that the HLSG
approach and the BT approach offer the tail states that
are cut off much more sharply than those which have
been observed.

The assumption that the potential varies slowly enough
is useful in a heavy-doping range for states deep in the un-
perturbed band. For states around the unperturbed band
edge and in the band-gap region, however, the potential
variation is no longer slow, even in an effective sense. As
a result the fluctuation in the energy of states no longer
mirrors that in the potential energy. This is the weak
point of the BT approach. A solution has been provided

by a pseudopotential approach which has been devised in
a previous paper. In this approach the BT approach has
been extended to include the effect of the rapidly varying
potential with the use of an effective potential. This po-
tential, named the pseudopotential, has been determined
in a semiempirical manner and has been found to be use-
ful for description of the band tails. However, a disad-
vantage of the above pseudopotential approach, called,
hereafter, the previous ps approach, is that an unnatural
cutoff must be provided for the Green's function in order
to take into account the energy dependence of the pseudo-
potential. As a result we obtain the band tail that is cut
off abruptly at a low energy. Another disadvantage is
that the states around the unperturbed band edge cannot
be described well. For instance, structures observed in the
band tails, the conductivity data, and some of the Auger
recombination data cannot be explained.

This paper presents an alternative semiempirical pseu-
dopotential approach, called later the present ps approach,
which extends the previous ps approach so as to include
naturally the energy dependence of the pseudopotential.
Unnatural cutoff of the band tail never appears and a
wide range of the exponential tail is obtained. The ob-
served structures of the band tails are reproduced quite
well in the theory, especially at heavy-doping levels. The
conductivity data for the doping range above the Mott
transition are explained considerably well.

II. BASIC FORMULATION

In this section we describe briefly a formal but com-
plete form of the one-particle Green's function for the
states under the random distribution of impurities. A de-
tailed discussion can be found in Ref. 7. In the presence
of the randomly distributed impurities the retarded
Green's function is given as a function of two wave vec-
tors k and k ', one energy parameter co, and the positions
of the impurities R~, R2, . . . , R~,' N; is the number of

l

the impurities in a crystal of volume V. We write the
Green's function as G (k, k ';co). Let I (r) be a sum of
the screened impurity potentials U(r —R„)due to the im-

purities located at R„, i.e.,
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I (r)= g U(r„),
n=l

(2.1)

where r„=r —R„and we consider a single species of the
lmpUxltlcs. Thc QnpcrtUrbcd band energy Rt thc wave vec-
tor k is written as E(k) and is measured from the band
edge so as to be positive. Assuming the isotropic effective
nlass, wc give E(k)=III k /(2@I ). Wc obtalII '

where V =8/Br and 5~0+.
Now we consider an ensemble averages' ' of

6"(k,k ',ro) over the impurity sites, which is defined as

(6'(k, k ',CI)) = f dRIdR2 dR~6 (k k'm)

G (k, k';r0)

=—f dr exp[i{k k—') r]
V

I
(2.2)

co+i5 E(k—+i V ) —I {r)

with respect to the host lattice. The many-body theoreti-
cal treatment of the electron-electron interaction leads to
the screening of the Coulomb interactions between elec-
trons RQd impUr1tics Rs %c11 Rs bet%veen. : electrons. %c
have

(2.6)

6Ohi"(x)= U~'(r)
fZ fez',

(2.8)

where e is the electronic charge, co the static dielectric
collstaIlt of thc llost lattice, and A, 'tllc lllvcrsc sclccIllllg
length. For A. we consider the Thomas-Fermi approach
for simplicity. The interaction between electrons at rl
RQd r2 18 g1vcQ bg

2

U, (ri —r2)= exp( —A,
f
ri —r2 f ) . (2.7)

c'0
I
ri —rl I

It is convenient to define the dimensionless quantities

=6"(k,co)h(k —k ') . {2.3)

Here h(x) is defined as A(x) =1 if x =0 and h(x) =0 oth-
erwise, with x as a scalar or vector. The last step
represents the fact that the space uniformity, which is lost
under the random distribution of the impurities, is re-
stored under the averaged distribution giving momentum
conservation k=k ': 6 (k, ro) is the retarded Green's
function in the average impurity field, for which the rule
of the diagram method is known. That 6~(k, k', co)

tends to (6"(k,k', co)) as V—+00 has been shown in Ref.
11, where the impurity potentials screened in an exponen-
tial form have been assumed: The calculation is done
hereafter for this case.

We assume that Eq. (2.2) can be rewritten as

6 (k, k', r0)

6 (k,co)=
2 6 "(Q),

fZ feA,

6 "(Q)=—f dgexp[i gQ+yg(g)],

g{g)= f dx x Iexp[ i'"'{—)]x+igh(x) 1I, —

(2.10)

Q= [co—E(k)],
fZ fe2A,

Z I
h (x )= —exp( —x ),

fZf x

(2.13)

(2.15)

h(x) = U, (r) (2.9)
fZ f

e'X

with the use of x =A,r. Then 6"{k, ro) in the pseudopo-
tcnt181 approach 1s g1vcn Rs

(2A)

where I p'(r) is a sum « the pscudopotcntiais U"(I„),

(2.5)

The BT approach starts vnth assuming 7 =0 iQ Eq.
(2.2). Therefore Eq. (2A) indicates that the result of the
BT approach is directly useful by replacing U(r) in the
result with UI"(r). The analysis is useful under the con-
dition that the imaginary part of the pseudopotential is
zero or negative. The reason is found from the process of
calculating 6 (k,ro), given in Ref. 6.

Let us consider the ionized impurities of the valency Z

where n;=¹/V is the impurity concentration. In Sec.
III we see that h P'(x) can be written in a form

hp'(x) =h(x)+h "(x) .

Especially when we take h'(x)=0, we obtain the BT re-
sult. Our task in Sec. III is to find h "(x).

Equations (2.10)—(2.15) have been derived by consider-
ing the self-energy which includes all the terms of the
cIcct1oQ-1IDpQr1tg 1Qtc1action RQd thc lowest-order
Coulomb term of the electron-electron interaction with
the free-particle Careen's function being replaced by the
perfect one. Let a sum of other self-energy terms be

X,"„(k, co). Then we should replace Q in Eq. (2.11) by
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Although G"(k,co) in Eqs. (2.10)—(2.15) is a function of
Q only, G"(k,co) obtained under the replacement (2.17) is

a function of k and RI separately.

III. SEMIEMPIRICAI. PSEUDOPOTENTIAjL

8=GO (k,a))O~,

O~ =E{4+i V )—E(k), (3.3)

where Go (k, co) is the free-particle retarded Green's func-
tion

Go {k,RI)= (3.5)

GR(k, k.',co)=—Go(k, co}I dr exp[i(k —k') ~]T .

In this section we seek out the pseudopotential starting
with Eq. (2.2}. Let us define the operators

A =Go (k,R))I'{r),

wc collsldcr ollly tllc case of cok —I +0 Rnd ollllt 5 lll
the denominator. Let us define Qz ——(Z/

I
Z

I )Q,
x„=g

~
r —R„~, I „=g„' lexp( —x„)/x„, and I" in

terms of I I"=(e A, /eo)(ZI „+I „"). We obtain

iagk. 7 I „

—
2 aIIA, +2Qz-I „(Qz I.„P

where aII is the Bohr radius defined by aII fi eo——l(m'e2)
and 7 I „=BI'„/Bx with x=A, r. To neglect Qz in the
denominators offers thc basis fol' tllc pl'cvlolls ps Rp-
proRch.

%c can wr1tc

¹

~
V I"„~ = g ~(1+x„)exp( —2x„)

n=1Xn

+ g I I (1+x„){1+x„)
X@X@

Xexp( —x» —x»t) .

It is convenient to rewrite Eq. {3A) as

(3.6)
Let XI be the smallest of x„'s (n =1,2, . . . ,¹)and ro be
the Rvcragc sphcrica1 volUIDc pcr onc impUrity, 1.c.,

T= 1+8 +8 8 +1 1 1 I 4m'

3
I'on) = 1 (3.13)

(3.7)

The special case where the terms of the order higher than
the zeroth in 8 are neglected, i.e.,

(3.&)

, gives the BT approach. Therefore, we consider Eq. (3.7)
as a series expansion of T with respect to the small per-
turbation B(l—3) '. Especially up to the first order in
8(1—A) ' we obtain

Then we may have xl (xo and x» &xo for n&l, where
xo=kro. FRr outside 'thc spllcl'c of I'Rdllls Po~ thcl'c Inay
be a large number of x„'s with nearly equal magnitudes
bUt var1oUs directions. These vectors x„1n a SUI cancel
oUt each other. An RpproxiHlation hcI'c 1s to RSSUIC that
complete cancellation occurs on the second term of Eq.
(3.12). The same consideration applies also to k.7 I „ in

Eq. (3.11) and we obtain k. P' I"„=—k xlexp( —XI)/XI.
From Eqs. (2.5), (2.8), (2.16), (3.11), and the expression
just above, wc formally obtain

r

II "(x„)= agk 1 1 (1+x»)cxp(2x)
2 Z (Qz —1„)l x~

1 —A 1 8[1/(1 —A)]—
1

1 —A —(1—A )8[1/(1—A )]

Mg k'lI
XI

1 I+ exp( —x„)
X P!

I
cxp( —xl ) 5»1

Qz —I ~
(3.14)

Use of Eq. (3.9) in Eq. (3.6) and comparison of the ob-
tained equation with Eq. (2A) give

I ~'= I + (cok —I')O~ I

flak
—I +g$

where we define coq=co E(k) —We con. sider this equa-
tion as the basis of the pseudopotential approach. Si'nce

Eq. (3.10) is not useful at least for the case of mk —I =0,

where 5„1 is Kronecker's 5 and I „ is given later as a func-
tion of x„only. From Eq. (3.14) we should find II'(x).
Unfortunately, however, we cannot do this on account of
the Kronccker's 5 on the last term. Moreover, this term
can be positively imaginary so that the pseudopotcntial
approach is not useful. For simplicitly we omit that term
not1ng thRt thc tc~ 1S not very important 1n thc Rbso1Utc

IQRgn1tUdc»
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Now we give I „ in the denominator of Eq. (3.14). Let
us write

An approximation adopted here is to take an ensemble
average of I „'„over the impurity sites as follows:

i
I = g exp( —x)

i 1Xi

exp( —x„)+I"„, (3.15)

X I dRIdRI dR„ IdR„+I ' dR~. I „'„.

exp( —x ) .
i (&n)

(3.16)

where I'„'„ is a sum of the potentials due to all the impuri-

ties except at R„, i.e.,

Hct'c 'tllc prlIIlc on tllc Illtcg1'Rl syIIlbol 1ndlcatcs tlIat tllc
integration over R; covers the range except the sphere of
radius ro with center at R„: W'e have noted that 4Irro/3
is the average volume per one impurity. Thus I ~ is divid-

ed into the potential duc to the impurity at R„and the
potentials due to the surrounding effective medium. For
sufficiently large crystal volume V we obtain

cxp( —x„)+y+ [ (1—xo)exp(xo —x„)8(x„—xo)y
@5

+{1+xo)exp(x„—xo)8{xo—x„)—(1+xo)exp( —xo —x& }1

(3.18)

QsA,
h "(x)=—

2)Z
f

u(x) —I) {1+x)

[u(x) —II ] +4I) u(x) x

y exp( —2x )+ u(x} 1

u(x) +II

1u(x}=Qz ——exp( —x )—u(x) .
x

(3.20)

It should be noted that h "(x) diverges as x for x~0
and vanishes as exp( —x) for x~ao. As a result the
volume integral of h "(x), i.e.,

I dxh "(x)

is fInite. With the use of Eqs. (2.10)—(2.16) and the equa-
tions just above, the Greens function for the impurity
scRttcring 28 obtained. I.et us CR11 this approach thc-
prcscnt ps approach 1Q contiast Moth thc prcv1Gus ps Rp-

where 8(x)= 1 for x & 0 and 8(x)=0 otherwise.
As pointed out just below Eq. (3.10), Eq. (3.14) is not

useful for Qz —1„=0. In order to suppress the diver-
gence of h "(x„) we replace Qz —I'„ in Eq. (3.14) by
Qz —I +II) and take the real part of h "(x„)to be newly
dcfIllcd h (x„). Hclc 7/ Is choscll to bc a small poslttvc
quantity, which is determined empirically. %'c finally ob-
tain

proach which has been referred to in Sec. I. A special
case when we put h '(x) =0 is the BT approach.

Now we consider the criteria under which the BT ap-
prGRch Rnd thc pI'cscnt ps Rpploach Rx'c valid. Thc HT Rp-

prGRch 18 thc case ln tbc class1cal 12mlt; Thc potcntlal
change within one wavelength of a quantum particle
should be sufficiently small, i.e., 2m.A, /k «1 for a wave
vcctoi' k. FI'oIII tlIIS coIldI'tloII It Is clear tllat tllc BT Rp-

proach is not useful for deep tail states where all k states
arc important. Considering thc 8pccial case Yvhctc thc iID-

portant values of k are around the Fermi wave vector for
the unperturbed band, we replace k with kF, where kz is
the magnitude of the Fermi wave vector. Actually, the re-
quirement 2IrA, /k~&&1 seems to be too strong and we
may use 2IrA, /(4kF) &1 instead. On the other hand, the
present ps approach is useful under the condition that the
second term of Eq. (3.10) is a small correction. Thus
from Eq. (2.16), the condition is expressed as

(
h'(x)

( &»
~
h(x)

~

in an effective sense. Practically, this
condition is rewritten as aIIA, /2 & 1, as is found from Eq.
(3.19).

Let us restrict all the discussion hereafter to the case of
0 K for convenience. Considering in general multivalley
sclmconductors with valley number v, %'c have
kz (3' n;/v)'~ and A, =[——4vkFI(maII )]'~ on the unper-
turbed band model. Using these values me obtain the cri-
terlag

a~n»'&v'~' (3.21)

for the BT approach describing especially the states
around tlM Fermi lcvcl and
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a n.l/3&v —2/3
Qg El) (3.22)

for the present ps approach. It ls seen that for v= 1 all

the range of n; is covered by the BT approach and the

present ps approach while for v& 1 some range of n; is
covered by neither of these approaches.

IQ addition to thc 1Inpurity scattering wc consldcr thc
phonon scattering and the exchange energy. For the
former we consider only the lowest-order diagram shown
in Fig. 1. Taking into account the free carrier screening
of the electron-phonon interaction, we obtain the self-

energy X,p at 0 K as'

phonon scattering (the 8 terms); co,~ is the optical phonon
energy, E„~, the optical deformation potential, c the aver-
aged elastic constant, and (e') '=e„'—eo

' with e„as
the high-frequency dielectric constant of the host lattice.
For the exchange energy X,„we consider only the term of
the order lowest in the electron-electron interaction, as
shown in Fig. 1 and replace the free-particle Green's func-
tion in the diagram by the perfect Green's function. We
Obta1Q

~g(k~ )
e f ~

d 1
(k+q) +A,

2m. eok (k —q) +&

ReX,p( k, co)=—2m' &~ (k+q)' qo-
(k —q)' —q',

'd H )ln

(3.23)

X f dQImG "(0) (3.27)

ImX,~(k, co) = — [AH~(k, qo)+BH2(k, qo)],
A' k

which are useful for co &0. Here qz is the Brillouin zone
radius (assuming the spherical zone), qo

——(2m'co/A' )'~,
2 =E„»co,z/(16mc), and 8=e co,z/(4m*),

Ho(q) =
2 z z (&q +&),

(q2+ $2)2

(k+qo) +A,
Hi(k, qo) =2kqo —A, ln

(k —qo) +A,

(k —qo) +A,

using the screened electron-electron interaction, where

Qo [co——F E(—q)]eo/( eA)'w, ith coF as the Fermi level
measured from the unperturbed band edge: Actually, we
have used Eq. (2.10) as the perfect Green's function as an
RPP1OximatiOQ.

As is seen from Eq. (2.11), 6 (k,co) is a function only

of 0 in which k and co are included. This is an advantage
from the viewpoint of the computation economy. Howev-

er, the advantage is lost when we take into account

X,~(k,co) and X,"„(k,~). Actually, the effects of the pho-
non scattering and the exchange energy are not very im-
portant in the present paper. In view of this fact, we re-

place k in Eqs. (3.23)—(3.27) by kF for simplicity and we

have

60 E(k)= —,y .
e

(3.28)

(k+qo) +A,
Hz(k, qo) =-

(k —qo) +A,

I

(k —qo) +A,

(3.25)

co=
i
Z

)
ezra, Q/eo+E(k),

(fZ [Q+ —,'y) .
6'O

(3.29)

1

(k+q, )'+ A,
' (3.26)

Let us give the expression for the free carrier screening.
As discussed in Ref. 6, the host-lattice plus free carrier
screening constant e(q) is given, neglecting the retarda-
tion effect, as

.We have considered the nonpolar optical deformation po-
tential scattering (the A terms) and the nonpolar optical 4me

e(q) =co— X(q,O), (3.30)

X(q,~)= ——f 3 [F(k,q;co)+F(k, —q; —co)]

with

(3.31)

FIG. 1. I owest-order diagram of the phonon scattering or of
the exchange energy, where a dashed line represents the
electron-phonon interaction or the electron-electron interaction,
respectively; a full line represents the free-particle Green"s func-
tion.

+(k, q;a))= f dc@'Imo (k,co')Reg+(4+q, ~'+a)) .

(3.32)

Now wc adopt thc Tho1Tlas-FcrTm approximation, 1.c.,
take q —+0 in X(q, O). We obtain
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X(0,0)

&&2 f dQ' f dQ(Q' —Q)'~ ImGI (Q)

XRCGI (Q), (3.33)

where QF ——coro~/{e A, ). Here the suffix 1,' means that
the relevant Green's function is obtained assuming a value
A,

' for the inverse screening length. Equation (3.33) pro-
vides iterative calculation: Using A,

' a new value A, is ob-

tained until sufficient convergence is attained.
The density of states p(ro} is obtained from

p(r0) = ——f, ImG "(k,co),
(2n )'

which can be rewritten as

v2m*v ~Z ~A,

m Irl

(3.34)

n n„—n, '"Imo' 0, (3.35)

(3.37)

where Q„=c~/(e~A, ). It is considered that p(co) at
m~00 is just the value for the unperturbed band, i.e.,
(2m*/fi ) ~ V co/(2' ). From this we obtain the relation

OImG Q = —a (3.36)

as the necessary condition a given approach should satis-
fy. In fact it is easy to show that the condition is satisfied
for the BT approach. However, this cannot be shown
analytically for the present ps approach. The numerical
calculation shows that Eq. (3.36) holds approximately.
The deviation of the calculated value of the left-hand side
of Eq. (3.36} from the right-hand side value is small, i.e.,
within 10%. A correction is made by multiplying the ob-
tained Green's function with a constant value so that the
new Green's function may satisfy the condition (3.36).

The Fermi level coF is determined from the relation

Np

II; = drop(ro) .

hereafter to the case of 0 K and Z= —1; we assume one
spcclcs of 1111purltlcs and coIlsldcl Ionized donors and ac-
ceptors for the conduction band and for the valence band,
respectively. The effects of the phonon scattering and the
exchange energy are taken into account unless stated oth-
CDV1SC.

The value of II in Eq. (3.19) little affects calculated re-
sults if I) is small, i.e., below unity. This is natural since
the exponential term in Eq. (2.12) oscillates rapidly with x
around the value giving U(x)=0 and little contributes to
the integration in this range of x. From this fact we can
rather arbitrarily choose the value of rl. In practice we
use q =0.01.

First we consider p-type GaAS, for which we use the
heavy hole mass mH as IH/mo ——0.48' (mo is the elec-
tron mass in the free space), co——12.79,' the phonon pa-
rameters given in Refs. 14 and 15, and v= 1. Figures 2
and 3 show the theoretical results and the experimental
data on the density of states around the valence band on

p-type GaAs eath n; =5.4&10' cm and n;=9.9&10'
cm, respectively. These values of n; satisfy the cri-
terion (3.22) for the present ps approach: The criterion
(3.22) is rewritten as n; &3.6~10 cm . The full lines
and the dashed lines show the present ps results and the
BT results, respectively. The open circles show the exper-
imental plots, ' which have been obtained from the tun-

neling experiments at 4.2 K. The data are plotted so that
an experimental po1nt at an cncrgy level ly1ng dccp 1n thc
band may fit the value calculated for the unperturbed
band. The present ps approach well explains the experi-
mental band ta1ls 1n remarkable contrast eath the BT ap-
proach. However, for the present ps approach the struc-
tures in the band tails are not so evident as the observed

The conductivity o is given from Ref. 6 as

V8o=, f dk k [ImG"(k, a)F)]
3~ (m')I

vrhich is rewritten as

2v 2ve (Z (A,

3m A

X f dQ(Q~ —Q) ~ [ImG~{Q)]2. (3.39)

i

IV. NUMERICAL ANALYSIS AND DISCUSSION

In this section the Green's function obtained in the
preceding scct1ons 18 tested. Thc discussion 18 restricted

FIG. 2. Density of states around the valence band on p-type
GaAs with n; =5.4& 10' cm 3, a@here a full line, a dashed line,
and open circles show the results of the present ps approach, the
BT approach, and the experiments at 4,2 K, respectively.
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0 —0.0~ —O. l

l02I

IO'

FIG. 3. Density of states around the valence band on p-type
GaAs with n; =9.9& lo' cm, where a full line, a dashed line,
and open circles show the results of the present ps approach, the
BT approach, and the experiments at 4.2 K, respectively.

one in the impurity concentration range under considera-
tion. The main cause for the discrepancy may be the en-
semble average over the impurity sites wbich is taken over
the Green's function. For the calculation of the full lines
the effects of the phonon scattering and the exchange en-
ergy have been considered. The effects have been found
to be negligible on the band tails, although the effects are
not negligible on the conductivity (-10%).

Let us compare the present ps approach with-various
other approaches on p-type GaAs with t1 = 1 6 Q 10
cm, which satisfies the criterion (3.22). Especially in
this case use has been made of the inverse screening length
for the unperturbed band and iteration has not been done
although by the iteration A, is reduced by about 20%. Fig-
ure 4 shows the density of states calculated from the
present ps approach (a full line), the previous ps ap-
proach (a dotted line), the BT approach (a dashed-dotted
line), the Kane's approach (a dashed-double-dotted line),
and the HI.SG approach (a dashed line). The HI.SG line
is found from Ref. 4, giving the calculated result for
g' =0.5, the value of which corresponds to n; = 1.6
&10' cm . All the previous approaches except the pre-
vious ps approach give much smaller values of p(co) in the
band-gap region than does the present ps approach. That
the present ps approach shows a structure a little below
the unperturbed band edge agrees with the experimental
facts (see Figs. 1 and 2) and is in contrast with the previ-
ous ps approach which gives a monotonous change of
p(~).

Figure 5 shows ImG (0)'s, which are calculated from
the present ps approach (a full line), the previous ps ap-
proach (a dashed-dotted line), and the BT approach (a
dashed line) on p-type GaAs with n; =1. 6)&1 0' cm
The effects of the phonon scattering and the exchange en-

ergy have not been considered. It is seen that tbe present
ps approach gives a peak of —ImG (0) for fl &0 in con-
trast with both the previous ps approach and the BT ap-
proach. Considering that the existence of the peak is a
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FIG. 4. Density of states around the valence band on p-type
GaAs with n;=1.6&10' cm 3, which is calculated from the
present ps approach (a full line), the previous ps approach (a
dotted line), the BT approach (a dashed-dotted line), the Kane's
approach (a dasbed-double-dotted line), and the HLSG ap-
proach (a dashed line).

FIG. 5. Img (Q) calculated from the present ps approach (a
full line), the previous ps approach (a dashed-dotted line), and
the BT approach (a dashed line).



30 SEMIEMPIRICAL PSEUDOPOTENTIAL APPROACH TO. . .

IO

IO2—

IO

IO

p
—type GQAS

P
I

= I.6 X I 0 @IT) ~IS

60
/

/50—
/

/
&n 4o /

/l'

F 30-

20

lo

p —type GQp

0 I i I I i i i I i » ~ I

—2.0 —l.5 —I.O - 0.5 0 0.5 I.o IO IS IO2O

n~ (crn' )

I02I

FIG. 6. ImG "(0) calculated from the present ps approach

taking into account (a full line) and neglecting (a dashed-dotted-
line) the effects of the phonon scattering and the exchange ener-

prerequisite to giving the structure of p(co), the present ps
approach is more rigorous than the other two appr'oachcs.
In the previous ps approach the cutoff of ImG (0) is
provided at 0=—5y so that the condition (3.36) may be
satisfied. In contrast, this artificial cutoff is not necessary
in the present ps approach.

Figure 6 shows ImG (0) for the present ps approach,
where the effects of the phonon scattering and the ex-

change energy are considered for the full line and not con-
sidered for the dashed-dotted line. The effects are seen to
be unimportant at low values of 0 so that the band tails
are little influenced by the effects. The effects are impor-
tant especially around Q=y. It is a purely analytical re-
sult that in the BT approach ImG (0) is zero in the
range Q & y unless the phonon scattering effect as well as
the exchange energy effect is considered. Empirically,
this is the case for the previous ps approach and for the
present ps approach. The role of the exchange energy is
to cause the energy shift toward the lower-energy region.

Let us consider the drift mobility p of carriers, which is

given from Eq. (3.39) as p=o/(n;e) Fi.gure 7. shows the
theoretical results and the experimental data of p on @-

type Gap. Tlm full line and the dashed line show the re-

sults of the present ps approach and the BT approach„
respectively, which are obtained using IH/mo=0. 54, '

. eo ——10.75, ' and v=1. The dashed-dotted line and the
open circle show the experimental results at low tempera-
tures (-4 K). The criterion (3.22) corresponds to
n; &1.0&10 cm so that the present ps approach is
useful in the range of n; where the experimental data are
available. In fact, the value of p shown by the open circle
is explained by the present ps approach. The experiments

FIG. 7. MobE1Ety p vs Ptg En p"type GaP) which Es obtaEned

from the present ps approach (a full line), the BT approach (a

dashed line), and the experiments (an open circle and a dashed-

dotted line).

show that the mobility change with n; around 10' cm
is very rapid. This suggests that the Mott transition
occurs somewhere in this concentration range. The sug-

gestion is supported by the fact that the critical impurity
concentration n, -of the Mott transition is calculated from
the formula' a~n, '~ =0 25 to be. 1.4&10' cm . On

the other hand, neither the ps approaches nor the BT ap-
proach can explain the rapid increase of p. This is under-

stood from the fact that the Green's function has been ob-

tained under the ensemble average: No mechanism of the
Anderson localization is included. In contrast, the present

ps approach is expected to be powerful in the range of
n; & n, for explaining the experimental data, as shown by
one open circle only. At present wc have no data avail-
able for supporting this view over a sufficiently wide

range of n; &n, Unfor. tunately, existing data' '9 of n

type Si and n-type Ge at, low temperatures are not avail-
able for n; &n, since the criterion of neither (3.21) nor
(3.22) is satisfied. Nevertheless, the present ps results

agree qualitatively with the experimental fact that p is

nearly constant for n; exceeding n, up to a value by about
one order of magnitude larger than n„beyond which p
decreases with n; It is conc.luded therefore that the
present ps approach offers a powerful tool for analyzing
the physical properties of heavily doped semiconductors.
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