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Microscopic mobility
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An explicit formal expression is obtained for the energy-dependent microscopic mobility of a
disordered system of independent electrons. It is this mobility which gives the average drift velocity
of electrons of a given initial energy in response to an electric field. Both this microscopic mobility
and the more familiar microscopic conductivity are local in energy. The microscopic mobility is
proportional to the energy derivative of the microscopic conductivity, not to the microscopic con-
ductivity itself, which leads to the scaling relation s =v+1, where s is the conductivity exponent
and ~ the mobility exponent. The absurdity of a mobility divergent at the mobility edge leads to the
restriction s ) 1. In the presence of interactions, values of s & 1 can occur. If a quasipartjcle repre-
sentation is valid, 0 & ~ & s and the density of states diverges as the mobility edge is approached from
the extended-state side with an exponent u = [~+(1——s)]. The microscopic mobility provides a
dynamical basis for the introduction of the hole concept into the theory of strongly disordered ma-
terials. Comparison with the thermopower then leads to a deeper understanding of the nature of
holes in disordered materials. A carrier representation can then be derived for transport in disor-
dered semiconductors.

I. INTRODUCTION

The macroscopic dc electrical conductivity of a disor-
dered system can be written as

I

oM = f dE o(E) B

BE

in the independent-electron picture. ' In (1) o(E) is an
energy-dependent, microscopic conductivity and f is the
occupation number of a single-particle state of energy E.
In obtaining (1) via, e.g., the Kubo formalism, the
dynamical effects of the electron-electron interaction, the
electron-phonon interaction, and spin-flip scattering have
been ignored. In the low-temperature limit, when the con-
duction electrons are degenerate, Eq. (1) reduces to
o~ o(EF). o(E——) has been studied in great detail in re-
cent years in the context of localization theory, and for
disordered metallic systems much progress has been made
in understanding the behavior of o (E) within the
independent-electron picture ' as well as the modifica-
tions of o(E) and reinterpretation of (1) following from
the inclusion of the omitted interactions.

Far less attention has been devoted to the fundamental
transport theory of disordered semiconductors. In con-
trast to the metallic case, there are many experiments car-
ried out on semiconductors in which it is more convenient
or even necessary to focus on carrier mobility rather than
conductivity. Consequently, one finds in the semicon-
ductor literature, ' equations of the form

oM ——g f dEn (E)ep (E)f (E), (2)
a

where a is a band index (a=c for the conduction band
and v for the valence band), n (E) is the density of states
per volume, p, (E) the microscopic carrier mobility, and
f (E) the carrier occupation number, the carriers being

holes in the valence band and electrons in the conductior.
band. The microscopic carrier mobility gives the averag(
speed v~(E) obtained by carriers of given energy in lineai
response to an electric field F,

v~(E) =p~(E)F . (3

The conductivity mobilities P are the weighted average'.
of the microscopic mobilities

(4a

Oa=X ega

X = f dEn (E)f (E),

f dE n (E)p~(E)f~(E)

f dE n~(E)f (E)

(4b

(4c

(4d

p, (E)=o (E)/en (E)k& T .

However, (5) cannot be correct in general because in th&

absence of interactions, p (E), o (E), and n (E) must al
be temperature independent. Finally, how does one intro

Drift mobilities measured in injection experiments of vari
ous kinds are also defined as in (4), but with f~(E) a none
quilibrium carrier distribution. This conceptual struc
ture, developed for crystalline semiconductors, has beei
carried over to the theory of disordered semiconductors. '

In the process, important issues have not been addressed.
For example, what is the general expression for the mi

croscopic carrier mobility defined through (3) analogou
to that obtained. through the Kubo formalism for o(E)'.
What is the general relation between the microscopic car
rier mobility and o(E)'? Mott and Davis' have proposei
for disordered semiconductors, when f (E) is th~

Boltzmann distribution, that
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duce the hole concept for disordered systems to which
COQVCDtlOQR1 bRQd thCO~ dOCS QOt RPPlfP

We give definitive answers to the above questions in the
present paper for systems of independent electrons, ignor-
ing by dynamical effects of the Coulomb interaction the
electron-phonon interaction and spin-flip scattering. Us-
ing the Kubo formalism we are able to define and obtain
an exact expression for the microscopic mobility for elec-
tron states p{E),which gives the average velocity v(E) in-
duced in electrons occupying states of energy E by a field
F

brium, but holds for any initial state describable by
f=f(H) and therefore stationary in the absence of in-
fCI'RQtlOQS. QP hRS R SIDR11 QCgRtlVC 1IRglQR~ PRIt —I,A.
N and Q are to be -taken to infinity and tz to zero in such
a way that n =X/Q remains fixed and the number of
eigenvalues of H in an energy range Irltz remains of order
¹ The dc conductivity osI(0) =cr~ is obtained by letting
the real part of co tend to zero before tz in (8).

Wc liow write olIt (8) cxpllci'tly lfl thc I'cpl'csclltRtloll
generated by the eigenfunctions of H, fatti.

v(E)=p(E) F .

We find the relation
me A'2

g vkivtk5a{Ek EI—) (10)

(E) ~(E) do'(E)

between p, and cr(E). The relation (7) has important im-
phcations for scaling behavior in the vicinity of a mobihty
edge. One can show, for example, that the conductivity
CXPOQCQt IQSt CXCCCd OX' CqUR1 QQ1tg. ThC m1CI'OSCOPlC

mobility then provides a direct route for the introduction
of the hole concept in the presence of arbitrary disorder.
We find that states are electronlike when do(E)/dE is
positive and tM(E) negative, and holchke when do(E)/dE
is negative and p(E) positive. Thus one has electrons in
CXtCQdCd StRtCS RbOVC R IOb111tg CdgC RQd h61CS 1Q CXtCQd-

ed states below a mobility edge, as is relevant to disor-
dered semiconductors. We show that this dynamic cri-
terion for the classification of states is related to the sta-
tistical classification provided by the thermopower. Sim-
ple rules follow for the relations between quantities de-
fined for electron states and for carriers.

A SCR11Ilg rC1Rt1OQ hOld1Qg Rt tbC IDObllltg CdgC bCtVfCCQ

the exponent for the microscopic mobility and the micro-
scopic conductivity follows from (7). It implies that the
conductivity exponent cannot fall below unity. In the
presence of interactions, however, it is known to fall
below unity. '1 If a quasiparticle representation is valid
and the conductivity exponent falls below unity, then one
infers from (7) that the density of quasiparticle states
must show scaling behavior with a negative exponent.

In sum, the microscopic mobility is a useful and power-
ful coliccpt 111 tllc theory of dlsoldcrcd 111Rtcrials.

Consider a system of N-independent electrons in a re-
gion of volume Q. Its macroscopic electrical conductivity
tt~(co ) Rt flcqucIlcy co cail bc cxprcsscd Rs

2 Q

ojtI(co)= . J dte ™~tTrIv(t)[f, F]I . (8)

In (8), r is the one-electron position operator, v(t) is the
OQC-ClCCtI'OQ VCIOClt;Y OPCI'RtOI Rt tlmC t 1Q thC 1QtCIRCtlOQ

representation, and f is the occupation operator. If H is
the one-electron Hamiltonian, f can be taken as an arbi-
trary function of H. The eigenvalues of f give the occu-
pation numbers of the corresponding eigenstates of H
when the electric field is initially turned on. The theory is
not constrained to initial states of tllcrnlodyllallllc cqlllll-

The expression (12) for tr(E), or an equivalent one, has
been used as the starting point of many investigations of
the influence of disorder on the energy-dependent conduc-
tivity. ' The specific results of interest here are that in
thC 1SOtrOP1C CRSC

o {E)=rr(E)I,

o(E) shows scaling behavior above (or below) a mobility
CdgC E~~

tT(E) ~ (E —E, )',
and vanishes below (or above) it in dimension d~2, as
showll 111 Fig. 1. Tllc stloIlg energy dcpclldcllcc of tr(E) 111

{15) is associated with the fractal character' of the gk
with energies Ek near E, on length scales less than the
fluctuation length g'(E),

g(E) ~ (E E,)—
The conductivity o.(E) is related to g through'

(E)~ g
—(tI —&)

s =(d —2)v (18)

holds fol' tllc
'
cxpollcllts. Fxpanslon of v 111 powers of

d —2 gives

In (10),f(Ek) is the occupation number of state k. The 5
function 5 {Ek—EI) is to be treated as a distribution in
the sense of Schwartz, that is, as a sequence of good func-
tions (Lorentzians in this case) of width fia decreasing to
zero. ' The formula (10) can be co»erted to Eq. (1) by
inserting the factor

E E —Ek ——I {11)

inside the summation in (10), thus obtaining

o(E)= +5p(E Ek)vklvi—k5 (Ek —EI) (12)
k, I

for tr(E). It is essential to recognize that the width a of
5 (Ek EI) in (10—) is taken to zero before 5II(E —Ek) is
1QSCrtCd SO thRt
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FIG. 1. Energy dependence of the dc conductivity o.(E), Eqs.
(2), (12), (14), and (15), is shown for s & 1, =1, & 1 near the mo-
bility edge E,.

pressed as proportional to the inverse effective mass aver-
aged over occupied states with the appearance of occupied
states contributing to the response of the metal to an ap-
plied field. However, because the inverse effective mass is
the derivative of the electron velocity with respect to the
wave vector, an integration by parts can be made which
converts the average of the inverse effective mass over oc-
cupied states into an average of the velocity over the Fer-
mi surface, thus showing that only states at the Fermi
surface actually contribute to the current, despite appear-
ances. An analogous resolution of the apparent difficulty
with (21) is now shown to hold.

I.et us return to Eq. (1) and integrate it by parts. Tak-
ing the lower limit of integration below the E-shell energy
implies that o(E) vanishes, and taking the upper limit of
integration at infinity implies that f(E) vanishes, with the
result

v=(d —2) (19) crM= f dE f(E) . (22)

through fifth order. ' Thus our best estimate for the
value of s is

s=1, (20)

independent of dimension. However, qualitative argu-
ments and numerical studies of v give values of s different
from (20), both below and above unity. '

III. MICROSCOPIC MOBILITY

Time-reversal invariance implies that in the absence of
an electric field F the average velocity of all states Qi of
energy E~ ——E must vanish. Suppose now that F is turned
on adiabatically. Independent electrons initially in those
states would acquire an average velocity linear in F if it is
sufficiently small,

v(E) =y, (E) F, (6)

where p, (E) is the microscopic mobility for electron states
of energy E. We shall later derive an explicit expression
for p(E) from linear-response theory, i.e., the Kubo for-
malism. Now, we explore the consequences of the ex-
istence of the relation (6). The total current density in-
duced by the field is obtained from (6) as follows: by mul-
tiplying by the electron charge, by the occupation number
f(E) for states of energy E which, we stress, can be arbi-
trary, by the density of states per unit volume n (E), and
then by integrating over energy. An expression closely
analogous to Eq. (2) follows for o.M.

PM ———f dE n (E)eIJ,(E)f(E) . (21)

Equation (21) is of a form familiar to those who have
been actively concerned with transport in semiconductors,
but it can be puzzling to those familiar primarily with
transport in metals. It appears from (21) that in the de-
generate ease, carriers below the Fermi energy Ez contri-
bute to the conductivity, which is patently absurd. How-
ever, as we shall show below, the absurdity is only ap-
parent and not real. An exactly analogous situation
occurs in the high-frequency conductivity of a metal in
which the plasma frequency enters. The latter can be ex-

Because f(E) can be taken as an arbitrary function of en-

ergy, the factors multiplying f(E) in the integrands of
(21) and (22) can be equated, yielding (7):

Inserting (7) into (21) and integrating by parts reproduces
(1), showing in analogy with the case of the plasma fre-
quency that the contribution of states below EF to the
current in the degenerate case is only apparent and not
real. Nevertheless another apparent contradiction follows
from (7) which cannot be resolved through the use of
properties of the occupation number.

We integrate (7) to obtain

o (E)= —f dE' n (E')ep, (E') . (23)

f(H) = 6p(E H), —1V

N(E)
where

(24)

N(E) =An (E) (25)

is the total density of states. Linear-response theory then
gives for the average velocity adiabatically induced among

Equation (12) shows that o(E) is a local function of ener-
gy, containing contributions only from states on the ener-

gy shell E and varying smoothly with E except at a singu-
lar point like E,. Equation (7) implies that p, (E) is also a
smooth, local function of energy. Equation (23) then
seems to imply that cr(E) is nonlocal in energy, contra-
dicting both intuition and Eq. (12). Once again the con-
tradiction is only apparent. The integrand on the right-
hand side of (23) is a total derivative, so that the only net
contributions come from the limits of integration and, in
particular, the upper limit because the integral vanishes at
the lower.

We now explore these relationships between p(E) and
cr(E) more explicitly. To derive an explicit microscopic
expression for p(E), we consider the system of N elec-
trons initially in a microcanonical ensemble centered at E,
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the electrons by a field F,

v(E) = f dt e 'TrI v(t)[f F] J F, (26)

mediately yields (12), a completely local expression, be-
cause the integrand is a total derivative.

IV. SCALING RELATIONS
where v(E) is the same quantity that enters (6). The cy-
clic invariance of the trace permits us to write

p(E)= . f dte ~'Tr[[v(t), 'rrf] (27)

with f specifically given by (24) in this particular in-
stance. In the representation diagonalizing H, (27) be-
comes

p(E)= — +5p(Ek E) — 5 (Ei Ek) .—(28)
2~eA vk~ VIk

E, E„-
For the turning of the field to have been adiabatic, f (H)
must be smooth on the energy scale defined by iria so that
Eq. (13) must hold in the present case as well. Inter-
changing the dummy indices k and l in (28), making use
of time-reversal invariance as well as hermiticity, we can
rewrite (28) as

5P(Ek E) 5P(Et —E)——
X(E) ~ E,—E,

+ vklv!k5a(+I Ek } ~ (29)

In view of (13), the summand in (29) is nonvanishing only
for values of (Et Ek) much sm—aller than A'p, the width
of 5p(Ek E). The f—irst factor in the summand therefore
reduces to an energy derivative

—n.eR d5«k —E)
p(E)= - g vk(vg5 (Et Ek) . —

N(E) k t dE
(30)

with f once again an arbitrary function of H. Introduc-
ing the representation diagonalizing H and integrating
over time leads directly to (21), with p, (E) given by (30).
Thus (21), intuitively obvious from (6), follows directly
from linear-response theory.

The locality of p, (E} in energy is clearly displayed by
Eq. (30) as is that of o(E) by (12). Moreover Eq. (7) is a
local relation between these local quantities. Substitution
of (30) into (23), an apparently nonlocal expression, im-

This is the desired microseopie expression for the micro-
scopic mobility. Comparing the two microscopic expres-
sions, Eq. (12) for the microscopic conductivity and Eq.
(30) for the microscopic mobility, one sees that they are
related by Eq. (7). Whereas Eq. (7) had previously been

. derived by comparing two expressions, Eqs. (1) and (21)
for the macroscopic conductivity crM holding for arbitrary

f (E), we have now demonstrated that Eq. (7) holds at the
level of the dynamic processes underlying the linear
response to a field.

All that remains to complete our analysis of p, (E) is to
derive Eq. (21) via linear-response theory. Returning to
Eq. (8), we pass to the dc limit Redo «a and once again
utilize the cyclic invariance of the trace. The result is

OO

FrM ——. f dt e 'Tr[[r, v(t)]f], (31)

We have seen in Sec. II that the conductivity cr(E)
scales with energy near the mobility edge, Eq. (15). If
that is true for o(E), it is also true for p(E), where

p(E) =p(E}1 (32)

in isotropic materials. Let the mobility exponent be z,
that is,

( p(E)
~

-(E E, ) —. (33)

Equation (7) imposes a scaling relation on the exponents s
and 'T, viz. ,

s =&+1 (34)

because n(E) is smooth at E, for independent electrons.
The cases s & 1, s= 1, and s & 1 thus correspond to v. & 0,
v.=0, and ~&0.

We can immediately rule out the case s & 1 on physical
grounds because v&0 implies that p(E) diverges at E, .
That would imply, according to (6), a divergent carrier
velocity for carriers at the mobility edge in a small electric
field. Inasmuch as the extended states continuously ap-
proach the localized states on the other side of the mobili-

ty edge, an infinite drift velocity would be absurd. We
therefore arrive at the restriction

~&0, s&1. (35)

n(E) ~(E E,)"— (36)

near E, on the extended-state side. Equation (35) is then
replaced by

s =u +v+1 .

Equation (35) is replaced by

(37)

(38)

A value of s jess than unity implies a negative value of u,

Arguments or calculations applicable to the present case
of a system of noninteracting electrons moving in a static
potential which yield values of s less than unity must be
incorrect. If a value of s & 1 were to be observed experi-
mentally at a mobility edge well separated from the Fermi
energy, we could infer that electron-electron interactions,
electron-phonon interactions, spin-flip scattering, or some
combination of these is playing a role in the conductivity.
In the presence of interactions, the entire single-particle
formalism must be replaced. However, the replacement
can occur in stages. In the first stage, a quasiparticle for-
malism is valid after the introduction of interactions. '

Both Eqs. (1}and (21) still hold, with f(E) the quasiparti-
cle occupation number and n (E), p(E), and cr(E) poten-
tially strongly influenced by the interactions. Equation (7)
must also still hold, but Eq. (34) can no longer hold if
s&1. We immediately infer that when s&1, the quasi-
particle density of states n (E) must show scaling behavior
at E„i.e.,
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u = —[r+(1—s)], (39)

Q )—1

Equations (40) and (41) imply that

0&~&s,

(41)

(42)

i.e., that s is an upper bound on v. In the second and final
stages, the quasiparticle formalism does not hold, Eqs. (1)
and (21) are no longer simple integrals over energy of
quantities local in energy, and our fundamental equation,
Eq. (7), can no longer hold. As a consequence, neither Eq.
(34) nor its generalization, Eq. (37) can be expected to
hold.

As yet, no experimental determination exists of any
value of s at a mobility edge well separated from any oth-
er mobility edge and from the Fermi energy, let alone a
value of s & 1. However, a power-law dependence of o(E)
near Ez, o(E) o:

~

E E~ ~' ha—s been inferred in doped
crystalline semiconductors at the metal-nonmetal transi-
tion. The value s—=0.5 in uncompensated samples has
been imputed to electron-electron interactions. ' A value
of 0.5 would also be obtained for spin-flip scattering. s
increases to about 0.8 in compensated samples. It is im-
portant to note that at the metal-nonmetal transition, the
mobility gap vanishes. The case we have considered, that
of a mobility edge well separated from any other mobility
edge by a mobility gap, is quite different. The dip in the
density of states at the Fermi energy' at the transition is
presumably the precursor to the Mott-Hubbard gap. The
singularity in n(E) at E, we would predict when s&1
would thus seem implausible on the nonmetal side of the
transition. There could well be a crossover in the doped
semiconductor from s =0.5 at the transition to s ) 1 on
the nonmetal side.

Returning to the independent-particle picture, Mott has
proposed in the past that o(E) has a quasiuniversal step of
magnitude' '

1 e

3H iris'
(43)

at E, in three dimensions. Equation (43) implies that
s=0, violating Eq. (35). A conductivity step is thus im-
possible in the single-particle picture. However, if we ac-
cept the field-theoretic results [Eq. (20)] for s as correct,
namely, s=1, then ~=0 and the microscopic mobility ei-
ther has a step or goes as an inverse logarithm. The step
would be nonuniversal. For small disorder do(E, )/dE is
inversely proportional to 8"", where 8' measures the
strength of the disorder potential and the value of x has
been estimated to be 2. ' In the case where the mobility
edge continuously approaches the band edge as the disor-
der vanishes, n (E, ) is proportional to W", where y =2.'
Thus the mobility step increases as 8" '"+~' with de-
creasing disorder, 4 being a reasonable estimate for x +y.
In view of Eq. (21), a mobility step is sufficient to produce

that is a peak in the density of states at E,. o(E) must
remain finite at E„so that

s&0,
and n (E) must remain integrable at E„so that

all the qualitative features produced from (1) by a conduc-
tivity step. An inverse logarithm would be essentially as
effective.

A. Statistical considerations: Thermopower

Consider a system with a given ground state. An excit-
ed state with changes of occupancy in the one-electron
states can be said to have holes in the states previously oc-
cupied in the ground state and particles in the previously
unoccupied states, a notion which goes back to the begin-
nings of quantum inechanics. This notion found a most
direct application in the theory of the thermopower of
crystals in which the negatively charged electrons have
been shown to contribute negatively and the positively
charged holes positively, the distinction being only wheth-
er the states in question are above or below the chemical
potential or Fermi energy EF.

Heuristic derivations by Cutler and Mott and by
Fritzsche show that the theory of the thermopower is un-
changed in strongly disordered systems. They find that
the thermopower S is given by-

S = dE o(E)
—kg E Ep-
eM kgT BE

(44)

In (44), cr(E) and ( Bf/BE) are positive (i—n thermo-
dynamic equilibrium), so that states with E &EF (elec-
trons) contribute negatively and those with E &EF contri-
bute positively (holes).

It is a simple matter to derive (44) from rigorous trans-
port theory. The general theory yields

S=- Li2 EF
(45)T L() e

V. HOLES IN DISORDERED MATERIALS

One must know which of the many beautiful and im-
portant results of the electron theory of solids derived ex-
plicitly for crystalline materials with at most weak disor-
der survive the introduction of disorder of arbitrary
strength. The hole concept is of particular importance for
disordered semiconductors. The introduction of the hole
concept proceeds along two avenues for crystalline materi-
als, statistical and kinematic or dynamic. In the statistical
considerations, one considers holes simply as unoccupied
electron states. This is in itself sufficient for the proof
that holes contribute positively to the thermopower and
electrons negatively. On the other hand, in metals at low

'

teinperatures, where the kinematics and dynamics of the
particles at the Fermi surfa'ce dominate the properties of
the material, the statistical argument becomes ambiguous,
as portions of the Fermi surface can bound either regions
of occupied states from above or regions of unoccupied
states from below. The ambiguity is resolved by kinemat-
ic or dynamical considerations which, while remarkably
rich in their consequences, depend in an essential way on
the periodicity of the crystal. In Sec. VA, we review
briefly the known statistical considerations carried out
through use of the thermopower. In Sec. V 8, we use Eq.
(6) as a basis for dynamic considerations and show how it
relates to the statistical considerations of Sec. V A.
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g « )ki«. J 4I @«i E—k)
Q

L, = —ev„, Lz ——,
' (Hv„+v„H) .

Inserting (47) into (46) yields

L11 NM t

df-«k)
~Ek

(46)

(47)

(48)

L12 ——. E0. E E (49)

with o(E) given by (10). Inserting (48) and (49) into (46)
yields (44).

Mott and Davis' have pointed out that (44) reduces to

+ AT dinoS=
3 e dE

(50)

where L,J, i=1,2, are correlation functions which can be
written in the energy representation as

a(E)
I

I

I

I

Localized I

I

I

I

I

I

I

I

I

I

dv(E)
I

dE
I

I

I

Extended

Electrons Holes

I

I

I

I

I

Localized
I

I

I

I E
I

I

I

I

I

I

I

I

I

I

I

I

in the low-temperature limit when transport occurs only
within about kJiT of the Fermi energy. We are not pri-
marily interested in such situations, being concerned more
with behavior near the mobility edges of disordered semi-
conductors. However, (50) is of interest in connection
with the dynamic considerations of the next section.

S. Dynamical considerations: Microscopic mobility

Among the very interesting results of the electron
theory of solids derived for crystals is that a dc electric
field cannot induce a dc current in a single filled band.
That results holds also for arbitrarily disordered materi-
als; it follows immediately from (1) because f(E) is unity
throughout a filled band, independent of o(E). Equation
(21), however, yields the more interesting result that

En EpE=0 (51)

when the integral is taken over a complete band. Equa-
tion (23) yields the still more interesting result that

En EpE=O, (52)

where E, 1 and E,2 are the lower and upper limits to a
continuous region of extended states and are therefore
mobility edges.

Equation (52) imphes that, because n (E) is positive de-
finite in the interval E„,E,2, IJ,(E) must change sign
within E, i,E,2. That this can be the case is obvious from
(7) because do(E)ldE must be positive near E, i and neg-
ative near E,2. The "normal" case of a negative IJ,(E) im-
plies an electron drift velocity opposite to the direction of
the applied field, according to (7). On the other hand, a
positive p(E) implies an electron drift velocity in the
direction of the applied field, which is the direction of
response of positively charged particles. Thus, extended
states above a mobility edge are electronlike, and extended
states below a mobility edge are holelike.

The above exact results have been assumed in applica-
tions of the Mott —Cohen-Fritzsche-Ovskinsky model, '.
but they had not previously been proved. Moreover, they

FIG. 2. Energy dependence of the conductivity a(E) within a
continuous region of extended states and of der(E)/dE, showing
the electron and hole states within that region.

apply more generally than simply to mobility edges near
band edges, as would be the case for amorphous or disor-
dered semiconductors. Whenever da(E) ldE changes sign
from positive to negative within a region of extended
states, the states of energy E change from electronlike to
holelike, as shown in Fig. 2.

It is usually assumed that the sign of the thermopower
reflects the character of the carriers dominating the trans-
port, positive for holes and negative for electrons. As
mentioned above, this distinction becomes ambiguous at
low temperatures when transport is dominated by carriers
at the Fermi energy. Equations (50) and (7), however,
show that the thermopower can then be written as

ii (E~)p(E~)S= kgT (53)
3 o(Ep)

Our dynamic criterion based on (6) that electrons have
negative p(E) and holes have positive p(E) is seen to be
identical to the statistical criterion as expressed through
the thermopower at very low temperatures, (53). When
IJ,(Ez) is positive, the Fermi energy is to be regarded as a
lower bound to a region of states primarily occupied by
holes, and, when p(Ez) is negative, it is to be regarded as
the upper bound to a region of states primarily occupied
by electrons, the same as for crystals but without some of
their complexities.

C. Carrier representation

We are now in a position to give a rigorous derivation
of Eq. (2) without reference to any results derived for
crystalline semiconductors in the presence of weak disor-
der. We suppose that there are clearly distinguishable
conduction and valence bands, a =u and c, respectively, so
that states of given energy and nonvanishing o(E) or p(E)
can be uniquely assigned either to the valence or conduc-
tion band. The density of states can then be broken down
into valence and conduction contributions
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n(E)= gn (E)=n, (E)+n„(E) (54)

with n, (E) and n„(E) overlapping at most within the mo-
bility gap between the mobility edges E„and E, . The
charge carriers are electrons in the conduction band and
holes in the valence band. The carrier mobility in the
conduction band is defined as

p, (E)= —p(E) =
~
p(E) ~, (55)

p(E) being negative in the conduction band in the relevant
energy range. The carrier occupation number is simply
the state occupation number,

f, (E)=f(E) . (56)

In the valence band, the microscopic mobility is already
positive in the relevant energy region near E„,so that the
hole mobility is simply

p„(E)=p(E) . (57)

On the other haM, the hole occupation number is given
by

f„(E)=1—f(E) . (58)

Insertion of (55)—(58) into (21) leads directly to (2) after
use of (51).

In the past it has been supposed that the microscopic
carrier mobility p~(E) in (2) is proportional to the micro-
scopic conductivity o, (E) from incorrect arguments such
as the following. For Boltzmann statistics, as is appropri-
ate for disordered semiconductors, Eq. (1) becomes

oM ——g I dEo (E)f (E)lkgT . (59)

Comparing (59) with (2) tempts one to equate integrands.
If one were to do so, one would obtain

IJ, (E)=o(E)len~(E)k~. T .

This result is patently incorrect because the arguments
used to obtain it would also hold in the absence of interac-
tions, in which case p~(E), o~(E), and n~(E) are all tem-

perature independent. The flaw lies in equating the in-
tegrands when only the integrals are equal. The correct
relationship between p (E) and cr (E) is given by (7). It
can be obtained from (1) and (22) by equation of the in-
tegrands because both (1) and (22) hold for arbitrary f (E),
whereas (59) holds only for the Boltzmann distribution.
Deviations observed experimentally from the predictions
of the single-particle theory presented here can with confi-
dence be interpreted as the consequences of interactions.
Electron-electron interactions and spin-flip scattering
have been shown to be of great importance for localiza-
tion effects in metals. We have recently shown that the
electron-phonon interaction is of great importance in
amorphous semiconductors in two distinct ways. First, a
mobility tail is induced below the mobility edge at finite
temperatures through phonon-assisted hopping. With the
proper inclusion of the mobility tail, transport theory has
been brought into agreement with the observations for the
first time. Second, polaron formation can occur above but
near the mobility edge even for weak electron-phonon
coupling. Both the Coulomb interaction and the
electron-phonon interaction are of importance for doubly
occupied localized states, which can be bipolarons. These
effects of interaction can be so complex in amorphous
semiconductors that a firm grasp of the consequences of
the theory without interactions, as provided in part here,
is a necessary prerequisite for further progress.
/

VI. CONCLUSION

Our most significant results are the following: the rela-
tion (7) between the energy-dependent conductivity and
the microscopic mobility (6), the consequent limitation of
the conductivity exponent to unity or larger, (34) or (35),
and the dynamic definition of the hole states through the
sign of p(E) together with its relation to the statistical
definition through the thermopower, e.g., (53). These re-
sults have all been obtained in the independent-electron
picture, ignoring both Coulomb and electron-phonon in-
teractions and spin-flip scattering. The results are of par-
ticular usefulness for amorphous semiconductors.
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