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A parametrized scheme is developed for calculating angle-resolved photoemission spectra from
the valence bands of the fcc d-band metals. We take as a starting point the result for the photo-
current in a one-step model when final-state damping and dielectric screening of the free-space elec-
tric field are neglected. With use of scattering theory, a model for the final-state wave function f
near the surface is derived, in which Pf is written as a linear combination of orthogonalized plane
waves with group velocities directed both into and out of the bulk. This result is then generalized to
obtain a model for Pt in the presence of electron damping, and a parametrized, z-independent,
model for the screened electric field within the solid is adopted. Initial-state energies and wave
functions are obtained using a combined interpolation scheme. Optical transition matrix elements
are evaluated by adopting parametrized expressions for integrals involving the radial wave functions
for the various angular momentum components of the initial and final states within a muffin-tin
sphere. The use of this scheme as an improved method for extracting initial-state band positions
from experimental photoemission spectra is discussed.

I. INTRODUCTION

It has been demonstrated in recent years that angle-
resolved photoemission (ARP) spectroscopy is capable of
providing detailed information concerning the bulk band

dispersions, E (k), of solids. However, in order to extract
band positions from the experimental spectra one must
adopt a model for the photoemission process, and the ac-

curacy of the "experimentally determined" E( k) is limit-
ed by the accuracy of this model. Several workers'
have performed calculations of ARP spectra from the fcc
d-band metals as a means of testing various models of the
photoemission process in these materials. Despite the fact
that these calculations have varied greatly in complexity,
they typically achieve a satisfactory level of agreement
with many experimental spectra, yet contain significant
disagreements with others. In the simpler schemes the fi-
nal state P is assumed either to have a free-electron-like
E versus k dispersion' or, within the context of the
three-step model, to be describable in terms of bulk wave
functions. ' The optical excitation matrix elements are
then either treated as being constant, ' or are calculated
with some form of parametrized procedure. 3 7 In
schemes which are considerably more complex, "P is
calculated using procedures similar to those developed for
calculating low-energy electron diffraction (LEED) states,
and the initial states and optical matrix elements are com-
puted from first principles.

In this paper we present a parametrized scheme for per-
forming relatively inexpensive calculations of ARP spec-
tra from the fcc d-band metals. The major difference be-
tween this work and previous similar works lies with
the model we adopt for the final-state wave function.
Rather than take a single orthogonalized plane wave
(OPW) or the bulk final state of the three-step model, P

is assumed to equal a linear combination of damped
OPW's with wave vectors K which satisfy
trt K /2m =Ef+N, where 4 is the inner potential (and
the energy zero is at the vacuum level). No attempt is
made to present a method for calculating the relative am-
plitudes in P of the component OPW's. Instead, these
are taken as disposable parameters. The need for a more
accurate final-state model than has been used previously
in parametrized schemes became apparent when we ob-
served structures in experimental spectra from Cu which
appeared to originate from initial states which could not
couple with significant amplitudes to either a single OPW
final state or the bulk final states of the three-step model,
even if one were to allow for momentum broadening in
the optical matrix elements. In the following paper (here-
after referred to as II) we discuss these results and show
that the model for P adopted here can successfully ac-
count for such structures.

In Sec. II we describe the theoretical model which
forms the starting point for developing the parametrized
scheme. In Sec. III the model for P is derived. Our
method for calculating the optical matrix elements is
similar to that of Shevchik and Liebowitz however,
several important refinements are introduced. In Sec. IV
we derive an expression for these matrix elements which
contains two kinds of unknowns: (a) the amplitudes of
the various angular momentum components of the
initial-state wave function within a muffin-tin sphere, and
(b) quantities which depend on the amplitudes of the an-
gular momentum components of the final state, and
which are functionals of the initial- and final-state radial
wave functions. In Sec. V we then describe a
parametrized procedure for calculating these unknowns,
which incorporates a combined interpolation scheme for
evaluating the initial-state energies and wave functions of
the fcc d-band metals.
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II. ANGLE-RESOLVED PHOTOEMISSION
IN THE PRESENCE OF ELECTRON DAMPING

AND DIELECTRIC SCREENING

When setting out to develop a second-principles, or
parametrized, scheme to ealeulate ARP, it is of course
desirable to adopt at the start the most accurate possible
model of the photoemission process so that inaccuracies
are confined as much as possible to those resulting from
the adoption of parametrized procedures for calculating
the initial- and final-state wave functions, the elec!tric
field within the solid, etc. Feibelman and Eastman' have
shown that when electron damping in the final state and
dielectric screening of the incident electric field are

neglected, the photocurrent j (R,E) in the direction R
with kinetic energy E is given by the following expression:

j ( R,E) cc v g 5(E —irico —E')

X! f d rf'-* (r)AO(r) pg'(r)!

quate, as it is necessary to make some provision in the
theory for both final-state damping and dielectric screen-
ing of the free-space fields. One approach for including
electron damping is to adopt the well-known three-step
model of photoemission, ' in which a photoexcited elec-
tron is assigned a certain probability ( & 1) of reaching the
surface without undergoing inelastic scattering. However,
the three-step model suffers from the defect that the opti-
cal excitation step is assumed to proceed as if the mean
free path were infinite, in that bulk final-state wave func-
tions are used to calculate the optical excitation matrix
elements. In addition, transitions to evanescent final
states (corresponding to band-gap emission) are neglected.
Accordingly, we will adopt the following as our starting
expression for the photocurrent:

j ( R,E) oc v g 5(E —fico —E')

X ! f d r[P'- (r)) A„(r) pltj'(r)!z,

where the sum is over the initial (i.e., occupied) states of
the system, U is the photoelectron velocity in vacuum, and

A (r) is the vector potential (in the Coulomb gauge) of
the perturbing electromagnetic field in vacuum. The
final-state wave function f'- is the complex conjugate of

R,E
the LEED state g -, where g - is defined as being

2

the wave function corresponding to the boundary condi-

tion in which a plane wave ( r!KI ) =exp(i—KI r), wh. ere

KI —=—[(2mE)'~ /A']R is incident on the solid (Fig. 1).
Note that since g'- is here defined with respect to the

R,E
zero damping limit, it is a solution to the Schrodinger
equation for a crystal potential with a vanishing inelastic
component. Unfortunately, Eq. (1) is not generally ade-

I
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FIG. 1. Schematic diagram of the surface potential. For
z &z„ the potential is assumed to vanish. RMT is the muffin-tin

radius, d is the interlayer spacing, and c is the displacement in

a plane parallel to the surface of one layer from the next. k is

the electron emission direction and Kl is the incident wave vec-
tor characterizing the LEED state P -,where E =Pi Ki /2m.—R,E

where the final-state wave function g'-" is assumed to de-
R,E

cay on the scale of a few atomic layers of the surface.
Equation (2) can be considered to define f'-, as being

R,E'
that wave function which produces, through this equa-
tion, the maximum agreement with the "one-electron"
(i.e., excluding secondaries) component of the experimen-

tal j (R,E). To take account of the dielectric response of
the solid, we have simply replaced A (r) with A„(r), the
screened vector potential within the solid. ' The calcula-

tion of A ( r ) is discussed in Sec. IV.

III. A MODEL FOR THE FINAL-STATE
WAVE FUNCTION

In attempting to construct a model for g'-, it is help-
R,E'

ful to consider first the behavior of the undamped LEED
state g z E in the outermost atomic layers, the region in

which g'- has a significant amplitude. It is easier to ar-
R,E

rive at a straightforward characterization of g - in the—R,E
surface region because the form of the wave function is

known both in vacuum, where it equals ! Kl } plus a
linear combination of outgoing plane waves, and for z —+

+ ao (Fig. 1), where it equals a linear combination of bulk
Bloch states propagating toward positive z. g „- can

thus be modeled by forcing the wave function to undergo
a smooth transformation from its behavior in vacuum to
its behavior for z —+ + ao. This forms a useful starting
point for constructing a model for g'-", since one can ex-

R,E'-

pect that some of the salient properties of l('- (=p' - )

in the surface region will be shared by g'-

The behavior of P - will be analyzed by deriving an—R,E
expansion for it using simple scattering theory techniques,
and then considering in turn the behavior of successive
terms in the expansion. We assume that the semi-infinite
solid is characterized by a potential V( r) which vanishes
for z &z„has a step of magnitude N (the inner potential)
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at the surface plane z =z„and is described for z &z,
within the muffin-tin approximation (Fig. 1). We assume

further that the first layer of atoms is at z =z, +RMT,
where RMT is the muffin-tin radius, that the potential
within each muffin-tin sphere is identical, and that there
is no surface relaxation or reconstruction. This rather res-
trictive model for the potential is adopted here mainly for
convenience, the only essential feature being the decompo-
sition into the nonoverlapping scattering centers
represented by the muffin-tin spheres. The muffin-tin ap-
proximation has been exclusively used in the LEED-type
calculations of ARP spectra based upon the one-step
model

To develop an expansion for g - we begin by defin-—R,E
ing a state

I
K, ) corresponding to the situation in which

the incident LEED beam exp(iKI r) strikes a plane
boundary at z =z, between a region of zero potential
(z &z, ) and a region of potential —4 (z & z, ). We have

+N, z&z,
Vi(r)=Vi(z)= '00 z)zs (4)

and

Vz(r)= 2 VMTs( Ir —R. I) .

VMTs in Eq. (5) represents the potential of a single
muffiin-tin sphere:

incident wave formed by the refraction of
I Kl) at the

potential step at the surface. We next redefine the energy
zero to be at the muffin-tin zero, so that the energy E of

is equal to i' K, /2m, the kinetic energy corre-—R,E
sponding to

I
K,), rather than to fi KI /2m, and decom-

pose the potential V(r) into components V&(r) and
V, (r), where

(rIK, &= 7, z )zs

where kit and k, are the wave vectors, and R and r are
the corresponding amplitudes, of the reflected and
transmitted waves, respectively. When the potential for
z &z, is taken to equal V( r ), the plane wave

(r
I K„)=rexp(iK, r) can be thought of as the "new"

vMTs( Ir —Rn I)= '
v(r),

I
r-R.

I
&RM,

0,
I
r —R„ I &RMT

and the sum is over the atomic positions R„. Note that
Vi( r ) vanishes outside of the muffin-tin spheres. We can
now expand g - as follows:

) =
I K, ) +Gp(E)T (E)

I
K,)

+Gp(E)Ti(E)Gp(E)T2(E)
I
K~) +Gp(E)Tz(E)Gp(l )T (Ei)G (Ep)T (Ez)

I
K ) +

+[Gp(E)Ti(E)Gp(E)Tz(E)]"
I
K.&+Gp(E)T2(E)[~p(E)Ti(E)Gp(E)T2(E)]"

I
Kg)+ ' ' ' (7)

where Gp is the free-particle Green function and Ti and Tz are the T matrices for the potentials V, and Vz, respective-
ly. Each term in Eq. (7) has a straightforward physical interpretation. GpTz I K,) is the scattered wave which is pro-
duced when the plane wave

I
K, ) is incident on the array of muffin-tin spheres. For z &z„(r I GpT2 I

K, ) equals a
linear combination of propagating and evanescent beams (plane waves) with wave vectors K (E,k, +G, ), where the G,
are the surface reciprocal-lattice vectors corresponding to the two-dimensional real-space Bravais lattice characterizing
the surface, k, is the wave vector which characterizes g - in the surface Brillouin zone (so that k, +G, =K,

~~

——Kl~~—R,E
for some G, ), and

1 /2

—Ik, +G, I' z, E& Ik, +G, I'

K (E,k, +G, )=k,-+G, + '
1/2

i Ik, +G, I

—
2 z, E& Ik, +G,

I2m

Each of the diffracted beams which comprise
( r

I Gp T2 I
K ) for z &z, is incident on the potential step

at z =z, and generates a scattered wave. The sum, over
all the diffracted beams, of these scattered waves is given

by the next term in the expansion, Gp Ti Gp T2 I
K ). For

z &z„(r
I
GpTiGpT2

I K, ) equals a linear combination
of reflected beams with wave vectors K+(E,k, +G, )

which are in turn incident on the set of muffin-tin
spheres, generating more diffracted beams, and so on.
Equation (7) can be proven by noting that each line on the
right-hand side (RHS) of the equation is a solution to the
Schrodinger equation for z &z„and that the sum of the
second term in each line and the first term in the follow-
ing line is a solution to the Schrodinger equation for z &z,
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K &+&
I
GpT2 I

K » z {H)

As mentioned above, g' "- is a solution to the
t

Schrodinger equation for z &z, .
To construct a model for the term GpTz

I
K,) in Eq.

(10), consider first that for large z, P"'- must equal a—R,E
linear combination of bulk wave functions P with

kn
group velocities that are directed into the bulk. At ener-
gies E & 4 the bulk bands of the fcc d-band metals are
nearly-free-electron-like and have been successfully
described using a combined interpolation scheme, ' in
which nearly-free-electron-like states are assumed to equal
a linear combination of a small number of OPW's. Often,
a single OPW totally dominates the wave function and in
this case we arrive at the approximation that P can be

kn
described by

) =
I
OPW(k+G) )

=
I
k+G) —g I

c(k))(c(k)
I
k+0) (1 la)

(where here (r
I
k+G) —=exp[i(k+G) r]) and

fiE=
I
k+GI' (1 lb)

for some bulk reciprocal-lattice vector G, where the

I
c(k)) are Bloch sums formed from the core orbitals

,(r):

and is properly matched at the potential step at z =z, .
The RHS is therefore a good solution for all z to the
Schrodinger equation for the potential V(r). Since it
furthermore satisfies the boundary condition of a plane

wave
I
KI ) incoming from vacuum, it must equal

Neglecting GpT2
I
K, ) and succeeding terms in Eq. (7)

yields the single plane-wave approximation for P—R,E

(r)=g' '- (r)=re ', z &z, .—R,E —R,E

Of course, a single plane wave may fail to be a good ap-
proximation for g - within the muffin-tin spheres,—R,E
where the atomiclike crystal potential is rapidly varying.
When used, in fact, to compute photoexcitation matrix
elements from the valence bands of Cu for relatively low
photon energies, it has been shown to result in large inac-
curacies in the predicted photoemission peak intensities. '
It is therefore necessary to include at least one more term
in the expansion for g -, which yields the approxima-—R,E'
tion

(r Ic(k))= g e "P,(r —R„) .
R„

[Note that since E is being measured with respect to the
muffin-tin zero, the accuracy of Eq. (11b) will depend on
the choice of inner potential 4.] When Eqs. (11) apply,
the necessary conditions for P„(r) to have a nonzero

amplitude in P"'- (r) for large z are that k~~ equal

k, +G, for some G„and that k, +G, &0; i.e., the OPW
wave vector k+G must be one of the K+(E,k, +G, )
corresponding to a propagating beam [Eq. (8)]. There is

always at least one such P, viz. , I
OPW(K, ) ). If this iskn'

the only one, and you want to arrive at the approximation
to g'"- (r) for large z implied by Eqs. (11) by modeling

t

the contribution of GpT2
I
K,) to

I P '- ) [Eq. (10)],
then it is clear that this term can be taken to do two
things. First, it modifies the total amplitude in P'"- of—R,E
the plane wave (r

I
K,) =rexp(iK, r) so that its intensi-

ty in the interstitial region between the muffin-tin spheres
is reduced from

I
r

I
(assuming that some of the incident

flux is diffracted toward negative z). Second, it orthogo-
nalizes this modified plane wave to the core in the manner
prescribed by Eq. (11a). If there are additional OPW's eli-

gible to mix with
I
OPW(K, ) ) for large z, then for each

such OPW, GpT2 acting on
I K, ) must generate within

both the interstitial and core regions the appropriate plane
wave with the correct amplitude and within the core re-
gions the appropriate orthogonalization terms as well.

For large negative z, (r
I
GpT2

I
K, ) equals a, linear

combination of diffracted beams with wave vectors

K (E,k, +G, ) which correspond to propagating beams.
must by continuity contain some evidence of these—R,E

outgoing plane waves in the outermost atomic layers. It is
evident in fact that these last few layers serve as a transi-
tion region in which g"'- evolves between two quite dif-—R,E
ferent kinds of behavior: plane waves propagating toward
—ao for z (z„and Bloch states propagating toward + ao

for large z. We wish to formulate a model for
( r

I
Gp T2

I
K~) for all z &z, which is consistent with this

observation and which is consistent with and analogous to
the behavior of ( r

I Gp T2
I
K, ) for large z discussed

above. Accordingly, we will assume that for z &z, GpT2
acting on

I
K, ) generates a set of plane waves with wave

vectors K+(E,k, +G, ) and K (E,k, +G, ), but with
amplitudes that are functions of z. Evanescent plane
waves, with imaginary E, (E,k, +G, ), will b—e neglected.
In the core regions GoT2 is also assumed to generate ap-
propriate orthogonalization terms. Specifically, and fol-
lowing Eq. (10), we adopt the following as a model for

(&)

R,E—
(r)=$ If+- «„)( IOPW[K+(E, k, +G, )])+f - (G„z)(rIQPW[K (Ek, +G, )])I, z&z, ,

6~
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~

f+„- (G„z, )
~

liin
~

f+„- (G„z) ~,

K+(E,k, +G, )=K, ,

lim
/

f+- (G„z)
f

&
[
f+- (G„z, )

f
=0,

K+(E,k, +G, }~K,,

/f - (G„z,)[& lim /f - (G„z)/=0.

(14a)

(14b)

(14c)

OPW's corresponding to evanescent plane waves are
neglected in Eq. (13) because structures which would cor-
respond to transitions which couple to such components
of the final state do not appear to be observed in experi-
mental ARP spectra (see II).

The question now arises as to whether P"'- is a good

approximation to g - . If the intensities of the diffract-

ed beams generated when the plane wave rexp(iK, r) is
incident on the set of muffin-tin spheres are sufficiently

where the prime on the sum indicates that it is to be re-

stricted to those G, corresponding to propagating beams.
The detailed behavior of the f+- —(G„z) is not known.

However, it is evident that the following relationships are
satisfied:

small, i.e., if (r
~
GpTz

~
K,) is sufficiently close to zero

for z &z„ then GpTiGpT2
~
K,) and succeeding terms in

Eq. (7) can be neglected. However, since we know of no
reason for assuming that this is the case, we conclude that

Gp Ti GpTz
~
K,) and succeeding terms should be retained

if possible. The second line and each succeeding line of
Eq. (7} differs from the first line in that the first term will

generally contain incoming beams corresponding to all

K+(E,k, +G, ). As above, we will neglect the evanescent
beams. Following the same arguments as used above, we
can inodel the sum of each propagating incoming beam
and its corresponding scattered wave as in the RHS of Eq.
(13), with the f - (G„z) again satisfying Eq. (14), ex-

cept with K, replaced with the wave vector of the incom-
ing beam. When all the incoming and scattered waves in
each line of Eq. (7) are summed to obtain P -, one fi-—R,E'
nally arrives at an expression which is again in the form
of the RHS of Eq. (13).

, the final state in photoemission in the absence of
R,E'

damping, can be obtained from g - by simply taking

the complex conjugate. However, except for the fact that
lim, g'- (r) must vanish, it is not known a priori howz~ao R E

might differ from g'- . To obtain g'-, we will
R,E R,E R,E'

therefore take the simplest possible approach and adopt
the following model:

(r)=e r'" ~'g [f+ (G„z)(r ~OPW[K+(E, k, +G, )])+f: (G„z)(r ~OPW[K (E,k, +6,)])[,

z &z, . (15)

This form explicitly includes the decay of the wave func-
tion. The reinaining effects of the electron-electron in-
teraction are assumed to be absorbed into the f=

R,E
Equation (15) was arrived at under the assumption that

the bulk final-state bands can be described by a single
OPW, with a free-electron-like energy —versus —OPW
wave-vector relationship. For energies E and emission

directions R for which this is not the case, Eq. (13) for
(r) must become inaccurate for large z. However,

both the incident beam ~exp(iK, .r) and the scattered
wave (r

~
GpTz

~
K ) for z(z, obey a free-electron-like

dispersion relation. The distance over which g'"„- (and

) heals to its bulk form is not known. If this dis-

tance is large compared to the mean free path, then Eq.
(15) for cP'- becomes plausible as a general result. If this

R E
distance is small compared to a mean free path then we
might expect Eq. (15) to break down when Eqs. (11) are
not a good approximation. In any case, however, it must
be emphasized that the effect of electron damping on

is unpredictable. Our approach here will be to as-
t

sume that Eq. (15) is always valid and so depart from the
three-step model of photoemission, in which the final
state is assumed to be always bulklike. Experimental sup-

port for this procedure in the case of photoemission from
Cu for photon energies between 11.8 and 21.2 eV is
presented in II where its relationship with previous ARP
results from Cu is also discussed.

Even when Eqs. (11) are valid, Eq. (15) still represents a
serious departure from the three-step model because of the

presence of the OPW's with wave vectors K+(E,k, +G, ).
These components of the final state would correspond to
the wave functions of those bulk states which have group
velocities that are directed into the bulk, and thus elec-
trons photoexcited from initial states which couple to
these OPW's would not be photoemitted in the three-step
model. In II, however, we find that for Cu the amplitudes

f-+ are sometimes quite large.
R,E

Equation (15) is intended to fully describe effects
which, within the context of a three-step model, are as-
signed to propagation in secondary Mahan cones' or sur-
face umklapp processes. Such effects can be associated
with nonzero values for the functions f: (G„z) for

R,E
K (Ek, +G, )@—K,.

Finally, the optical transition matrix element between a
Bloch state P and P'- tends to have its maximum

kn R,E
magnitude when k is equal to some K +(E,k, +G, ), —
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modulo a bulk reciprocal-lattice vector (Sec. IV). Rede-
fining the energy zero to be at the vacuum level, we have

' 1/2

z;+(z, k, +a, )=+ — (z+e)—
I k, +G, I

'

They concluded that nonlocal effects were important near
the surface. Here, we will adopt the following expression
to describe radiation that is polarized either in the plane
of illcidcllcc, oi' pcrpclldiculal to it (corresponding to p-
and s-polarized light, respectively):

With this choice of E, the—OPW "bands" have a free-
electron-like dispersion with respect to the muffin-tin
zero. However, it may occur that a more accurate final
state is obtained with a value for K; that is slightly dif-
ferent from that given by Eq. (16). To make the final-
state model sufficiently flexible to handle this possibility,
the inner potential @ can be regarded as adjustable and

dependent on R and E, so that 4=@(R,E).

IV. CALCULATION OP THE PHOTOEXCITATION
MATRIX ELEMENTS

To evaluate the matrix elements appearing in Eq. (2)

one needs the perturbing vector potential A„(r ) induced
within the solid by the incident electric field. Ideally,

A„(r) should be obtained by solving in a self-consistent
n1anner the Schrodinger equation and the microscopic
Maxwell equations. A much simpler procedure is to cal-

culate A„(r) using the Fresnel equations. There is some
experimental evidence, however, that this may not be ade-
quate. Smith ct al. found that in order to reproduce in
their calculated spectra the peak intensities observed ex-

perimentally in spectra from a Cu(111) surface, it was
necessary to assign the ratio

I ~. & ~~
(( I

{where j. and

denote the components of A„perpendicular and parallel
to the surface, respectively) values which were much
smaller than those predicted by the Fresnel equations.

I

A„(r ) cc E~(+ag(g)E~z, z )z, .

E
) )

Rnd Ey Rfc thc paf Rllcl Rnd per pcndlcular corn"
ponents, respectively, of the electric field in vacuum. and P
is the angle of incidence of the light .Since a@(g) might
not be given accurately by the Fresnel equations, it can be
chosen so as to Hlaximizc Rgl ccIQent with cxpcriI11cnt.
Note that we do not account in Eq. (17) for the possibility

that A„(r) has a significant z dependence. Any such z
dependence would lead to momentum broadening in kl in
the photoexcitation matrix element, i.e., to an increase in
transitions that are nondirect in kl. Several theoretical
studies have predicted a large contribution to the photo-
current from free-electron metals from the spatial varia-
tion of A„I.' ' These predictions have recently been
confirmed experimentally in the case of a nearly-free-
electron-like metal, Al. * ' It is clear, however, that the
corresponding contribution to the photocurrent from the
d-band metals must be relatively weak, as kl conservation
effects are known to be very strong.

Rather than work directly with Eq. (2), it is convenient
to return to Eq. (1) and make the replacement

A ( r )~A„via Eq. (17), transform the matrix element to
its potential gradient form by using the relation

[H, p] = i'd% V( r ), and then make the replacement
The optical matrix element then becomes

(suppressing a factor i%'):

(18)

The contributions to the integral from the potential step
at the surface and from any step at the surfaces of the
muffin-tin spheres have been neglected. As discussed by
Feibelman, Eq. (18) is not equivalent to the result ob-

tained by making the replacements Ao{r)~A„and
dll'ectly ill Eq. (1), Rs .Q Rlld f Rlc llot

R,E R,E R,E
solutions to the Schrodinger equation for the same Hamll-

tonian. However, there is no reason a priori to suppose
that the current procedure gives an inferior description of
the matrix elements, especially since the parameters in

are to be chosen so as to maxilnize agreement with
R,E

experiment. Substituting Eq. (15) into Eq. (18), we can
write M(g„'-, g') as

M(g„'-, g')= g [M+~ (P'-",f')+M: {It'-",I{')],

where the definition of M-+ is obvious.
Gs

The remainder of this section is devoted to deriving an
expression for M +—- (g'-, g') which lends itself to aG R,E'
straightforward paramctrization. It is convenient to ex-
pand the jnlfjai- alld filial-stRtc wave fllllctlolls wltllill any
given muffin-tin sphere in terms of fun«lons cont»»ng

spherical harmonics dcflllcd wi'th Icspcct
sphere. We have that an arbitrary function H(r) can be
expanded in the following form for r within the muffln-

tln sphere at R„:

(20)

If f' is expanded as in Eq. (20) then, since @' is a solution
to the Schrodinger equation for energy E', the

Hi( I
r —R

I ) must be sol«Ious &I( I
r—R' I

Z') of th
radial Schrodinger equation for energy E'. When
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~

OPW[K-(E, k, +G, )]) [Eq. (15)] is expan«d as in Eq
(20), the corresponding IIr(

~

r —R,
~

) «pend only on E
and not on the direction of the OPW wave vector. We

will denote these radial fun«ious &r(
~
r —R, ~,E).

The coefficients Ar ~ (R„) characterizing

[K +(E,-k, +G, }] will be denoted A- (R„). We have

(R„)=exp[i K +-(E,k, +G, ).R„]A—- (0),

we will write more simply as exp[i'K +—(G, )'R„]A

To evaluate a particular term in Eq. (19) we can take the z
axis to point in the direction of the OPW wave vector

K +—(G, ). ' We then have that A - (which can now
l, m, G

be written simply Ai ) vanishes for m&0. Finally, we

shall assume that the functions exp[ —I'(R,E}z] and
f=+ (G„z) which appear in Eq. (15) vary sufficiently

R,E
slowly over a muffin-tin sphere that for each term in the

sum over R„[Eq. (18)] it is acceptable to replace these

quantities with their values at R„and take them out of
the integral. Collecting these results, we arrive at the fol-
lowing expression for M+-

Gg

, [E~~+az(4)Eiz)

«-+P- (E,E',R„)=y( —1)'i'+'AI A' (R„)

XD(l, O,L',E,E'),

where D is independent of R„and is given by

D(L,L',E,E')= J „d'r Si{r,E)Fi (Q)[p'VMTs(y))

XRI (r,E')Fg (0) . (23)

The matrix elements in an angular momentum basis set of
a vector operator T which satisfies [L;,TJ]=ice;~kTk
obey certain relationships which are given by Condon and
Shortley. Since V VMTs(r) satisfies this commutation
rule, and furthermore is odd under inversion, we find for
instance that D(l, O,L',E,E') vanishes unless the dipole
selection rules l =I'+1 and m'=0, +1 are satisfied, thus

restricting the sum over I and m' in Eq. (22) [Ar', (R„)=0
for l & 3]. It is also convenient in simplifying Eq. (22} to
write the initial-state orbital coefficients Ar (R„) for
1'= l,2 in terms of the corresponding coefficients for the

Kubic harmonics. We have (suppressing the R„depen-
dence)

A„'=(3/8m)'~ {A'i i —A'i i),
Ay

———(3/gtr)'~ r'(A'i i+A'i i ), (24)

Xe * "P- (E,E', R„) .
(y

(21)

Equation (21) is written with respect to the usual coordi-
nate system in which the z axis points along the surface
normal. However, in a coordinate system in which the z

axis points in the direction of K-(G, ), the "I' vector"~.+
' P' (E,E',R„) takes on the relatively simple form6

and, for the xz, yz, and 3z rcompon—ents of the initial
state,

A' =(l5/Str)'/'(A', , —A', , },
A ', = —( l 5/8n') '~ i (A z i +A z i ), (25)

A', , =(15/4~)'"A', ,
With Eqs. (24) and (25) and the results given in Ref. 23 we

~ +
find that we can write P- as6

P- (E,E',R„)=P(E,E')I[A~(R„) +a~( E, E') A'( R)]x+[Ay, (R„)+a~(E,E')Ay(R„)]y

+ [g'd(E, E')A
3 2(R„)+ap(E,E'}gp(E,E')A,'(R„)+a,(E,E')Ao o(R„))zj .

I

Equation (26) is an exact restatement of Eqs. (22) and (23),
once one neglects the contribution to the I' vector from
the components of the initial state with angular momen-
tum l & 3. It is of the same general form as an expression
obtainal by Shevchik et al. ' by considering photoemis-
sion from a free atom. The quantities P, a~, g», g'q, and
a, are given by rather coinplicated expressions which are
functionals of the initial- and final-state radial wave func-
tions within the muffin-tin spheres and which depend on
the final-state angular momentum amplitudes Ar o. These
expressions are given in the Appendix. Reiterating, the
OPW dependence of the RHS of Eq. (26) lies in the orien-
tation of the coordinate system: the unit vector z is as-
sumed to point in the direction of the OPW wave vector
K +-(G,).

—1- (G )8
fax(G R-)=fax{G ' (27)

By allowing I+-(R,E,G, )=I (R,E)+I = (G, ), Eq. (21)

becomes

To evaluate the lattice sum in Eq. (21) we will take the
initial states ttt' to be the bulk Bloch states P-„. No at-

tempt will be made to calculate the photocurrent from
surface-state bands. Indeed, it is uncertain whether one
could adequately describe surface states within the
muffin-tin approximation. We thus have AJ (R„)
=exp(it 'R„)AL (0)=exp(i k 'R„)Ar'. Also, it is neces-

sary to choose a specific form for the f-+ (G„R~),and-
t

we adopt the following:
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~ +
M= (It -,p- )=,.f= (G, )[Ell~aE(@)E~z].P- (E,E )

—r+(Z, E, G, )Z i t k ' —K. +('&( 6, )]- R „X
R„

where the superscript (r) on K —+(G,} denotes the corresponding vector in the bulk reduced zone scheme, and

P (E,E') —=P (E,E',0). Evaluating the lattice sum, we have6 ' 6
1 ~„- i(k,' —x,+~'&( a, ))d —r+(II,E,G, &d

6 RE k n E Ei RE

~ ~ +
XB ~ „-,[k ' —K +—'"'(Gg)][E~(~as(g)EIz] P (E,E'),

where the momentum broadening function Br(k) is given by

Br(k) =
i k (~. c —(I—, ik )d

(30)

d is the interlaycr spacing, and c is a vector which lies in a plane parallel to the surface and which has the property that
wlM11 tlat IIIth layer ls translated by c flic Rto111s llc directly ofl top of thc R'tonls II1 tlM (III +1)'th laycl (Fig. 1). Note
that Br+ g E [k ' —K —+'"'(G, }]has its maximum value when ki =Xi~ (G~) and [k

~~

—K
~j

' '(G, )].c =2am.

Q
~ +

In this section we describe a parametrized procedure for evaluating the P vector P (E,E ):6

P (E,E') =P(E,E') t [A~ ~aq(E„E')A„']x+ [Ay, ~ap(E, E')Ay']y

i [g,(E,E')A', , ~a, (E,E')g, (EE')A,'~a, (E,E')Ao, ]z] . (31)

Vfe shall assume that the initial-state energies E' and or-
bital coefficients A' are to be computed using a combined
interpolation scheme. ' ' ' In these schemes, Bloch
states P- are described with a basis set consisting of nine

k

k-dependent states
~
aJ(k)&. Five are Bloch sums of

atomiclike orbitals XJ(r ) with d (l =2) syinmetry:

& r ~a (k)&=X '~ g e "X (r —R ) j=l—5

and aJ is a normalization constant. The k (k) are wave

vectors of the form k+G, and V is the crystal volume.
For j=6—9,

~ aJ ( k ) & is a "pseudo wave function" corre-
sponding to thc P~

~ PJ s(k) &, which Is oithogo»1-
ized to the core states

~

c (k) & [Eq. (12)] as well as to the

~

a (k) & for j =1—5, and given by

where X is the number of atoms in the crystal. Here the
XJ are assumed to have the angular symmetry of the Ku-
bic harmonics. The remaining four

~

a (k)& are plane
waves which can be explicitly orthogonalized to the d
states '"
~Iz,.(k)&=a, , )

k., (k)&

y ~
~,(k) &&a,(k)

~
k, 5(k) &

(33)

—X-'g ~c(k)&&c(k)~k, (k)&,

j=1—4, (35)

&here 6j ls a normalization constant. When the coHl-
bined interpolation scheme's model Hamiltonian for some
k is diagonalized to obtain a set of coefficients CJ charac-
terizing the wave function P'-(r), we will therefore as-

sume that
4

y'-„( )= y C,'& ~
J(k)&+ y c,' & ~p, (k)&.

j=l j=1
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We need to find the A' of Eq. (31) in terms of the CJ.
This can be accomplished by expanding both sides of Eq.
(36} as in'Eq. (20) for R„=O. Consider first the individu-
al terms on the RHS. Since the ~aJ) for j=1—5 (for
convenience, we will henceforth often suppress the k
dependence of ~aj), ~Pz), ~

c), and
~
kJ)} are Bloch

sums of the ~XJ"), (r
~ az ) must have the same angular

symmetry within a muffin-tin sphere as Xz(r). We can
therefore simply write

( r
~ a, ) = —Q, (r) YJ(Q), r (RMT, j= 1—5,

vanishing components for all values of I. The contribu-
tion of the

~ PJ ) to the d component of
~
P'„) is expected

to be small, however, as these states are included in the
basis set primarily to describe the s-p component of the
band structure. When the d orthogonalization term ap-
pearing in Eq. (35) was in fact retained in the calculation
it was found to provide a negligible contribution to the
photocurrent. We will therefore neglect the d component
of

~ PJ ). Focusing, then, on the s and p components, it is
straightforward to show that when

~ P~ ) is expanded as in

Eq. (20) with R„=O we obtain

where the YJ(Q) are the l =2 Kubic harmonics and Q2(r)
includes contributions from the radial wave function con-
tained in +J(r), as well as from the overlap of the

Xz(r —R„) for R„&0. The ~PJ) generally contain non- and

4m
A( l iP. &)

—— b Yi (0. „),
J

(3g)

[Hl(r) l( ( P &] ~1/2

ji(k r)
4m-i

3

g f„p(kj )R„p(r), l =0
n=1

3

g f,, i(kj)R„,i(r),
pt =2

(39)

where the j( are the spherical Bessel functions, the R„( are the radial wave functions for the core orbitals with principle
quantum number n and angular momentum l, and f„((k )Jis given by

f„((kj)=4mi f dr r R„((r)ji(kjr) . (40)

Substituting Eq. (37) into Eq. (36) and expanding the left-hand side (LHS) as in Eq. (20) (reexpressed in terms of the
Kubic harmoriics), we immediately obtain A'

( s 2 2
——C'

3 2 2~ and R2(r, E')=Q2(r). For the s-p component of
Eq. (36) we have

4

g A( i R((r,E')YI (0}=g g g C'+sAI (IP &)i [Hi(r)](IP &)Y~ (0), r &RMT .
l=0, 1 m j=l l=0, 1 m

(41)

To set the RHS of Eq. (41}in the same form as the LHS,
we will make use of an approximate procedure based on
the following two observations. First, for states P' below

k
the Fermi level, it is usually the case that the only

~ PJ )
for which CJ+s is not close to zero is the one correspond-

ing to the wave vector kj with the smallest magnitude
(which we will denote ki), the remaining components be-
ing important for reproducing the bands near s-p band
gaps and at energies above the Fermi level. Second, when
it does happen that there is more than one

~ PJ ) for which
CJ'+s is not small for occupied P', the correspondingk'
wave vectors kj have similar magnitudes, so that the cor-
responding [Hi(r)]((p &) are approximately independentj
ofj [Eq. (39)]. In light of these observations, we will sim-
ply assume that [Hi(r)]((p &} for j=2—4 equalsj
[H((r)]((p &), take RI(r,E,') to be given by [Hi(r)]((p &),

and so obtain for A p p aild A

4
A (~) —— g CJ+sbj Y„(y,)(kj) .

V j
(43)

I,(k) =AJ, (kRMT),

where

(45)

We now turn to the derivation of parametrized expres-
sions for the quantities P(E,E'), a, (E,E'), az(E, E'),
gz(E, E'), and gd(E, E') (see the Appendix) contained in
Eq. (31). In doing this, it proves convenient to
parametrize certain integrals of the form

Ii(k)= f dr G(r)ji(kr) (44)

for l =0 and 1, while retaining their k dependence. This
can be accomplished by linearly interpolating the spheri-
cal Bessel functions ji(kr) between the origin and the
muffin-tin radius RMT. We then obtain that Ii(k) can be
written in the form

and

4,

App ——(4m/V)'~ g bJCJ'+s,
j=1

(42)
A = f„dr G(r)r/RMT,

and that Ip(k) can be written as

Ip(k}=BJ'p(kRMT ) +D

(46)

(47)
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8= dr G(r)r/'RMT,

D= f dr G(r)[l —r/RMT] .

Note that if G(r) is energy dependent, then the parame-
ters A, 8, and D will be energy dependent.

For spectra obtained with a given photon energy fm, E
equals E'+fun, so that P(E,E'), a, (E,E'), ay (E,E'),
gy(E, E'), and g»(E,E') can be considered to be functions
of E' only. In computing the E' dependence, one should
account not only for the E' dependence of the initial-state
radial wave function R (Ir,E'), but also for the E' depen
dence of the final-state radial wave function SI(r,E'+fico).
Since we cannot simply model the latter, however, we will
treat SI(r,E'+fuu) as being energy independent (again, for
a fixed photon energy).

The E' dependence of g»(E') [Eq. (A8)] is through the
radial wave function R (zr, E'). Since the d bands are rela-
tively narrow, the E' dependence of R (zr, E'), and there-
fore of g»(E'), is probably small for energies within the d
bands~ Rnd w111 bc ncglcctcd. This RssuIDptlon ls also 1n-

herent in the approach toward describing the d bands tak-
en within the combined interpolation scheme [Eq. (32)].
Thus, g»(E') becomes simply g'». Since P(E') [Eq. (A12)]
also depends on E' through R (zr, E'), we replace the prod-

ucts p(E')/I '
( S &, which appear in Eq. (31) with

P/I', ,,
The products P(E')a, (E') and P(E')a (E')

[Eqs. (A10)—(A12)] are functionals of the radial wave
functions Ro(r, E') and R, (r,E'), respectively . To
parametrize P(E')a, (E'} and P(E') ay(E'} we will assume
that Ro(r, E') and Ri(r,E') for any initial state P'„are
equal to the radial functions HI(r) obtained by expanding

OPW (k ') according to Eq. (20). We therefore have [Eq.
(39)]

~1/2 3

Ro(r, E') =j0(k'r) —g f„o(k')R„,(r),
Pf =1

~ I /I I
R i(r,E') =j i(k'r) .—gf„,(r)R„,(r) .

4~i
(50)

Substituting these in the expressions for P( E') a( E' }and
P(E')ay(E') obtained from Eqs. (A10)—(A12), and mak-
lllg llsc of Eqs. (46) Rild (48)q wc find tllat P(E }ay(E ) Rnd

p(E')a, (E') can be parametrized as payj, (k'RMT) and

pa,'[jo(k'RMT)+p, ], respectively. Substituting Eq. (50)
in Eq. (A9) for gy(E'), we find that the k' dependence
drops out, and so gz(E') becomes simply gy.

Finally, we shall neglect the kj dependence of the bj
[Eqs. (42) and (43)], and define parameters
a, =bja,'(4'/V)' and ay 3bja&IV——V. Collecting these
results and dropping an overall constant P, we have for
thc I vector

~ +
P =[3' +ayj I (O'RMT)A„']x+ [/Iy, +ay j((k'RMT )Ay ]y

+ [/»AI I 1+ayji(k~RMT)gyA, '+a, [jo(k'RMT)+ p, ]A() 0 Jz, (51)

4
/I 0 (1

—g Cj+5
j=l

4

~x(ys) g Cj+s~x(y s)(kj ) ~

j=1
A' =C'

3z2 —r2(xs, yz) 3s2—l 2(xz,yz)
'

(52a)

(52b)

(52c)

Reiterating, the RHS of Eq. (51) is understood to be writ-
ten with respect to a coordinate system in which the z axis

points in the direction K +—(E,k, +G, ).

VI. CONCLUDING REMARKS

In summary, wc have dcvclopcd a paraIDctrizcd schcn1c
for calculating ARP spectra from the fcc d-band metals,
based on a one-step model of the photoemission process.
Our starting point, Eq. (2), is similar to a result suggested
by Feibelman and Eastman' for the photocurrent in a
one-step model when electron damping in the final state
and dielectric screening of the incident electric field are
not neglected. However, we do not retain their assurDp-
tion that the final state is equal to a LEED state (or the
complex conjugate of a LEED state), as this result can be
justified only in the limit of zero damping. Our final-

state modd implicitly accounts for the presence of a sur-
face and consists of a linear combination of incoming and
outgoing OPW's with amplitudes which decay exponen-
tially into the bulk. For an electron in an initial state for
which k conservation effects allow coupling to a single
OPW, the total probability of excitation, transport to the
surface, and escape into vacuum is determined by a single
quantity, the OPW amplitude f= (G„z) [Eq. (15)].
Equation (15) is compatible with a three-step model only
when the emission direction R and energy E are such that
(a) corresponding to each nonvanishing f: (G„z) there is

R,E
a bulk state given to a good appx'oximation by
~OPWrK. (E,k, +G, )]-), (b) the amplitudes f-+ (G„z)

of the incoming OPW's vanish, and (c) the momentum
broadening caused by the decay of the final state is unim-
portant. The energy —versus —OP%-wave-vector relation-
ship [Eq. (16)] is assumed to be free-electron-like with
resp&et to an effective energy zero defined by an inner po-
tential which is treated as a function of E. and E. A z-
independent expression for the screened electric field
wlthl11 tllc solid ls adopted [Eq. (17)]. Thc lllltlal states
are taken to be the bulk Bloch states of the infinite crys-
tal, and our resulting expression for the optical matrix ele-
Iilcllts ls glvcll 111 Eqs. (29) Rnd (30) 111 terms of R P vector
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which contains the dependence of the matrix element on
the initial- and final-state wave functions within a
muffin-tin sphere. A parametrized procedure for evaluat-
ing the I' vector is derived, in part by assuming that the
initial states are computed with a combined interpolation
scheme, and the results are summarized in Eqs. (51) and
(52).

In addition to the improved model for the final state,
refinements of the present scheme over that of Shevchik
and Liebowitz' are the inclusion of refraction effects for
the incident electric field, a more accurate result for the
momentum broadening in kz in the optical matrix ele-
ment, and a more accurate procedure for computing cross
sections from the s-Ji component of the initial states.

Finally, we emphasize that the adoption of a
parametrized model for the final-state wave function is
not merely a matter of computational convenience but
deals with both the inadequacies of single OPW, single
APW, or bulk final states, and the failure of the LEED-
type calculations to achieve a level of agreement that is
commensurate with their complexity, presumably because
of the difficulty of accurately incorporating the effects of
the electron-electron interaction. In practice, the final-
state parameters can be chosen so as to optimize the
agreement between calculated and experimental spectra.
A.ny remaining discrepancies can then be taken to reflect
the migimum possible errors in the assumed initial-state
band structure. This procedure cannot provide an abso-
lute determination of band positions, due to the inherent
uncertainty in the values arrived at for the final-state pa-
rameters. However, it frequently happens (see II) that
there are discrepancies between experimental and calculat-
ed spectra for a given set of final-state parameters which
can only be reasonably attributed to inaccurate values for
these parameters. Adjusting them so as to remove such
discrepancies results in a more accurate final state and
hence a more reliable interpretation of the experimental
spectrum in terms of the initial-state band structure.

++I + 1(r E ) ~& + i,0(II )

'(E,E')= —I . d re(r, E)Yl,o(&)
1

l r&RMT

(A 1)

&& ~MTs(r)
2

X&( 1(» E ) Yl —1,0(+) ~

(A2)

Next we define the quantities Fi 7+ i(E,E'):

Fp g(E,E') =2V'(a/5 )id i pP' (E,E'),

Ff j(E~E')=2&'( Ir/5 )iA 3 pg
' (E,E )

(A3)

(A4)

F,p(E,E')=2v'(m /3)i A p pP+(E,E'),

Fgi, (E,E') =2M (m/3)iAz pg ' (E,E'),

Fp, (E,E') = iA i pP'—(E,E') .

(A5)

(A6)

(A7)

The quantities in question are then given by

(2v 3/3)Fp g(E,E') ~3Ffg(E,E')
g~(E E')

Fp g(E,E')+Ff g(E,E') (A8)

g~ ~+'(E,E')= )t d r S~(r,E)Y& o(Q)1+1
r

VMTS(r)
Z
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APPENDIX

To define the quantities g~(E,E'), gz(E, E'), az(E,E'),
a, (E,E'), and P, (E,E'), we first define the energy-
dependent integrals over a muffin-tin sphere, g"+'(E,E')
and g' '(E,E'), as follows:

F,p(E,E') 2' p(E,E')—
(E E')

(E E')+.Fg (E Ei)

F,p(E,E')+Fg p(E,E')
ap(E, E')=

F g(E E')+Ff g(E E')

Eq, (E,E')
a, (E,E')=

Fp g(E,E')+Ffg(E,E')

p(E,E')=Fp g(E E')+Ff g(E,E') .

(A9)

(A10)

(Al 1)

(A12)
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