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Scaling and final-state interactions in deep-inelastic neutron scattering
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The momentum distributions of atoms in condensed matter can be determined by neutron inelas-
tic scattering experiments if the momentum transfer fiq is large enough for the scattering to be
described by the impulse approximation. This is strictly true only in the limit q~ oo and, in prac-
tice, the experimentally determined momentum distributions are distorted by final-state interactions
by an amount that is typically 2% to 8%. In this paper we develop a self-consistent method for
correcting for the effect of these final-state-interaction effects. We also discuss the Bjorken-scaling
and y-scaling properties of the thermal-neutron scattering cross section and demonstrate, in particu-
lar, the usefulness of y scaling as an experimental test for the presence of residual final-state interac-
tions.

I. INTRODUCTION

In the last few years there has been a growing interest
in the experimental determination of atomic momentum
distributions in condensed matter by means of neutron in-
elastic scattering experiments at large momentum
transfer, fig. These deep-inelastic neutron scattering ex-
periments, which have been mostly confined to the range
5 (q (20 A ', have yielded momentum distributions for
liquid' — and solid helium and liquid neon. The most
notable achievement of this work has been the determina-
tion of the condensate fraction of superfluid helium
from the observed temperature variation of the momen-
tum distributions. This work is certain to increase in the
future as high-resolution neutron inelastic scattering mea-
surements become possible at even larger values of q using
the high epithermal neutron fluxes available from spalla-
tion sources. For example, Brugger et al. have recently
measured the inelastic scattering in liquid helium at
q =83 A ' with an energy resolution of a few percent.
They have also determined the momentum distributions
for hydrogen in various chemical environments and for
pyrolytic graphite.

The experimental determination of atomic momentum
distributions by deep-inelastic neutron scattering is based
on the impulse approximation. This approximation is
asymptotically exact' '" as q~oc, but for the finite
values of q at which the experiments are performed the
scattered neutron distributions are distorted by interatom-
ic interference and final-state-interaction effects that limit
the accuracy with which the momentum distributions can
be determined. The interatomic interference effects have
an oscillatory dependence on q and, hence, can be largely
eliminated by averaging the data over a suitable range of
q values. The final-state-interaction effects are' " of or-
der q . However, if the scattered neutron distributions
are symmetrized about the recoil energy, the q

' terms all
cancel, and one is left with residual final-state-interaction
effects that are of order q . The main purpose of the
present paper is the development of a self-consistent
method of correcting for these residual q effects.

The use of deep-inelastic scattering for the experimental

We begin with a brief review of the theory of deep-
inelastic neutron scattering in the impulse approximation.

A. Dynamic structure factor

The double differential cross section for the scattering
of a neutron by a system of X identical atoms is given
by47

d2
, =Xi (k'Ik)S(q, co), (2.1)

where b is the bound scattering length per atom and
S(q, co) is the dynamic structure factor in which q and co

determination of momentum distributions is, of course,
not limited to thermal-neutron scattering. The Compton
scattering of x rays, '

y rays, and electrons ' has
long been used for the determination of electron momen-
turn distributions in atoms, molecules, and crystals. For
example, it was Compton scattering that provided the
first experimental verification' of the Fermi-Dirac distri-
bution for the conduction electrons in metals. The
momentum distributions of nucleons in nuclei have simi-
larly been determined by inelastic scattering experiments
with high-energy protons ' and electrons, and the
momentum distribution of quarks in nucleons has been
studied by the deep-inelastic scattering of electrons,
muons, ' and neutrinos. In fact, deep-inelastic
lepton-nucleon scattering provides the most direct proof
for the actual existence of quarks.

In all the above applications of deep-inelastic scattering
the general expressions for the scattering cross section
have a similar basic structure, so that the method
developed in this paper for correcting for final-state in-
teractions in the context of thermal-neutron scattering
may also be applicable elsewhere. Conversely, some of the
results obtained in these other fields are applicable to the
analysis of thermal-neutron scattering data. A case in
point is the scaling of the deep-inelastic scattering cross
section (e.g. , Bjorken scaling and y scaling ), which
we shall discuss later in this paper.
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are the momentum and energy, in units of fi, that are
transferred from the neutron to the system in the col-
11slon,

CO=6 —E

(2.2}

oo

S (q, co) = f exp( i cot)F—(q, t)dt, (2.3)

where

Here k and k' are the incident neutron and scattered
neutron wave vectors, and lie=(haik) /2m„ is the incident
neutron energy in which m„denotes the neutron mass.

The dynamic structure factor is given by

where v =dr/dt is the velocity of the scattering atom.
This equation is not valid quantum mechanically since
r(0) and r(t) then no longer commute. Nevertheless, if
the interatomic forces are velocity independent, F( q, t)
can be expressed' in the closely related form

F(q, t) ex=p((ru t)(„Wexp iq f v(t )dt ','(2.7)

where M is a time-ordering operator and fico„=(fiq) /2m
is the recoil energy, m being the mass of an atom.

In the limit q —+ 0() the right-hand side of (2.7) is appre-
ciably different from 0 only if t~0, in which case v(t )

can be replaced by v(0}= v. Thus, as q —+ 0(),

F(q, t)~(exp[i(co„+ q v }r]):F„(q—,t),

E
F(q, t) =—g (exp[ i q—r((0)]exp[i q rj (t)] ) .

ij =1
S(q, co)—&(5(co—co„—q . v))—:S (q, c0) . (2.9}

(2.4)

Here rz(t) denotes the position operator for the jth atom
in the Heisenberg picture and the brackets ( ) denote
a thermodynamic average.

B. Incoherent approximation

In deep-inelastic scattering q »2rcld, where d is the
nearest-neighbor distance. As a result, the i&j terms in
(2.4) can be neglected and

F (q, t) = (exp[ i q—r(0}]exp[iq r(t)] ), (2.5)

C. Impulse approximation

For a classical system (2.5) can be expressed as

F(q, t) = (exp[i q [ r(t) —r(0) I ])
= exp iq vt dt (2.6)

where r(t) denotes the position of one particular atom
which we can call the scattering atom.

Equation (2.5) is referred to as the incoherent approxi-
mation, since one neglects interatomic interference effects
and regards each atom as scattering independently of the
others. Note, however, that although F(q, t) depends only
on the position of the scattering atom, the remaining
X —1 atoms are not merely spectators in the collision
since, as a result of interatomic forces, these other atoms
will influence the time variation of r(t) and, hence, of
F(q, t)

For a finite value of q the approximation

S (q,co)=S„(q,co) (2.10)

is called the impulse approximation and is based on the
assumption that the scattering atom recoils as if it were
free. It is important to note that in the impulse approxi-
mation interatomic forces are neglected only in the final
state, but not in the initial state, since the thermodynamic
average in (2.9) refers to the interacting system and not to
an ideal gas.

D. Final-state interactions

We present a brief heuristic discussion of final-state in-
teractions. A more rigorous treatment will be given later
in Sec. IV. I.et us first introduce a quantity ~ such that

QUOD = 1 (2.11)

where vo is the rms velocity of an atom. According to
(2.7) we can then interpret r as the time of interaction of
the neutron with the system. If Fo denotes the rms force
that the atoms exert on the scattering atom, then the latter
will receive an impulse of the order of For during the
time of interaction. For the impulse approximation to be
valid we therefore require that

Fox « mUo (2.12)

One can easily verify that the delta function in Eq. (2.9)
expresses conservation of energy and momentum in the
collision of a neutron with an atom having initial velocity
V.

TABLE I. Values of quantities for some representative liquids. The values are obtained from data
given in Refs. 7, 10, and 48—50.

4He

Ne
Ar
Rb

(g/mol)

4.0026
20.183
39.948
85.47

(K)

1

27
85

473

Ep/kg

(K)

14.0
48.2

128
710

Pp

( A-')

1.52
6.33

14.5
50.0

Fp

(pN)

8.9
55

118
237

Fp/K p

4.6
8.3
6.7
2.4

q,
(A-')

0.82
1.47
1.18
0.43

ga

(A-')

1.53
1.18
0.33
0.013
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and, hence, that

q»FO/muo F——o/2Kp, (2.13)

where Ko ——muo/2 is the average kinetic energy per atom.
Values of FD/Eo for some representative liquids are listed
in Table I.

III. SCALING

A. y scaling

n(p)dp =1 . (3.2)

Taking the z axis to be the direction of q, we then get

S (q, co)=(m/fiq) f 5(y p, )n—(p)dp, (3.3)

where

y =(m lfiq)(co co, ) =mco/—fiq —q/2 .

Hence

(3.4)

Equation (2.9) can be expressed equivalently as

S„(q,co)= f 5[co—co„(fi/—m)q. p]n(p)dp, (3.1)

where iii p =m v is the momentum of the scattering atom
and n ( p ) is the momentum distribution function which is
defined such that n(p)dp is the fraction of atoms in the
initial state with momenta in d p so that

yn(y)= lim
1

2' m
S(q, co) (3.10)

Alternatively, for a constant-co scan, in which S(q,co) is
measured as a function of q for a fixed value of co,

yn(y)= lim
a

qS(q, co) . (3.11)+~ a

The momentum distribution can also be obtained from
time-of-flight experiments' ' in which S(q, ro) is mea-
sured as a function of the scattered neutron wavelength
A, '=2m. /k' for fixed values of the incident neutron wave-
length A, and the angle of scattering P so that q and ai
both vary over the scan.

Finally, we point out that for an isotropic system the
momentum distribution function also determines the dis-
tribution of kinetic energy, K = (Ap) /2m. Thus if
n (K)dK is the fraction of atoms in dK, so that

f n (K)dK =1, (3.12)

then

experimental determination of atomic momentum distri-
bution functions in condensed matter by means of neutron
inelastic scattering measurements at large q. For exam-
ple, for a constant-q scan, in which S(q, co) is measured as
a function of cu for a fixed value of q,

'2

S„(q,co) =(m/fiq)J(y), (3.5)
and

n(K)dK=n(p)4' dp, (3.13)

where J(y) is the longitudinal momentum distribution
function,

JV. ) = f f n(J. ,sy,J.)&s. dJ y

For an isotropic system such as a gas or liquid, in which
n ( p ) depends only on the magnitude of p, it is easily
shown that

n (K)= lim S(q,~)
Bco

n (K) =(4irm/A' )pn(p) .

Hence, it follows from (3.10) that

(3.14)

(3.15)

J(y) =2m f n (p)p dp
l~t

and hence that

n ( y) = —(2iry) 'dJ(y)/dy .

(3.7)

(3.8)

where

K = (iii/4a)„)(co —co„)

B. Bjorken scaling

(3.16)

In the case of x-ray scattering, where n(p) is the
momentum distribution function for the electrons, the
quantity J(y) is the Compton profile. The expression
(3.8) for the momentum distribution in terms of the
derivative of the Compton profile is originally due to Du-
Mond '

It follows from (2.9) that

It follows from (3.1) that

S (q, co)=— f 5(1—x(l+2p, /q))n(p)dp, (3.17)

where

(3.18)

lim [qS(q, co)]=(m/A')J(y) . (3.9) Hence

More precisely, (3.9) involves the simultaneous limit

q —+ oo and ~—+ oo such that y remains constant. In this
limit qS(q, co) depends only on the scaling variable y and
not on q and co separately. This asymptotic property of
the dynamic structure factor, which was first emphasized
by West" in the context of electron scattering, is now usu-
ally referred to as y scaling.

This y-scaling property provides great flexibility in the

lim [d (q, co)]=5(1—x),
q~ oo

and so

lim [AS(q, co)]=5(1—x) .
q —+co

(3.19)

(3.20)

More precisely, (3.20) involves the simultaneous limit
q —+Do and co~oo such that x remains constant. In this
limit AS(q, co) depends only on the scaling variable x and



SCALING AND FINAL-STATE INTERACTIONS IN DEEP-. . .

not on q and co separately. This asymptotic property of
the dynamic structure factor is the nonrelativistic analog
of Bjorken scaling ' which was originally introduced in
the context of deep-inelastic lepton-nucleon scattering.

The x- and y-scaling properties differ not only in the
nature of the limits involved but also in the fact that
S„(q,co) has the y-scaling property for all q while it has
the x-scaling property only in the limit q~ oo. In other
words, y scaling is a property of the impulse approxima-
tion itself, while x scaling, or Bjorken scaling, is merely
an asymptotic property of the impulse approximation.

Bjorken scaling simply means that as q —+ ao,

S(q, co)~5(co —co„) . (3.21)

' 1/2
8 ln2 &Po

3 Pl
(3.22)

Physically, this means that for sufficiently large momen-
tum transfer, the scattering atom is effectively at rest in
the initial state, and S(q,co) then describes the free recoil
of this atom. In deep-inelastic lepton-nucleon scatter-
ing the observation of Bjorken scaling is regarded as
direct experimental evidence for the existence of quarks.
By the same token the observation of Bjorken scaling in
thermal-neutron scattering by condensed matter can be re-
garded as direct experimental evidence for the existence of
atoms. However, since the existence of atoms is no longer
a controversial question, Bjorken scaling is not of such
fundamental interest here.

If n(p) and, hence, J(y) and S„(q,co) are Gaussian
functions, as they are classically or in a harmonic crystal,
then S (q, co) has a full width at half maximum given by

IV. FINAL-STATE INTERACTIONS

A. (general expression for S(q, co)

We begin by defining a quantity R(q, t) such that

F(q, t)=R(q, t)F (q, t) . (4.1)

Then

The dynamic structure factors S(q, co) obtained from
neutron inelastic scattering measurements in the range
5(q(20 A ' for liquid' ' ' and solid ' helium,
liquid neon, and liquid rubidium are qualitatively con-
sistent with the impulse approximation to the extent that
they give S(q,co) distributions that are approximately
symmetrical about co, and that have full widths at half
maximum which increase more or less linearly with in-
creasing q.

Nevertheless, significant discrepancies exist, particular-
ly at the smaller values of q. For example, the measured
S(q, co) distributions exhibit small but definite asymmetry
such that the high-energy wings are enhanced and the
low-energy wings are depressed. Also, positions of the
peaks lie somewhat below m„and the widths are slightly
less than one would expect on the basis of the impulse ap-
proximation. These distortions can be attributed to the
effects of final-state interactions which are neglected in
the impulse approximation and which will be discussed in
the following sections.

The peak positions and widths are also observed to have
a slight oscillatory dependence on q. This can be attribut-
ed to interatomic interference effects which are neglected
in the incoherent approximation and which we shall con-
tinue to ignore in what follows.

where Apo is the rms momentum,
S(q, co) = f R (q, co')S (q, co co')dco', —

where

(4.2)

Hence, the relative width of the peak is R (q, co) = I exp( icot)R(q, t)dt —.
00

(4.3)

32 ln2

3

1/2
po It then follows from (2.8) that

(3.24)
lim R(q, t)=1,

q~~
(4 4)

The condition for Bjorken scaling is that b,co«co„and,
hence, that q &&2.72po. On the other hand, the condition
for y scaling is, as we have argued earlier in Sec. II D, that
q »Fo j2Eo

Table I lists the values of po for some representative
liquids. In liquid He, for example, po ——1.52 A ' and,
in the experiments of Ref. 8, q =83 A ' so that
b,co/co„=5%, which is roughly the same as the instru-
mental width in these experiments. Thus from a practical
point of view one might say that the Bjorken scaling limit
has been reached in these experiments.

To obtain the energy resolution necessary to obtain ac-
curate momentum distributions from deep-inelastic neu-
tron scattering experiments it is at present usually neces-
sary to use smaller values of q than above, typically 5—20
A ', and in this case one must allow for the effect of
final-state interactions which is the subject of the next
section.

and, hence, that

lim R(q, co)=5(co) .
q~ec

(4.5)

ao
( )n gn

S(q co)= g R„(q) S (q co),
o

(4.6)

For a finite value of q the function R (q, co) has a finite
width and characterizes the distortion of S(q, co) due to
final-state interactions.

In previous works, a number of authors ' ' have
described final-state interactions in terms of an expression
of the form (4.2) with explicit models for R(q, co). We
shall adopt a different approach which begins with the ob-
servation that since R(q, co) is approximately equal to a
delta function at large q, we expect that a convergent ex-
pansion will be obtained by expanding S (q, co —co') in a
Taylor series in powers of co'. Hence, (4.2) becomes
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where

R„(q)= J ~"R (q, co)de .

It then follows from (3.5) that

(4.7)

respect to the position of the scattering atom, V is the to-
tal potential energy of the system, and F= —7 Vis the in-
teratomic force on the scattering atom.

The moments of S (q, co) follow immediately from
(2.9) and we see that

S(q, co) =(m/iriq) g ( —)"A„(q)d"J(y)/dy",
n=0

(4.8) S„„(q)=a„„q", (4.16)

where where a« is again given by (4.14) and vanishes when n is
odd. Hence it follows from (4.11) that

A„(q) = (m/iiiq)"R„(q) .1
(4.9)

B. Sum rules

It follows from (4.2), with the help of the binomial
theorem

Equation (4.8) provides a formally exact expression for
the dynamic structure factor in terms of the longitudinal
momentum distribution function J(y) and the coefficients
A„(q) which we now proceed to calculate.

Rp(q) =1,
R i(q) =0,
R,(q)=0,

R3(q) =a32q

R4(q) =a42q

R5('q) a52q'+(a 54 —10a32a22)'q'

R6(q) =a62q + (a64 —15a42a22)q

(4.17)

that

(a +b)"= g a" b
m=0

n
S„(q)= g R„(q)S„(q),

m=O

(4.10)

(4.11)

The fact that Rp(q) and R4(q) are both positive while

R2(q) equals zero implies that R (q, co) cannot be a posi-
tive function, such as a Gaussian or a Lorentzian, but
must have an oscillatory tail. The existence of such a tail
has also been found in some model calculations of
R (q, co).

Finally, it follows from (4.9) that

(4.12)

where S„(q) is the nth central moment of S(q,co),

S„(q)= I (co —co, )"S(q,co)de,

and S„(q) is the corresponding mth central moment of
S„(q,co).

The moments of S(q, co) have been calculated in Refs.
64—66 for n =0 to 4 and in Ref. 10 for n =5 and 6. It is
found that S„(q) is a polynomial in q,

1, n=0
0, n =1,2

A (q)
O(q )

O(q ), n

In particular,

4p 6p ~ 0 ~

(4.18)

Sp(q) =1,
Si(q) =0,
S2(q) =a22q'

S3(q) a32q

S4(q) =a42q +a44q

S5(q) =a52q +a54'q

S6(q)=a62q +a64q +a66q

In general,

a„„=(v,"),

(4.13)

(4.14)

where the z axis is again taken to be the direction of q.
For an isotropic system,

a 32 ——A'( b, V) /6m

a„=(F')/3m',
(4.15)

and expressions for the remaining coefficients can be
found in Ref. 10. Here 5 denotes the Laplacian with

A3(q) =m (hV)/36iri q,

A, (q) =m 2(F2) /72''q' .

Hence, (4.8) becomes

(4.19)

Pl 00 dn
S(q, co) = 1+ g ( —)"A„(q) J(y),

n =3 d3'
(4.20)

in which the first term gives the impulse approximation
(3.5) and the remaining terms are the corrections for
final-state interactions.

It must be emphasized that (4.20) is merely a formal ex-
pansion and that there are, in fact, situations in which it
will fail. One such situation is the case of superfluid He
which we discuss later in Sec. IVE. Another is the case
of a hard-sphere fluid for which S(q, ai) has long high-
energy wings that cause S„(q), and hence A„(q), to
diverge when n )3. The hard-sphere fluid has also been
studied recently by Weinstein and Negele, "who showed
on the basis of time-ordered perturbation theory that al-
though qS(q, co) is a function only of y in the limit

q ~ ao, this function is no longer J(y).
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C. Symmetrization

We begin by decomposing (4.20) into two parts,

S(q,co) =S,(q, co)+S,(q, co),

where

d 2ll

S,(q, co)= 1+ g A&„(q),„&(y),
n=2

d2n+1
S,(q, co)= —g Ap„+)(q) 2„ i J(y) .

=ai dy

It then follows from (4.18) that

qS, (q, co)=(m /h') J( y) +O(q ),

qS, (q, co) =O(q ') .

(4.21)

(4.22)

(4.23)

q =5- IO A

%e

gO

e
V$

~g
A ~ ~

+ o ~e

~ 0 0 ~ ~
0

Since J(y) is an even function of y for an isotropic system
it is evident that S,(q, co) is an even function of co —co„

(symmetric) and S,(q, co) is an odd function of co —co, (an-

tisymmetric). Thus

S,(q, co) = —,[S(q,co)+S(q,2co„—co)],

S,(q, co) = —,[S(q,co) —S(q, 2co„—co)] .
(4.24)

2 4 6 8 IO 12 l4

n, =~4(q)/y o,

g, =23(q)/yo,
(4.25)

in which yp denotes the rms value of y,

yo= f y'~(y»)dy . (4.26)

Here g, is a measure of the relative distortion of S,(q, co)
due to final-state interactions, and g, indicates the magni-
tude of S,(q, co) relative to S (q,co). Since yp ——pp/3, it

Such a decomposition of S(q,co) into symmetric and
antisymmetric parts has previously been made on the
basis of a Gram-Charlier expansion, ' ' ' which likewise
shows that the final-state interaction effects are of order

q
' in qS, (q, co) and of order q in qS, (q, co).

The relations (4.24) can be used to decompose measured

S(q,co) distributions into symmetric and antisymmetric
parts. Examples of such decompositions can be found in
Ref. 2 for liquid helium and in Ref. 7 for liquid neon.
Momentum distributions for liquid helium and liquid
neon~ have been obtained from the measured S,(q, co) dis-
tributions by neglecting the q correction for final-state
interactions. A test of the validity of this procedure is,
according to (4.23), whether qS, (q, co) depends only on y
for the range of q values employed. This is demonstrated
for the case of liquid neon in Fig. 1 which shows qS, (q, co)

as a function of y for the eleven values of q in the range
5.0—10.0 A ' that were used in the analysis in Ref. 7. It
is seen that in first approximation qS, (q, co) is indeed a
universal function of y. The discrepancies that occur are
due not only to effects of final-state interactions but also
to interatomic interference effects and counting statistics.

A quantitative measure of the magnitude of the final-
state interactions is provided by the quantities

follows from (4.19) that

2

'9a=qa/q ~

where

(4.27)

q =Fol(4v 2Eo)

q, = (kV)/(8t/3ICppp) .
(4.28)

Here Fp ——(F ) is the mean-square force on the scatter-
ing atom and It. p ——(App) /2m is the average kinetic ener-

gy. A necessary condition for final-state interactions to
be negligible is that q &&q„which agrees with the heuris-
tic result (2.13).

The relation

Fp ———,'Ep(AV) (4.29)

is rigorously true for a classical system, for which
Xp =

2 kz T, and also for a simple harmonic oscillator. '

We regard it as a useful approximation quite generally, in
which case

qa =2v 3qs/po . (4.30)

The values of q, and q, are listed in Table I for some
representative liquids. The momentum distributions for

FIG. 1. y scaling in liquid neon. qS, (q, co) is shown in arbi-
trary units as a function of y =(m f/iq)( co co„) for liqu—id neon
at T =26.9 K for the eleven values of q in the range 5.0—10.0
A ', which were used in the determination of the momentum
distribution in Ref. 7. The data are from Ref. 59.
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liquid helium, which were obtained in Refs. 4 and 5, were
based on data for which 5.0&q&7.0 A ' so that il,
varies from 1.4% to 2.7%. For the corresponding work
on liquid neon, 5.0&q&10.0 A ' and il, varies from
2.2% to 8.6%.

where no is the condensate fraction and

a =mk~ T/8~ fi pn, ,

b =mc/16' tip,
(4.37)

D. Self-consistent correction procedure

Keeping only the leading correction terms in (4.22) we
gei

d4
S,(q, co) = 1+A4(q) 4 J(y),

J(y)=no[5(y) —2~(aln fy f+b fy f+ )],
and from (3.5) that as co~co„

(4.38)

in which p is the number density, n, the superfluid frac-
tion, and the c the velocity of sound. Hence, it follows
from (3.7) that as y ~0,

(4.31) S„(q,co) =no 5(co —co„)

m dS, (q, co) = —A3(q) 3 J(y),
fiq dy

so that

J(y) = S,(q, co)+u S, (q, co)
c)

f11 8co
(4.32)

KPPl 2Q Nl
ln (co —co, )

+b fco/co, —1
f + (4.39)

in which

CX =
m A3(q)

(F'&
2iii( b, V)

(4.33)

and is independent of q. Hence, it follows from (3.8) that

yn(y)=— 1 iriq c) c)
S,(q, co)+a S,(q, co)2' Pl 8co

In the theory of final-state interactions developed in
Sec. IV A it was tacitly assumed that S„(q,co) is analytic
for all co. Since (4.39) is, however, singular at co=co„ the
expansion (4.6) will not be valid in the neighborhood of
this singularity. Thus, for exainple, one would not expect
(4.34) to yield a momentum distribution with a well-
resolved condensate peak if this peak were not present in
S,(q, co).

Substituting (4.39) into (4.2), we see that in general

(4.34) S(q, co) =noR (q, co co„)+S'(q, c—o), (4.40)

In (4.32) and (4.34) the information about the final-state
interactions that is contained in S, (q, co) is used to correct
for the final-state interaction effects in S,(q, co).

To the extent that (4.29) is valid, we get

Kpa=- = p n(p)dp .
3A' 6m

(4.35)

Thus (4.34) and (4.35) provide a self-consistent pair of
equations for the determination of the momentum distri-
bution from the measured dynamic structure factor. If
the approximation (4.29) is not valid, the value of a can
be estimated from the criterion that the right-hand sides
of (4.32) and (4.34) should depend only on y.

n(p)=n, 5(p)+ a b

p P
(4.36)

E. Superfluid helium

For superfluid He it has been established theoretical-
ly that as p~O,

T

in which the first term is the condensate peak and the
second term the contribution from the uncondensed
atoms. Hohenberg and Platzman have assumed that the
broadening of the condensate peak is a simple lifetime ef-
fect in which case the full width at half maximum of
R (q, co) will be given by

b,co = =p(Rq/m)cr(q),
1

r(q)
(4.41)

where r(q) is the mean time between collisions for the
recoiling "He atom and cr(q) is the collision cross section.
This estimate is consistent with the observed temperature
variation of S(q, co) for liquid He. On the other hand, if
the broadening of the condensate peak were a simple life-
time effect one would expect R (q, co) to have a Lorentzian
shape which, as noted earlier, would violate the sum rules
(4.17). Thus the effect of final-state interactions on the
condensate peak in S(q,co) is still an open question, and
the use of (4.41) to estimate ' how large q must be in or-
der to resolve this peak experimentally must be treated
with caution.
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