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The influence of Landau-level mixing on the charge-density-wave (CDW) state of the two-

dimensional electron gas in a strong magnetic field has been investigated. We find that it is neces-

sary to calculate the mixing self-consistently. The results show that little change in the ground-state

energy results even when the interaction energy becomes stronger than the Landau-level separation
but that there is a substantial change of the charge-density variation, especially for electron CDW
states.

I. INTRODUCTION

Rcccntly Yoshioka RI1d Lcc' have plcscntcd accurate
calculations of the ground-state energy of the charge-
density-wave (CDW) state of a two-dimensional electron
gRs lil R stl'oilg magnetic field. Tllis state, wllich was fii's't

studied by Fukuyama et al. and by Yoshioka and
Fukuyama, had been proposed as a possible explanation
for the fractional quantuni Hall effect, 5' but the calcula-
tions of Yoshioka and Lee' showed that the ground-state
energy did not have the requisite cusps as a function of a
Landau-level filling factor. Moreover, it has recently been
established by Laughlin that an "incompressible-
quantum-fluid" state, which he invented, has lower energy
than the CDW state, at least at some filling factors
(v=N/XL, where XL is the number of states in a Landau
level). This state is now thought to be the basis of the
fractional quantum Hall effect. Nevertheless, the CDW
state is still of interest since the energy difference between

this state and Laughlin's state (or hierarchies thereof ' )

helps to determine the set of 61hng factors at w»ch the
fractional effect occurs.

In this paper we describe an investigation of the influ-

ence of Landau-level mixing on the CDW state. In most
calculations it has been assumed that this mixing can be

ignored, although it has been discussed in Appendix B of
Ref. 1 and briefly by Yoshioka and Fukuyama. ' In Sec.
II we briefly describe the calculation and in Sec. III we

discuss the consequence of including Landau-level mixing

without allowing the charge density to relax. Finally in

Sec. IV we allow the charge density to be determined
self-consistently. We find that while the charge density

changes substantially especially for electron (rather than
hole) CDW states, there is only a small reduction in the
ground-state energy. This is expected since, even without

. Landau-level mixing, the interaction energy is near the
I

minimum value defined in the classical Madelung energy,
and any gain in interaction energy is at the expense of a
cost of kinetic energy. Our findings are summarized in

Sec. V.

II. HARTREE-POCK APPROXIMATION
FOR THE CHARGE-DENSITY-%AVE STATE

IN A STRONG MAGNETIC FIELD

For a two-dimensional electron gas in a magnetic field,
if a Landau gauge is chosen, the eigenstates of the kinetic
energy operator may be written as

P„x(r)—:&r
I
n,x&=, exp l P„(x—x),1 le

)
I /2

n =0, 1,2, . . . , (1)

where P„(x) is a one-dimensional harmonic-oscillator
eigenstate with oscillator frequency co, =eH/mc,
aL, (Pic/eII)' ——is the Larmor radius, and, for a finite
system, the allowed values of the quantum number X are
separated by Z~aL /L~. Many of the unusual properties of
this system in a strong field are due to the fact that the
eigenvalue associated with the state

I
n,X&, e„x

=e„=Etio,(n + —,
'

), is independent of X. (The manifold of
states associated with a quantum number n is referred to
as a Landau level. ) In this paper we restrict ourselves to
the Hartree-Fock approximation and, for clarity, use the
language of single-particle wave functions (i.e., first, rath-
er than second, quantization). Thus the Fourier com-
ponents of the electron density are given by

p(q)= Qn &a
I exp(iq r) I a&,

where the normalized single-particle eigenstates ( I
a&)

solve thc self-consistent equations

I

2 ~.(n+ —'»xx&', .+ Qn. (&n'»';a'I &. In»;a'& —&n'»' a'I I' I

a"n X&) &n» Ia&=e &n'»'Ia&
n, X a'
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where V, ( r, r ') =e /
i
r —r '

i
is the Coulomb interac-

tion. The ground state is determined by choosing n =-1
for the N lowest eigenvalues and 0 otherwise, where N is
the number of electrons in the system. The ground-state
energy is conveniently expressed, as

Z = -,' a, N+ g n. g n g i (n,X i
a) i

z

a n X

1+ z gna&a.

We want to find solutions for which p(q) is nonzero

only for q =G where G is a reciprocal-lattice vector of a
two-dimensional lattice. p( q ) may be expressed as

p(q }=g g p„„(X,X')(n', X'
i
exp( i q —r )

i
n,X), (5)

n, n' X',X

where the density matrix is given by

p„„(x,x')= gn (n,X i
a)(a

i
n', X') .

and that

g(n„X',a
i

V, inzX;a)n.

2

g exp[ —,
' iGJ„(X+X')]

Ql )

w~ere

)&5(x' —X —aL GJ„)A (n&, nz', G),

(10a)

A (n&, nz', G) = g H(n&, m|', nz, mz, G)b, (G) (10b)

p(G)= g &„„(G)F„„(—G) .
In, n

The sum in Eq. (8) is over the reciprocal-lattice vectors
for the two-dimensional crystal structure.

Both the Hartree and Fock terms in Eq. (3) can be ex-

pressed in terms of [h„„(G)].For the Hartree term, we
express the result in the form

The matrix element

(n', X'
i
exp(iq r)

i
n, X) and

ml, m2

=5+, x & exp[ ,' iq„(X—+X')]F„„(q}, (7a) H(n m|,|n,zmzG)= F„,„,(G)F, , ( —G) (10c)

where

n!F„„(q)= (n')!
( —q +iq„)al

vz

tn —n

for G&0 and 0 otherwise.
The exchange term has an analogous form:

y ( nX|';a
i

V,
~
a;nz, X)ng

Xexp
2 2 2 2

4 " 2
(7b)

= g exp[ ,' iGJ, (X—+X')]

for n') n [L„(x.) is the generalized Laguerre polynomial.
For n'(n, F„„(q} can be determined using the identity
F„„(q)=F„"„(—q).] It follows that the density matrix
must take the form where

2)&5(X'—X—aL G~„)X(ni,nz, G),
(11a)

p, ,(x|,xz)= g 4, , (GJ )exp[ —,
'
iGJ„(X,+Xz)]

J

X
X2,Xi —aL, G~

X(ni, nz,'G)= g X(ni, mi', nz, mz.,G)b, , (G) (lib)
ml, m2

and

CO 2'
X(n i, m&,'nz, mz', G) = dq aL, d8(2n ) 'exp[iaL(G„q„—q~G„)]F„(q)F „(—q) . (11c)

The integral over 8 in Eq. (1lc) gives Bessel functions of integral order and, if the explicit form is used for the Laguerre
polynomials, the integration over q may be performed to yield

\

X(ni, m|,'nz, mz, G)=exp(il8o)[sgn(l)] (i) ' ' ' 'M( &,isi, iszizl i;G),
where sj ——maxInj, mj] and ij =minInj, mJI (j =1,2), 1 =n& —mi —nz+mz,

(12a)

M(ni, m|,nz, mz', l;G) =
' 1/2

7Tm i.P12.
1G exp

ni fn2!

m| m&

ki ——0 k2=0

~2
1+m2 n 1 n2 21

(v 2}

(12b)
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0.8 From these eigenstates b,o o(G) is calculated using

5o o(G) =I.„ f dXipoo(Xi, Xi —aL 6»)

)& exp ——G„(Xi——,
'

aL G» ) . (14)

Ba„

FIG. 1.
~

U„&&"{Gl
~

versus Gar, for n =0, 1, and 2. The ef-
fective coupling to higheI Landau levels is strongest for n = 1 at
most 6 values.

U„„"(G)=H (n ',0;n, O; G) —X(n ',0,n, O;G), (13)

which is plotted in Fig. 1 versus
~
G~ for n =0 and

n'=0, 1, 2. [U„„(G)equals U«(G) as defined by Eq.
(Bl) of Ref. 1. Note, however, that there are misprints in
that paper. ] The small magnitudes for the n'&n terms
shown in Fig. 1 are in accord with the expectation that
the Landau-level mixing will be weak.

In Eqs. (10a) and (lla) the factors M(n&, n2, G) and

X(ni, nz, G) are independent of X and X'. As a result the
eigenvalue equations which we are required to solve at any
stage in the iteration procedure are of the same form as
those for an external potential of the same periodicity. as
that asumed for the CDW state. These equations can be
solved for any assumed crystal structure of the CDW
state in the manner discussed in Ref. 12. Our calculations
were performed in the following steps.

(0 For %co,~oo find the eigenstates for the case of
noninteracting electrons in an external potential which
produces a charge density of the desired form. As far as
is known, for each crystal structure the lowest-energy
CDW state has one electron per unit cell for v& —,

' and
one hole (one electron less than a single full Landau level)
for v& —,'. [By %co,~ao here we mean, simply, that the
mixing of the eigenstates into n&0 Landau levels is as-
sumed to be negligible and the sum over n in Eq. {3) is
truncated at n =0, i.e., there is no Landau-level mixing. ]

t=ni~n2 —mi —mz+2(ki+kz) .
[Ill Eq. (121) Ck ~ is tlie coefficient of x lil I~(x).]

In the calculations which we discuss below we consider
the case in which only the lowest Landau level is partially
occupied. Thus, as we shall see, b, ~ is near zero unless
m' and m are both zero. Many of our results can be un-
derstood in terms of the mi ——mq ——0 term in Eqs. (10b)
and (111}.This makes it useful to define the quantity

Note that 5o o(G=0) =v.
(ii} Self-consistently solve the Hartree-Fock equations

without allowing Landau-level Imxing. At each stage
hoo(G) is "mixed" with its value on the previous itera-
tion. That is

[~d',o+"«}l..=rr[~d', o'(G)l +{1—o')[~o,o(G)]-

where {j) is an iteration index, [boo"'(G)];„=&o,o(G),
[boo(G)];„ is used to evaluate Eqs. (101) and (111) and
(truncated to mi ——mz ——0) [hoit{G)]„, is obtained from
the resulting eigenstates from Eq. (14) [the eigenstates
from step (i) are used for j=0], and a is a numerical fac-
tor. We found that a-0.7 gave reasonably rapid conver-
gence. The sums over j in Eqs. (10a) and {101)were trun-

cated to include all G vectors with
~
G~ &G,„, and

G,„was chosen to be sufficiently large to have the sum
rule'

~
hoo(Gi)

~

z=v (16)

satisfied to four figures (G,„-gaL
' for —,

'
& v & —', ).

(iii) Starting from the self-consistent solution without
Landau-level mixing, continue iterating with Landau-level
mixing allowed until a new self-consistent solution is
reached. In this case the eigenvalue equations for the
single-particle wave functions were determined by trun-
cating after the n,„ lowest Landau levels. The criteria
used to determine n,„are discussed in the next section.
The ground-state wave function and the ground-state en-

ergy in units of e /aL, , depend on the ratio of e /aL to
%co, and calculations were performed for several values of
this parameter for square- and triangular-lattice CDW
states and for v= —,, —,, and —,.

III. UNRELAXED LANDAU-LEVEL MIXING

1 g n '(n, X'
i
5H

i u) i
X'),

e,X'
(17a)

e =e g'n 'J(n, —X']5H]a) f',
C gg, g'

Assume that a self-co'nsistent solution of the Hartree-
Fock equations has been found for the limit fico, ~~.
For finite %co, we must allow Landau-level mixing. For
small values of (e /aL )/fico, the new single-particle wave
functions and energies can be determined by leading-order
(degenerate state) perturbation theory. Using Eqs. (10),
(11),and (13) it follows that
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( n,X'
I
5H

I
a) = +exp[ —,iGJ„(X+X')]5, & U„o"(GJ )ho o(GJ)(O,X I

a) .
'X X —X—aL G& n

J~

Using, in addition, Eqs. (6) and (8), gives

5E»—= g(e' —e )n

(17c)

—(e /aL, )
2 2

p 2
NL, g bo, o(Gi)~o, o(G2)~o, o( —Gi —G2)exp[ —,iaL (G~Giy GizGzy)]

ACOC
Gi, G~

X g'n -'U„",,"(G,) U,""„(G) . (18)

This is the quantity listed as AE in Eq. (B7) of Ref. 1.
The primes on the sums over n in Eqs. (17) and (18) indi-
cate that n =0 is excluded while the prime on the sums

over Gi and G2 in Eq. (18) indicates that terms with

Gi ——0 or G2 ——0 may be excluded since

U„o(G= 0.)
I
=

I
Uo „(G=0 )

I
=0

if n~O.
The change in the total energy, for unrelaxed Landau-

level mixing, is given to leading order in (e /aL, )/irico, by

Results for 5Es& are summarized in Table I. The sum

in Eq. (18) is dominated by those terms with Gz ———Gi
which all have the same sign. This contribution to the
sum is

g I~o,o(G) I'IU.tr(G) I'
~c

G
(20a)

where U,rr(G) gives a measure of the contribution to
Landau-level coupling of charge variations with wave vec-
tor G and is defined by

5E= —,
' gn e' e+fico,—g n I (n, XI a)'I

n, X
I
U„"(G)

I

I
U. «)I'=—X

n=1
(20b)

2 n '1(n»15H
I
a)

I

'
a c n, X

(19)

The first form on the right-hand side of Eq. (19) follows
directly from Eq. (4) upon noting that (n,X

I
a ) =0 for

n&0, and the second form follows from using Eq. (17a)
in the first term. Comparing the second forin with Eq.
(17b) makes it clear that this quantity vanishes. This re-
sult, which is surprising at first sight, provides a check on
our computer code for calculating Landau-level mixing
and we have verified that the energy change calculated for
unrelaxed Landau-level mixing vanishes to leading order
in (e /az. )/irico, . There is an exact cancellation to this or-
der between a gain in interaction energy and a cost in ki-
netic energy. 5E,~ is negative because it double counts the
change in the interaction energy. It is important to realize
that when the Landau-level mixing is relaxed to self-
consistency, as discussed in the next section, changes in
the energy do occur to leading order in (e /aL )/fico„but
these are not directly related to 5E,„. [Note from Eqs.
(10b) and (lib) that if h„o-(e /ai )/fico„ this produces
changes in the Hartree-Pock matrix elements within the
lowest Landau level which are -(e /aI ) /fun, and these
must be determined self-consistently. ] However, to the
extent that it provides a measure of the degree of
Landau-level miging present before we relax to self-
consistency, 5E» does give some notation of the forces at
play and helps us to understand the various numerical re-
sults we report in the next section. -

This quantity is plotted in Fig. 2. Using Eq. (16) in Eq.
(20a) gives

(e /a )LNLv (1—v)5E
C

(21)

where ( I U,ff(G)
I

) is an average of
I

U,rr(G)
I

over the

Lattice

Square

. Hexagonal

Square

Hexagonal

Square

Hexagonal

Square

Hexagonal

Filling
factor

3

2
3

2
3

Type of state

Electron

Electron

Electron

Electron

Hole

Hole

Hole

Hole

—5E,p

0.861

0.840

1.845

2.180

1.848

2.180

1.184

1.116

TABLE I. Change in the average single-particle energy in
'leading order of perturbation theory. The v=

3 CDW states
have the periodicity of an electron Wigner lattice while the
v 3 states have the periodicity of a hole Wigner lattice. For
v=

2 calculations were done for both electron and hole CDW
states. 6E,~ is in units of 10 NL, (e /al. ) /fm, .
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have converged to within —1% when the sum over Lan-
au levels is truncated at the fifth level and to within
etter than a part in 10 when it is truncated at the tenth

Landau level. We have used this fact to justify perform-
ing the calculations reported on in the next section in a
Hilbert space truncated, for the most part, to the five
owest Landau levels. These calculations also show that
E p is relatively insensitive to the crystal structure. This

insensitivity was verified for the ground-state energy cal-
culations discussed in the next section and, although we

pe ormed calculations for several crystal structures, the
results are reported only for the hexagonal case. In the
absence of Landau-level mixing this structure gives the
lowest energy except very near to =—' hv=-, w ere t e
ground-state energy is extremely insensitive to crystal

15
structure and the square lattice seems t b l
erre .

o e narrow y pre-

reciprocal-lattice vectors which dominate this sum rule,
which for the case considered here are those in the first

first shell of reciprocal-lattice vectors in square and hex-
agonal lattices from both the electron CDW state at v= —,

'

and the hole CDW state at v= —', . For both the electron
and hole states at v= —,', the same numbers are 1.772 and

ff )
i ) should be larger at v= —,

' . This, combined
wit the explicit filling factor dependence in Eq. (21), sug-
gests that 5E,~ should be largest near the middle of the

andau level. The numbers reported in Eq. (21) bear this
out. We shall see in the next section that 5E i, '

aspec, a reliable indicator of the dependence of the
change in ground-state energy on the filling factor. Equa-
tion (21) also suggests that 5E,~ should be larger for the
hole CDW states at v) —,

' than for the electron CDW
states at v -'.' ThThis impression turns out to be entirely
misleading.

Another useful piece of information comes from the
calculation of 5E,„. We find that the entries in Table I

IV. SELF-CONSISTENT CDW STATES

Ourur results for the energy are summarized in Table II,

e /aL )/irira, and for electron CDW states at v= —,
' and —,

'

CDW states become degenerate as (e /aL, ) /irma, ap-
proaches zero. ] The most striking feature is that the ener-

gy change is much larger for the electron states. It is easy
to understand why this must be so; The minimum of the
interaction energy occurs for electron wave functions lo-
ca ized, as closely as possible, about the lattice sites. The
ratio of the electron density at a lattice site to the average
e ectron density is a measure of the degree to which this
localization occurs for the electron CDW state. The max-
imum possible electron density at any position, when

andau-level mixing is not allowed, is (2m.a )
' which is

the uniform density of a filled Landau level. To the accu-
racy of our calculations' this density is achieved in the
CDW states and so the ratio mentioned above is 1/v,
which becomes large for small v. For small v the interac-
tion energy of the electron CDW state is very near to the
classical limit but as v approaches —' th

'
de maximum densi-

TABLE II. Energy per. electron in units of e /aL, for hexagonal-lattice
o energy has been chosen to be the noninteracting (kinetic plus Zeeman)

tion energy and total energy are given for several values of (e /aI )/%co, .
tice of point electrons. This Madelung energy is, in the above units —0.45

energy of Laughlin*s state at v= —,
' is =—0.410.

CDW states for several values of e /aL ~ As usual, the zero
energy of the lowest Landau level. Results for the interac-

~ ~

The mmimum possible interaction energy occurs for a lat-

16 at v= 3, —0.5531 at v= 2, and —0.6387 at v= —.The—3.

State
1—
3

Electron CDW
1—
2

Electron CDW
1V= 2

Hole CDW
2—
3

Hole CDW

Energy type

Interaction

Total
Interaction

Total
Interaction

Total
Interaction

Total

0.0

—0.3885
—0.3885
—0.4435
—0.4435
—0.4435
—0.4435
—0.5076
—0.5076

0.5

—0.3956
—0.3916
—0.4580
—0.4497
—0.4440
—0.4438
—0.5080
—0.5078

1.0

—0.4006
—0.3939
—0.4681
—0.4545
—0.4445
—0.4440
—0.5084
—0.5080

(e /aL )/%co,
2.0

—0.4070
—0.3973
—0.4805
—0.4617
—0.4452
—0.4445
—0.5090
—0.5084

3.0

—0.4108
—0.3999
—0.4875
—0.4666
—0.4457
—0.4449
—0.5095
—0.5087

5.0

—0.4149
—0.4032
—0.4950
—0.4731
—0.4463
—0.4450
—0.5100
—0.5091

10.0

—0.4196
—0.4076
—0.5022
—0.4811
—0.4470
—0.4460
—0.5107
—0.5098
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TABLE III. Electron and hole densities at the lattice sites of electron and hole CDW states. For the

electron CDW states we list n (R)2maL, and for the hole CDW states we list 1 —n (R)2maL, .

State

1
V 3

Electron CDW
1

V 2

Electron CDW
1

V 2

Hole CDW
2V= 3

Hole CDW

0.0

1.000

1.000

1.000

1.000

0.5

1.145

1.210

1.000

1.000

1.0

1.262

1.376

1.000

(e /aL )/fico,
2.0

1.424

1.610

1.000

1.000

3.0

1 ~ 532

1.765

0.999

0.999

5.0

1.658

1.946

0.999

0.999

10.0

1.812

2.167

0.999.

0.999

ty restriction becomes more severe and the difference be-
tween these energies grows rapidly. When Landau-level
mixing is allowed it is possible to increase the electron
density at a lattice site at the cost of increasing the kinetic
energy. For the hole CDW states the situation is very dif-
ferent. The maximum hole density is also (2maL, ) ' com-
pared to an average density of (1—v)(2m.aL ) '. But this
corresponds to a physical electron density of zero and
this, obviously, cannot be decreased further. We believe
this is the reason that the energy of the hole CDW state
decreases only slightly when Landau-level mixing is al-
lowed. ,

In Table III we list values for n (R)(2maL ), for R at a
lattice site of the electron CDW states, and

1 —n (R)(2iraz ) for R at the lattice site of the hole CDW
states. As expected, the electron density at the electron-
lattice sites increases quite rapidly as (e /aL, )/fico, in-
creases. This corresponds to a narrowing of the electron
density distribution around the lattice sites and is respon-
sible for the increase in the magnitude of the interaction
energy noted in Table II. On the other hand, for the
hole-lattice sites the hole density changes little. The small
increase in the magnitude of the interaction energy in this
case comes from a slight change in the shape of the
charge distribution around a lattice site.

In concluding this section we note that all of the results
listed in Tables II and III are based on calculations for
which the Hilbert space was restricted to the five lowest
Landau levels. For the electron CDW state at v= —, we
also performed several calculations which allowed mixing
within the ten lowest Landau levels. The changes in the
ground-state energy were -0.00002 and -0.0001 at
(e /al )/%co, equal to 1 and 5, respectively. The corre-
sponding changes in the electron density at the lattice sites
were -0.003(2maL, )

' and -0 01(2iial ).
V. SUMMARY AND CONCLUSIONS

We have solved the Hartree-Fock equations for the
electron and hole CDW states of a two-dimensional elec-

tron gas in a strong magnetic field. We find that, for the
electron CDW states, there is a substantial increase in the
degree to which the charge density is localized around lat-
tice sites when mixing between different Landau levels is
allowed. For the hole CDW states, the hole charge densi-
ty already has its maximum value (zero electron density)
at the lattice sites for the one-Landau-level CDW state
and the increase in binding energy resulting from
Landau-level mixing is therefore much smaller. For
(e /aL, )/fuo~0 the electron CDW states are lowest in en-

ergy for v & —,
' and the hole CDW states are lower in ener-

gy for v& —,. As (e /ciL)/fico, increases the crossover
point inust move to larger values of v for the reasons
given above. For example, at v= —,, calculations not dis-
cussed in detail here show that the electron CDW state
has lower energy for e /aL ) 3%co,. Since the increase in
binding energy of the electron CDW state, when Landau-
level mixing is allowed, is associated with its nonuniform
density distribution it is likely that the increase for
Laughlin's uniform state is much smaller. However, for
the ratio of (e /al ) to irico, appropriate to the GaAs-
Ga, „Al„As heterostructures' (-0.7 at H =10 T and
-0.5 at H =20 T) it is clear that the energy difference
between the two states is not greatly altered. In the case
of an inversion layer at Si-SiOz interfaces, however,
(e /aL, )/fico, -4 at H = 10 T and —3 at H =20 T (Ref.
16), it seems that Landau-level mixing may contribute to
making the appearance of a fractional Hall effect less
likely.
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