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Tagged-particle diffusion is investigated on a system of two coupled linear chains with an arbi-
trary ratio of the jump rates for jumps to unoccupied neighboring sites in the two principal direc-
tions. The mean-square displacement of a tagged particle is investigated both theoretically and by
Monte Carlo simulations; the agreement between the results of these two approaches is found to be
very satisfactory. Also the theoretical and simulated correlation factors, determining the coefficient
of tracer diffusion, are always found to agree within a few percent. At small jump rate ratios, the
mean-square displacement exhibits an intermediate t~ power-law behavior, with 2 &P & 1, resulting

from an incomplete changeover- to a purely one-dimensional t ' power law.

I. INTRODUCTION

It has been realized for some time that tracer diffusion
on a one-dimensional array subject to a single filing con-
straint, which means that individual particles cannot pass
each other, has anomalous character. ' Specifically, the
mean-square displacement of a tracer particle in such a
system does not increase linearly with time for long times
but only proportionally to t' and, accordingly, the
tracer diffusion coefficient equals zero. However, as soon
as the single filing constraint is relaxed, normal behavior
of tracer diffusion is to be expected. A simple way to
achieve this is by considering two coupled lines on which
particles can pass each other by jumping from one line to
the other.

A second motive for investigating such models is pro-
vided by lattice gases with anisotropic jump rates. Con-
sider, for instance, a two-diinensional lattice gas with
much larger jump rates in x direction than in y direction.
A physical example could be a lattice gas on a surface
with channels with short site distances, separated by
larger distances. The diffusion of tagged particles should
now exhibit one-dimensional effects on a intermediate
time scale, and it is of interest to study the crossover to
diffusional behavior at long times. Anisotropic lattice-gas
models have been considered by Tahir-Kheli in two and
three dimensions. If one considers a two-dimensional lat-
tice gas with periodic boundary conditions and introduces
only two sites in the y direction, one again obtains the
model of two coupled lines.

In this paper we will also consider this model. The
specific properties of the lattice gas are defined in the fol-
lowing way: Each site can be either singly occupied or

empty. Within each chain the particles can hop to empty
neighboring sites with transition rate I

~~,
' jumps to empty

neighboring sites on the other chain occur with the rate
I'i in either direction (due to the periodic boundary condi-
tions in the vertical direction this means that the actual
jump rate between vertically neighboring sites equals
2I i). Besides the exclusion of jumps to occupied sites no
further interactions between particles are considered.

As I i is increased from zero to finite values a change-
over from single-filing behavior to normal diffusion
occurs. A rough qualitative argument for the behavior of
the tracer diffusion coefficient at small values of
a = I"~/I'~~ can be given as follows: A tagged particle on a
single chain experiences an averaged squared displacement
according to the asymptotic law

(x (t)) =[2(1—c)/c](I'iit/n. )'i2 .

Here c is the concentration, or average occupation number
of the lattice gas, satisfying 0 & c & 1. After a mean time
(21 j) ' the particle will make a jump to the parallel
chain and again start to diffuse according to the asymp-
totic law for a single chain. Repetition of this process
leads to a mean-square displacement approximately

2I t[2(1—c)/c][I ii/(21 )]'

hence to a diffusion coefficient D, -a' I ~~(1
—c)/c.

This will be confirmed later by explicit calculations.
Apart from the diffusion coefficient the complete

behavior of the mean-square displacement of a tagged
particle as a function of time is of interest. On a single
chain this quantity grows initially as t and asymptotical-
ly assumes the t' behavior mentioned above. If the par-
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ticle makes jumps between two such lines, another
changeover from the single-chain behavior to diffusive
behavior will occur. If a «1 this changeover simply ap-
pears as a changeover from t'~2 to linear behavior. For
slightly larger values of a, however, the changeover
occurs at times where the t '~ behavior is not yet fully at-
tained. It is then seen that the displacement behaves ap-
proximately like an intermediate power law t~ with
—, &P & 1 over one to two decades in time, and, of course,

P approaches —,
' in the limit of very small a.

A changeover between t' and t behavior also occurs
in other diffusion models. For instance, a lattice gas on a
linear chain with periodic boundary conditions shows
such a behavior. ' Less understood is the occurrence of a
t ~ term, with —1.3 &P' &2 in the velocity autocorrela-
tion function of the two-dimensional Lorentz gas at
moderate and high densities of scatterers, which was
found by Alder and Alley in computer simulations. "
Since the velocity autocorrelation function equals one-half
times the second time derivative of the mean-square dis-
placement, ' this t ~ term implies the existence of a
t ~ term in the mean-square displacement. A plausible
explanation seems to be that this term represents an
intermediate-time behavior resulting from a changeover
between short time and percolative behavior and another
one between the latter and the asymptotic long-time
behavior.

In Sec. II we develop a stochastic theory of tracer dif-
fusion on two coupled lines that become exact in the lim-
its of small vacancy or particle concentration. In the limit
+=0, where the two lines decouple, this theory is slightly
less accurate for general c than the theory presented in
Ref. 10, but the extension to u values different from zero
is straightforward, which is not the case with the latter
theory. In Sec. III we present the results of numerical
simulations and compare these to the theory of Sec. II as
well as to Tahir-Kheli's theory. Section IV contains our
concluding remarks, along with a short discussion of the
results on the two-dimensional Lorentz gas obtained by
Alley and Alder.

II. VELOCITY AUTOCORRELATION FUNCTION
AND MEAN-SQUARE DISPLACEMENT

The autocorrelation function of the tagged-particle
velocity can be calculated by methods similar to those
used in Ref. 10. Suppose the tagged particle performs
jumps p; at times t; (i =0, 1, . . . ) with 0&to&t, &t2

and p; = (p;„,p z ) E [(a,O), ( —a, O), (0,a),
(0, —a) J. Then the tagged-particle velocity is given as

The velocity autocorrelation function is defined by

C(t) = (v„(0)u„(t)),
where we restrict ourselves to the x-x correlation func-
tion. The angular brackets denote a joint average over the
equilibrium distribution of all particles at t =0 and over
all realizations of the random hopping process for t &0.

From this the mean-square displacement follows directly
as"

([x(t) —x (0)]')=2 f dt' J dt" C (t") . (3)

Inserting (1) into (2) we obtain the following expression
for the velocity autocorrelation function:

(4)

Here we used the fact that, in order to obtain a nonvanish-
ing contribution, U„(0) has to be different from zero,
hence the first jump of the tagged particle has to occur at
t =0, and it has to be in the x direction as well. This has
a probability density 2(1—c)I ~~,

therefore the contribu-
tion to C(t) from the i =0 term in the sum occurring in
(4) is of the form

C' '(t)=2(1 —c)1"~~a 5(t) .

To approximate the remaining terms in (4) we proceed in
the following way: We call the vacancy with which the
tagged particle exchanges positions at x =0 the special Ua-

cancy. If, right after the initial jump we would replace
the special vacancy by an "average site" occupied with
probability c and vacant with probability 1 —c, we would
have on average a situation with complete mirror symme-
try in the x direction about the tagged particle, and
beyond (S) no further contributions to C(t) would arise.
This means that the nonvanishing contributions to C(t)
for t & 0 result entirely from the difference in behavior be-
tween the special vacancy and the average site. To simpli-
fy the analysis of this difference we modify our definition
of the microscopic dynamics in the following way we
assume that each couple of neighboring sites in the hor-
izontal, respectively, vertical direction, not containing the
tagged particle, may exchange its contents at the constant
exchange rates I

~~
and I z, respectively. The tagged parti-

cle, as before, may only exchange positions with a neigh-
boring vacancy, at the rates I

~~
and I z in the horizontal

and vertical directions, respectively. So the difference
with the original dynamics is that neighboring nontagged
particles or vacancies may exchange positions, but this is
immaterial to the dynamics of the tagged particle, since
the latter does not distinguish the identities of the other
particles.

The difference between the dynamics of special vacancy
and average site can now be completely characterized by
noting that the special vacancy performs a simple uncon-
ditional continuous time random walk, whereas the aver-
age site also performs a continuous time random walk,
but under the condition that it can jump past the tagged
particle only if it contains a vacancy.

A complication arises from the fact that the tagged par-
ticle also performs a hopping process, which is not simple
to describe exactly. To approximate this we will assume
that the tagged particle performs a simple continuous
time random walk as well, with a vertical jump rate
(1—c)I i and an effective horizontal jump rate I

~~,
which

will be determined self-consistently from the long-time
behavior of the tagged-particle mean-square displacement
in the x direction. We will sometimes use the abbrevia-
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tion b instead, defined by I
II
=bI II. The correlation fac-

tor is obtained by division with I —c,

f=I'II/[I'II(1 c—)]=b/(1 —c) . (6)

{C3 ~j =(1—c){o soj+c {osoj, (10)

where denotes the tagged particle, an occupied site,
and o a vacancy. The factors 1 —c and c denote the

The single line .It is instructive to calculate the velocity
autocorrelation function for the simpler case of a single
line first. Instead of C(t) we rather consider its Laplace
transform

C(s)= I dte "C(t) -.

The self-correlation of the initial jump yields a contribu-
tion

C(0)(s)=(1—c)rlla 2

After this initial jump, the first difference between the
dynamics with the special vacancy and that with the aver-
age site occurs at the "first return" of the special vacancy,
that is, when the special vacancy changes position with
the tagged particle for the second time. The average site
will do the same only with weight 1 —'c, after which ex-
actly the same situation occurs as when the special vacan-
cy jumps. With the remaining weight c a particle remains
positioned next to the special particle and no jump occurs.
Let the probability density of a first return at time t after
the initial jump at time 0 be g(t) with Laplace transforin
g(s). Then the noncompensated contribution to C(s)
from the first return of the special vacancy is

C'"(s)= —2(1—c)I'IIa cP(s) .

To obtain the contribution resulting from the second re-
turn of the special vacancy one proceeds along similar
lines. First one has to notice that only the noncompensat-
ed fraction c of the special vacancy contributes at this
second return. Then, again, if right after the second re-
turn the special vacancy would be replaced by an average
site no further contributions to C(s) would result, and it is
only the difference between the process involving the spe-
cial vacancy and the one involving this new average site
that contributes to C(s). Hence a contribution of magni-
tude 2(1—c)1 IIa [cp(s)] results. However, an additional
term is to be subtracted from this, resulting from the situ-
ation where, with weight c, the first average site, filled
with a particle, remains positioned next to the tagged par-
ticle when the special vacancy completes its first return.
The occupation of all other sites follows the equilibrium
distribution. This implies that the configuration of
tagged particle and neighboring "average-site" particle
can be subdivided according to the following symbolic
equation:

probabilities for the respective configurations. The second
term on the right-hand side of (10) possesses mirror sym-
metry about the tagged particle, and hence will not contri-
bute to C(s). In a similar way the configuration occur-
ring just after the first return of the special vacancy can
be decomposed according to

C' '(s)=2(1 —c)I IIa c(2c —1)p (s) . (12)

Now it is simple to calculate the contribution from the
nth return with the result

C'"'(s) =(—1)"2(1—c)I'IIa c(2c —1)" 'g "(s) .

The full velocity autocorrelation function is found by
summing over all n and is of the form

C(s) =(1—c)I IIa
1 —P(s)

1+(2c—1)g(s)
(14)

Our next task is the calculation of P(s), based on the
random-walk assumptions for the special vacancy and
tagged particle described above. The first step consists in
expressing P as

(s) =—,+2rII+rtI

1 —[(I II+I II)/(s+2I II+I II)]X(s)

Here I II/(s +2I II+I II) is the contribution from a direct
return after the initial jump; also see the Appendix for a
more detailed treatment including transitions to the
second line. The multiplicative factor sums a geometric
series of contributions in which the basic building block
consists of a jump bringing special vacancy and tagged
particle two lattice units apart [with probability

II+rfl /(s+2I II+I"II) in the Laplace regime], fol-
'lowed by a return to the situation where they are next to
each other. The quantity X(s) generally describes the first
return probability for the distance between special vacan-
cy and tagged particle from (n + 1), with n & 1, to n lat-
tice units. It satisfies the algebraic equation'

{oej=c{oeoj+(1—c){ohio j .

Again, the second term on the right-hand side is mirror
symmetric and does not contribute to C(s). But the first
configuration is precisely the same one occurring in the
first term on the right-hand side of (10). Hence one may
conclude that the term to be subtracted is just (1—c)/c
times the direct contribution. from the second return of
the special vacancy, and the total contribution from the
second returns amounts to

X(s)= rll+I ll

[s+2(I II+rII)]{1—[(I II+I II)/(s+2I II+2I II)]X(s)j

The solution of (16) is elementary. It can be written as

(16)
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1+b +0—[0[2(1+b}+Qj
'"

1+b
with g=s/21 ll. Substituting (17) into (15) and the latter equation into (14) one obtains a result for C(s) in which only
1

ll
is unknown. The value of this quantity can be fixed now by imposing the self-consistency condition

C(0}=1t (18)

0 as was to be expected, 7'o but for the double line (18) will

yield nonzero values for 1 ll.
The double line In. the case of the double line the first return of the special vacancy may occur either on the same line

where the special particle is present, or on the other line. In the second case a situation arises where the tagged particle
and special vacancy are found above each other. At least under the app'roximations adopted here, this situation on the
average has perfect mirror symmetry about the axis through tagged particle and special vacancy, and hence, .whatever

happens afterwards, will, on the average, not contribute to the velocity autocorrdation function. On the other hand, if
this first return happens with tagged particle and special vacancy on the same line, these two exchange positions and the
analysis proceeds as in the case of a single line. This implies that (14) is still valid, provided that g(s) is defined as the
probability for a first return with tagged particle and special vacancy (or average site) on the same line. The calculation
of g(s) is straightforward but somewhat lengthy. Therefore, we defer it to an Appendix and merely quote the result

I
ll 1 (I ll+1 tl)[X(s)+X(s+2yI ll))f(s) = 1 ——

8+21 II+I II+2yl'll 2 8+21 It+I II+2yl'

I2yI ll+ —,
' (1"ll+1 Il)[X(s}—X(s +2yI" ll)] j

(s +21 ll+I'll+2yl'll)(s +2yI ll+(1 ll+I ll) I2 ——,
' [X(s)+X(s+2yI'll)] j )

(19)

= tg+(1+b)+ y+ ,' [g(2+2b —+g)]'/~+—,
' [(g+2y)(2+2b +g+2y)]'~~j

X( f2+(2+b)g+(1+ b)+(2(+2+b) I y+ , [g(2+2b —+g)]'~i+—,[($+2y)(2+2b +$+2y)]'~2j

+[&(2+2b+&)]'"I2y+ [(g+2y)(2+» +g+2y)]'" j )-' . (19')

Here y=(2 —c)a, with a=l'i/I
ll

as introduced in Sec. I, and X(s) is given by (17). The correlation factor has to be
determined by (18) and (6) again, which leads to the result

(1—c)(1+b)(y+q)
2c (1+b)+(2e +1+b)(y+@) (20)

2cb(1+b)+[b +3cb —(1—c)](y+q)=0 (20')

1

with q =[y(l+b +y)] . If, instead of solving for b in (20) one equalizes this quantity to 1 —c, substitutes this into the
right-hand side of (20), and divides by 1 —c, one recovers Tahir-Kheli s expression for the correlation factor. In the lim-
its c~0 and c~1 it coincides with our results, for intermediate concentrations, however, a self-consistent determination
of b seems preferable.

For small s one can derive from (14) and (19) an expansion of C(s) in powers of ~g in the form

C(s)=l lla~(b+ci&g+cig+ . . ) . (21)

The coeffic1ents ci arid c2 are glveli by

c, =c (1—c)[2(1+b)]'" 2c (1+b) (1+b —2c)(y+q)—
4c'(1+b) (1+b —2c)(1+—b +2c)y

(22)
b2 —ai bi —bob2+(2c —1)(2aibi —aob2 —apbo}+(2c —1) (ai —aoa2)

c2 ——(1—c)b
bo —ao [bo+(2c —1)ac 1'
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with ao ——1+b +y+q,
1/2

1+b
a& ——

2
10

a2 ——1+ (1+b +2y)q
4y(1+b+y) '

bo 1+——b +(2+b)(y +q),
' 1/2

b i ——(2+b) +2[2(1+b)(y +q) ]'~i
2

b =(2+b)+2(y+q)+ 4y(1+b+y)

III. COMPARISON WITH NUMERICAL SIMULATIONS

The numerical calculations were made partly on an
IBM 370/148 computer in Warsaw, and partly on an IBM
3033 computer at Julich. The simulation of the hopping
process of the particles on the two coupled chains was
made by standard Monte Carlo techniques which have
been comprehensively described in Ref. 14 for the case of
tracer diffusion in an fcc lattice gas. In this paragraph
some special features of the procedure used for our model
are presented. Lattices with at least 1000)&2 sites were
introduced and periodic boundary conditions imposed.
Some runs were made with reflecting boundary conditions
in the. x direction to verify the independence of the results
from the boundary conditions. The lattices were random-
ly occupied by particles with prescribed average concen-
tration c.

For a given ratio a=l'i/I
ii

the hopping process was
simulated in the following way. First, a particle was
selected at random. Second, a random number g with
0&/& 1 was generated. If 0&/& [2(1+a)] ' a jump in
positive direction was attempted, if [2(1+a)] '

& g'

&(I+a) ' a jump in negative direction was attempted,
and if (I+a) &/&1 a jump in the y direction was at-
tempted. Jumps were executed when the final site was
unoccupied. This process was repeated many times. In
such simulations, time is usually measured in Monte Car-
lo steps (MCS) per particle which are defined as the aver-
age number of attempted jumps per particle. This corre-
sponds to setting 2I ii+2I z

——1. Here we prefer the total
jump rate 2I

I~
in x direction as the inverse time unit.

This requires rescaling of the tiine scale in MCS by a fac-
tor (1+a) '. Further details of the numerical procedure
can be found in Ref. 14.

The results of the simulations for three different con-
centrations are given in Figs. 1—3, together with the pre-
dictions of the theory. Four different ratios a of the per-
pendicular to the parallel jump rates were used (five for
the largest concentration), and also tracer diffusion on a
single line, corresponding to a=0 was simulated. These
simulations cover tiines between 1 and 10 [in units of
(21 ii) '], and relatively small particle numbers were used,
except at the largest concentration. The theoretical curves
for finite a were obtained by numerical inverse Laplace
transformation of Eqs. (14) and (19), and the inversion
routine of Honig and Hirdes' was used. One notes very
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FIG. 1. Mean-square displacement of tagged particles on two
coupled linear chains. Solid lines: theory; closed circles: results
of the numerical simulations with two chains with 20000 sites
and 1965 particles together. The ratio a of the perpendicular to
the parallel jump rate is indicated to the right. For +=0 one
line with the same number of sites and particles was used. Time
is given in units of (21 ~~)

good agreement between theory and simulations. The
agreement is especially satisfactory at the highest concen-
tration c =0.972; remember that the theory becomes ex-
act in the limit c~1.

The theoretical curves for the single line were obtained
by inversion of Eq. (14) where Eqs. (15) and (17) with
I ii=0 were used. [This is equivalent to setting a=0 in
Eq. (19)]. Comparison with the simulated points shows
satisfactory agreement. In Ref. 10 a slightly more refined
theory for the single line has been developed. On compar-
ing this theory with the numerical data, somewhat better
agreement is found. However, the differences between
both theories are at most a few percent in the
intermediate-time regime. In the short- and long-time re-
gions both theories yield identical results.

The qualitative behavior of the curves with finite a is
as expected from the discussion in the Introduction: The
initial rise of the mean-square displacement is followed by
an intermediate behavior proportional to t~ and finally
the diffusive behavior, proportional to t, is approached.
There is a point of inflection in the curves 1n(x (t))
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FIG. 2. Mean-square displacement of tagged particles on two
coupled linear chains. 4000 sites and 2049 particles were used in
the simulations. Further details are given in Fig. 1.

FIG. 3. Mean-square displacement of tagged particles on two
coupled linear chains. 12800 sites and 12439 particles were

used in the simulations. Further details are given in Fig. 1; the
arrow and the dashed line are explained in the main text.

versus lnt. If true power-law behavior would apply, the
derivative

t- in(x (t))
dt

(23)

would be identically zero in the corresponding range. In
fact, this derivative vanishes at one point only, marked in
Fig. 3 by an arrow for a =0.001. We have determined the
apparent exponent of an assumed power-law behavior
near the inflection point from (14) and (19), for c =0.972;
this exponent is displayed in Fig. 4 as a function of a.
For a » 1 the exponent P approaches the value
P=0.808 . This means that the graph in(x (t))
versus lnt always has an inflection point and that the
mean-square displacement is different at short and long
times in the limit of large a. In both limiting regions it is
proportional to t', but with different coefficients. These
coefficients, which are twice the diffusion coefficients for
infinite and zero frequency for short and long times,
respectively, are given by (1—c)I isa at short times and
by (1—c)I'isa /3 for long times and c~l. The correla-
tion factor f= —, is easily understood by considering
(cose) for a tagged particle in the limits a~oo and
c~1. Since in this limit the special vacancy hops rapidly

0.9 I
/

I t
j

I

c = 0972

0.8—

cu 07—
O
CL

UJ

0.6—

0.5
10 10-'

Ratio a
10 2

FIG. 4. Apparent exponent of the intermediate power-law
behavior of the mean-square displacement as a function of the
ratio of perpendicular to parallel jump rate.

between the two lines, it exchanges with probability —,

with the tagged particle, and with the same probability
with the corresponding particle on the other line. Hence
(cos8) =——,

' and f=—,. This value of the correlation
factor is consistent with the results presented in Fig. 3.
We refrain from extending these considerations to other
concentrations.
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For u —+0 the exponent approaches —, as expected. The
dashed line in Fig. 3 indicates the power-law behavior for
c =0.972 and a=0.001; this behavior is followed by the
mean-square displacement over approximately two de-

cades. However, this is a relatively favorable case, for
larger a and lower concentrations c the apparent power-
law behavior is less pronounced. We stress that the ap-
parent power-law behavior is an intermediate phenom-
enon, caused by the interplay between the changeover
from r to r in the linear chain, and the changeover
from i'~ to t ' behavior in the coupled system.

While the theory for our model is exact in the limits
c~1 and c—+0, it is an approximation for intermediate c.
In order to more closely examine the quality of the ap-
proximation, we have performed a simulation at c =0.499
and +=0.01 with 19940 particles, up to 5&10 time
units, see Fig. 5. The agreement of the simulations with

the theory is quite good, although there seems to be a
small yet system~tie difference. The figure also indicates
the theory of Tahir-Kheli obtained by setting b = 1 —c in

(19); it is apparently a less accurate approximation.
The results presented up to now give the mean-square

displacement normally up to 10 time steps. For smaller
a and larger c the asymptotic diffusional behavior is bare-

ly reached. To determine the coefficient of tracer dif-
fusion more accurately, we have also performed simula-

tions at 11 different concentrations up to 10 time units,
with typically 2000 particles (3113 at the largest concen-
tration) and a=0.01. We extracted the diffusion coeffi-

0.8

a 06

l

0.2
I l

0.O 0.6

Concentration

0.8 1.0

cient by fitting the data to the following asymptotic
behavior:

FIG. 6. Correlation factor as a function of concentration for
the ratio +=0.01. Solid line: our theory, dashed line: theory of
Tahir-Kheli (Ref. 9); solid circles are the results of the simula-
tions.

I

/

6
Time (10 )

FIG. 5. Mean-square displacement of tagged particles on two
coupled linear chains. Solid line: our theory; dashed line:
theory of Tahir-Kheli; closed circles: 1esults of the simulations
with 40000 sites and 19940 particles together.

(24)

This ansatz is equivalent to Eq. (21); the rate I
~~

has been

put equal to —,'. In the actual fit, the logarithm of the
theory function (24) was compared with the logarithm of
the simulation values. This procedure is reasonable, since
the scatter of the data points grows roughly with t, i.e.,
the relative scatter is constant. The results for f (c) are
given in Fig. 6, together with the theoretical values for
f(c) resulting from the implicit equation (20). The figure
also contains the theory for f(c) of Tahir-Kheh. One
notes better agreement with the theory given here. How-
ever, there remain discrepancies between this theory and
the simulations for c &0.5. It is not clear as to how far
these result from the inherent inaccuracies of the simula-
tions and how far they are due to the approximations
made in the theory. Simulations with larger particle num-
bers up to 10 time steps would bc dcsirablc, however, thc
time consumption would be prohibitive with the present,
conventional simulation techniques.

The results for the parameter ci for a =0.01 are shown
in Fig. 7, together with the theoretical curve representing
Eq. (22). There is considerable scatter in the values of this
parameter, and some dependence on the fitting procedure.
The tendency of the theoretical curve is well recognized in
the data. Again, the quality of the results could be im-
proved by using larger particle numbers~ but wc werc not
willing to bear the corresponding costs in computing time.
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FIG. 7. Coefficient c ~ of the first correction to the asymptot-
ic behavior of the mean-square displacement. Solid line:

theory; closed circles: two-parameter fit (c2 ——0) of simulated
mean-square displacement with Eq. (24); open circles: three-

parameter fit.

IV. DISCUSSION

The Monte Carlo simulations reported in Sec. III con-
firm the accuracy of the theory developed in Sec. II of
this paper; for all the parameter values investigated the
discrepancies between theoretical and computed values of
the mean-square tagged-particle displacement over the
whole time region never exceed. a few percent. Tahir-
Kheli's theory also yields fair agreement with our Monte
Carlo results, but not quite as good as the theory
developed here. The differences between the two theories
show up most clearly at concentrations close to c = —,', in
the limits c—+0 and c—+1 both theories become exact. In
the limit of vanishing jump rate ratio a, where both lines
decouple, the theory of Sec. II is slightly worse than the
theory developed in Ref. 10, however, the latter cannot be
generalized straightforwardly to the case of a nonzero a.

For small a the mean-square displacement as a func-
tion of time clearly exhibits the two expected changeovers:
one from short-time t' behavior to the r'~ behavior
characteristic of single file diffusion, and one from the
t '~ behavior to the asymptotic diffusive t ' behavior.
However, unless the jump-rate ratio really is very small
(a &0.001), the intermediate-time behavior does not really
follow a t'~ power law, but rather an approximate t~
power with —, & P & 1. The range over which this approxi-
mate intermediate power law persists increases with de-
creasing a. For c =0.972 and a=0.001 it extends over
more than two decades in time.

Similar intermediate power laws have been found nu-
merically by Alder and Alley" for the velocity autocorre-
lation of the two-dimensional Lorentz gas. For the case
of overlapping scatterers, where, as a function of scatterer

density, a percolation transition is known to occur, they
find a changeover from the theoretically predicted t
behavior at low scatterer density to a t ~ power-law de-
cay with P =1.33 at densities near the percolation densi-

ty, followed by a decrease of P' with further increase of
the scatterer density. Just as our intermediate t~ power
law for the mean-square displacement resulted from an
incomplete changeover to single filing behavior, the r

power law of Alley and Adler can be understood to result
from an incomplete changeover to percolative behavior.
The maximal value of P'= —1.33 is in good agreement
with theoretical predictions for the percolation point. '

Unfortunately, their molecular-dynamics simulations
could not be extended to long enough times to see the
asymptotic behavior following this intermediate power
law. Their results for nonoverlapping scatterers, where no
percolation transition exists, except at perfect close pack-
ing, are consistent with this picture: There the low densi-

ty t behavior changes to r ~ behavior with p' increas-
ing with density over the investigated range of scatterer
densities. Whether P' approaches the percolation value at
the close-packing density cannot be concluded with cer-
tainty, however.

Further, we want to mention that the theory develop-
ed in Sec. II can be extended straightforwardly to simple
cubic lattices with or without periodicity, in an arbitrary
number of dimensions. This will be the subject of a
planned forthcoming paper. Presumably, extension to
more complicated lattices can also be made without prob-
lems. Finally, the coefficient of the t'~ term in the
asymptotic expansion for large times can be compared to
mode-coupling predictions. ' This too is presently under
investigation.
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APPENDIX: DERIVATION OF Q(s)

For calculating the probability of a first return with
tagged particle and special vacancy on the same line, first
notice that before this return the relative motions in the
horizontal and vertical directions are completely indepen-
dent of each other We wa.nt to ignore correlations be-
tween subsequent vertical jumps of the tagged particle; for
the special vacancy such correlations are not present. Let
p+(t) be the probability to find tagged particle and special
vacancy on the same line at time r, and p (t) the proba-
bility to find them on different lines. These quantities
satisfy the differential equations

d
dt p+ (t) =21'i(2 —c) C p (r) —p+ (i)],

(A 1)
d
dt p (r)=21 J(2—c)[p+(r)—p (r)]

The solution, with initial conditions p+ (0)= 1 and

p (0)=0, is found as
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p+ (t)= —,
'

I 1+exp[ —4I q(2 —c)t] I

=—,[1+exp( —4yI lit)] .

From (A 1) and (A2) it follows that the Laplace-
transformed probability density for a first return of the
I'clat1vc d1staIlcc 1n t1M x d1rcct1on bctwccn tagged part1clc
and special vacancy from n+1 to n, with n &1, can be
described as

F+ (s) = —,
' [X(s)+X(s+4yI'll)],

where the plus sign refers to a return where tagged parti-
cle and special vacancy are both initially and finally either

on the same line or on different lines, and where the

minus sign refers to situations where tagged particle and

special vacancy are either initially on the same line and fi-

nally on different lines, or just the other way around.
Next we have to consider what may happen if tagged

particle and special vacancy are just one lattice unit apart
in the x direction. If they are on the same line they may
either exchange positions, with' jurnp rate I ll,

' they may
move two lattice units apart in the x direction, with jump
rate rll+rll or eith« of them may jump 1«he y di«c-
tion, with jump rate 2yI ii. The respective waiting-time
distributions for these three processes are

I'llexp[ —(2I'll +I'll+ 2yI
i i

)t]

(I"ii+I ii)exp[ —(21"ii+I fl+2yrii)t],

2yriiexp[ —(2rii+rii+2yrii)t] .
If the two are on different lines they may jump above
each other, with jump rate rii+rii, away from each oth-

er, with the same jump rate, and next to each other', with

jump rate 2@I ll. The respective waiting-time distribu-
tions accordingly are given as

{rll+ rli)'xp[ —2{ril+ rll+yril)']

2yI llexp[ —2{Iii+I l'i+yI ii)t] .

Now for the first return probability on the same line we

can sct

g(s) =[1—Y(s)] ', . (A4)
s+2I ll+I"ll+2yI ll

The factor I li/(s+2I'll+I li+2yI'll) is the exchange
probability when tagged particle and special vacancy are
positioned next to each other, and F(s) describes the
probability of a first return to this situation under the
conditions that tagged particle and/or special vacancy
move before exchanging positions, and before returning
next to each other do not move through positions above

each other. The factor (1—Y') ' results from the summa-

tion of an infinite geometric series. For F(s) we obtain
the following explicit expression:

F(s)=
t

~ll+~ll , [X(s)+X—(s+4yI ll)]s+2I ll+I Ii+2yI ll

'

ll
I ll+I+ j + —,[X(s)—X(s +4yl ll)]

.s+2~ll+~ll+2~~ll s +2~II+ ~ll+2~~ll
—1

rll+I llX 1— —,[X(s)+X(s+4yI ii)]s+2(rll+ril)+»rll '

2yI"l
l

I ll+I ll
X + —,[X(s)—X(s +4yI ll)]+ {ril+rll)+ yrli s+ {rll+rll)+2yrll

Here the first term on the right-hand side contains the
contributions from a jump in the x direction, followed by
a first return to the neighboring configuration. In the
so ond contrlbutlon t11e teHI1 2yI ll/(s+2rll+rll
+2yI ii) describes the effect of a single vertical jump and
the other term between the first large parentheses de-
scribes a horizontal jump, followed by a return to neigh-
boring positions on different lines. The factor between
the next pair of large parentheses sums the contributions

of additional returns to neighboring positions on different
lines. Finally, the factor in the last pair of large
parentheses describes the probability for a return to neigh-
boring positions on the same line, either through a single
vertical jump, or through a horizontal jump followed by a
return in which tagged particle and special vacancy have
joined the same lines. Substitution of {A5) into (A4) im-
rnediately leads to (19).
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