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Two-photon transition from H4 to 'So of Pr + in LaF3
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A direct two-photon absorption between crystal-field components of the 84 ground-state configuration

to the highest excited state So in the 4f manifold of Pr + in LaF3 has been observed. The magnitude of
the intensities and the polarization dependence require a third- and fourth-order theoretical analysis, simi-

lar to that developed for two-photon absorption of Gd + in. LaF3.

The importance of crystalline-field and spin-orbit pertur-
bations of the virtual 4f" 'Sd intermediate states in the
two-photon transitions between initial and final states be-
longing to the 4f" configuration of Gd + in LaF3 has been
demonstrated by Downer and co-workers. ' It is the pur-
pose of this Rapid Communication to report a similar situa-
tion for the highly forbidden 'H4 'So transition of Pr + in

LaF3, which involves AJ =4, AL = 5, and b,S =1. A direct
linkage between these two states can be mediated by the
fourth-order matrix element

photomultiplier with suitable bandpass filters. These
fluorescent transitions from 'So are strong and have been
studied by Elias, Heaps, and Yen, who pumped the Sd con-
figuration with synchrotron radiation.

Figure 2 presents the experimental two-photon excitation
recordings for three polarizations of the excitation beam.
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Here I, m, and n denote states in the Sd manifold, with

respective energies AI, 4, and A„above the ground state.
D = ge; r; is the electric dipole moment operator, V,„ is the
crystalline-field potential which couples terms up to AL = 6,
and Vso is the spin-orbit interaction.

The 'So is the highest level of the 4f configuration, but
for Pr'+ in LaF3, it lies still about 3000 cm ' below the
4f" 'Sd manifold. The energy level diagram~' is presented
in Fig. 1 in low resolution. Carnall, Fields, and Sarup ob-
served with one-photon uv spectroscopy that the 'So lies at
46 985 cm ' above the ground state. Yen, Levey, Huang,
and Lai reached this level by first populating the intermedi-
ate D levels with one-photon absorption, followed by a

two-photon transition. They quote its position as 46 965
cm

We have observed the level in a direct two-photon transi-
tion from the ground state in a LaF3 crystal, containing
0.5% Pr +, obtained from Optovac Inc. The experimental
arrangement is the same as that described previously for
the study of Gd'+ two-photon absorption in LaF3. In brief
summary, a pulsed nitrogen laser pumped a dye laser of the
Hansch design at a repetition rate of 10 Hz. Tunable pulses
of 0.5-ns duration and 0.1S-mJ energy were focused with a
1-cm focal length lens into the crystal, which was kept in a
Dewar at 77 K. The light propagation vector k was either
parallel or perpendicular to the c axis. The following three
polarization configurations which propagate in the bire-
fringent crystal without change were used: k II c, Es c linear-

ly polarized, k II c, E circularly polarized, and k i c, E II c.
The laser frequency was scanned over the range
2v=46700 —47100 cm '. The ultraviolet fluorescence by
one-photon transitions from the 'So to the 'G4 and I'4 mul-
tiplets was detected in the ranges 268-274 and 250.3—250.8
nm, respectively. This uv radiation was collected at right
angles to the laser beam and detected by an EMI 963S QB
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FIG. 1. Energy level diagram for Pr + in LaF3. Only centers of

gravity of each multiplet are shown.
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DIRECT 2-PHOTON ABSORPTION IN LaF& Pr

H4 = So 77 K
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FIG. 2. Experimental two-photon excitation recordings of the So
level in Pr +:LaF3 at 77 K for three polarizations of the excitation
beam. Vertical marks on the horizontal axis show the experimental
component positions as obtained by one-photon spectroscopy.

The vertical scale indicates the two-photon absorption
(TPA) intensity in arbitrary units on an internally consistent
scale. A determination of the variation of the fluorescence
signal on incident intensity yielded a square law dependence.
The position of the 'So level was measured to be 46990+2
cm . This figure is in close agreement with the value re-

ported by Carnall et al. The dye laser wavelength was
determined with a one-meter Jarrell-Ash spectrometer cali-
brated against several lines from a Spectra Physics Model
171 argon laser.

In addition to the main line, there are two weaker lines
displaced towards lower frequencies. These same lines have
been observed in one-photon spectroscopy. Their intensity
increases with temperature, and they arise from thermally
populated components in the 'H4 multiplet.

An additional line, of intensity smaller than that of the
temperature-induced lines, was observed when filters were
placed in front of the photomultiplier to allow fluorescence
detection in the range 3400-4000 A, found by Elias et al. 7

to be the strongest of those originating at So. The intensity
of this additional line, which is located at 46965 cm, van-
ishes for Eic. Its origin is unknown and it may be caused
by an impurity.

The selection rule violation reported is analogous to those
in several S7y2 I transitions in Gd + observed by Down-
er. These and other transitions in this ion exhibit strong
anisotropic features. He has given a detailed interpretation'
based on crystal-field —induced admixtures among the mul-
tiplets of the 4f configuration. The admixed states may be
connected by matrix elements of lower order, while the pure
configurations are linked by the fourth-order element cited
above. There is then an interference in the total matrix ele-
ment responsible for the transition, which is constructive
for Eic and destructive for Ell c. For a transition to a final
state with total angular momentum quantum number J =0,
it can be shown that, due to their azimuthal quantum
number (M) dependence, the individual matrix elements
vanish for E I I c, unless the initial-state component has
M = 0. For the latter case the total element must be
evaluated, as is the case for the other polarizations. Reid
and Richardson have recently shown that ligand polariza-
tion effects lead to similar results.

Figure 2 shows that, in fact, a marked reduction in inten-
sity, compared to the EJ c or circular polarization measure-
ments, is obtained when Ell c. An analysis that takes into
account the quantum number assignments of the H4 Stark
sublevels would be of assistance to elucidate the contribu-
tion made by the nonvanishing matrix elements to the ob-
served intensity versus polarization dependence. In this re-
gard, we point out that the contribution to the line strength
due to the initial- to final-state direct linkage can be as large
as that due to the linkage via admixed states, since the ef-
fective order of the corresponding terms may be compar-
able. Our observations thus suggest that terms arising from
both third-order and fourth-order interactions will occur in a
treatment that explains satisfactorily the behavior of the in-
tensity of the 'H4 to 'So transition. Elaborate calculations
beyond the scope of this note would be needed to verify this
interpretation.
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