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Orientational instability of higher-order commensurate lattices
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Stability of higher-order commensurate structures, formed by a harmonically distorted two-dimensional
latice in a periodic uniaxial potential, are investigated. The minimum-energy orientation-angle ., depen-
dence on the lattice constant to the potential period ratio is numerically determined. The number of stable
commensurate phases is found to be surprisingly small—in most cases certain incommensurate orienta-
tions turn out to be energetically more favorable. A simple criterion is given to single out the stable com-

mensurate phases.

Two-dimensional (2D) structures formed in the presence
of an external periodic field—monolayers adsorbed on a
crystal substrate,! flux-line lattices in periodically modulated
superconductors,>? etc.—exhibit a variety of phases. The
simplest solid phases are lattices in registry with the im-
posed periodicity. The low-order commensurate (C) phases
and the transition to the incommensurate (I) phase have
been extensively studied recently, both experimentally and
theoretically. Here we concentrate on the stability condi-
tions for higher-order commensurate phases. We show that
most of them are unstable with respect to the formation of
an I structure of the same density, but with a different
orientation. This effect makes the 2D problem essentially
different from the analogous 1D case studied by Theodorou
and Rice;* in the latter case every C state is stable. On the
other hand, our result completes that of McTague and No-
vaco,® who found that the energy of incommensurate struc-
tures is strongly orientationally dependent.

Assuming a weak interaction with the external field, we
have studied the ground-state structure in the one-harmonic
approximation which is meaningful provided that the system
is not too close to the simple (first-order) commensurability
conditions.® The calculation has been performed for the
case of a uniaxial pinning potential, relevant for supercon-
ductors modulated along a given direction*3 and for
physisorbed films on anisotropic substrates.” Finally, some
applications to the case of the substrate potential with hex-
agonal symmetry, which acts, for example, on the atoms ad-
sorbed on graphite,! are discussed.

We consider a 2D system of particles at zero temperature,
situated at the positions T; in the x'-x2 plane, and interact-
ing vig the binary interaction W (|T;— 1;]). The results
are obtained using the Lennard-Jones potential
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for the interaction between two atoms at distance
r=|F;— T|. Here € is the depth of the pair potential well
and o is the ‘“‘hard-core’’ diameter. However, it should be
mentioned that very similar results were obtained in modu-
lated superconductors® where the interaction between the
flux lines falls off exponentially at large distances. In both
cases the corresponding ‘‘natural’’ lattice, which would be
formed in absence of the external potential, is hexagonal.

W(r)=4e
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The total energy contains the pair interaction between parti-
cles

W= gW(!f‘,—f‘iD )

and the pinning potential energy, which we assume to be of
the form

V=Vo—V3cos(G- T, ), 3)

where G=(27/b)%' is the modulation vector. We start
with the natural lattice of a given density n =2/(x/3a2), and
look for its accommodation to the pinning potential. The
mth commensurability of the natural lattice is achieved
when

mG =k 71+ ko= 7 (ky,ky) . (€))

Here m, ki, and k, are integers and 7 and 7, are the basic
vectors of the reciprocal natural lattice [7,=7;
=47/(x3a)]. We choose 7, rotated from the modulation
vector G through angle 8. The density of a commensurate
configuration (m |k, k,) and its orientation are determined
by the geometric condition (4) as follows:

V3m?

= k ,k = s 5
e =n (mlkyuk2) 202 (kt + kika+ k3) ®
3k,
= = -ny_-"c
0.=0.(m|ky,k,)=tan TS 6)

The same classification will be used for the distorted lat-
tices, which are commensurate in average.

In the vicinity of each first-order (m = 1) commensurabil-
ity of the natural lattice, i.e., when 7= G so that the misfit
between the two periodicities p = |G — 7| is smaller than the
critical value p., a new first-order commensurate configura-
tion is formed, with all the particles in the minima of the
pinning potential. The adjacent I phases consist of large
nearly commensurate domains, separated by solitonic walls.®
With increasing p, but still in the long-wavelength regime
(p/G << 1) the solitonic lattice becomes more dense and
equivalent to the harmonically distorted natural lattice.’ In
the weak pinning limit such harmonic structure may persist
as a ground state even in the short-wavelength regime
(p — G). Thus, considering the I phases which are not
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close to the principal commensurabilities, as ‘well as the
higher-order (m = 2) C phases, we can restrict ourselves to
the stationary particle positions given by

T,=72+V,+Tsin[G: (F2+7,)+D'1+ T , @)

where T are the particle positions in the natural lattice, ro-
tated from G through angle 6 (cf. Fig. 1). The position of
the resulting configuration relative to the periodig potential
(3) can be described by the phase variable ®=G- . In
the 1 configurations (n #n., or %86, for n=n,) this
phase is undetermined in the ground state, as in the analo-
gous 1D problem (Frank-van der Merwe model), while in
the C configurations this phase is pinned. When the natural
lattice is incommensurate, the displacements V; describe a
small and unimportant homogeneous deformation, which is
neglected in what follows. When » = n., one can consider
the configuration to be incommensurate or allow instead for
the displacements V; which make the new structure com-
mensurate:®

(Xil)o'_’ (X,‘l)c, (X,’z)o

where (x;')¢ and (x2)¢ are the projections of the commen-
surate natural lattice vectors on the directions parallel and
perpendicular to the modulation axes, respectively. In all
cases the suitably translated and oriented natural lattice is
harmonically distorted. The parameters 0, «, U, ® and @’
are determined by minimizing the resulting configuration
energy. Since for a general C state the potential which pins
the phase decreases as a power of m,° the high-order C
phases become undistinguishable from the incommensurate
ones. Thus we discuss the second- and third-order phases
only. For the commensurate (in average) configurations
with =0, and n equal or close to n., the energy gain per
unit area is given by

AE,=AE +AE'" . 9

- (x)(1+a) , (8

The harmonic distortion-induced energy gain AE consists of
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FIG. 1. Natural lattice of constant a in a potential of period b.
Dashed line_g represent the minima of the potential. The modula-
tion vector G is oriented along the x! axis.

two contributions: a negative one, due to the variation of
the pinning energy, and a positive one, due to the increase
of the interaction energy. As long as the linear one-
harmonic approximation is valid, the first contribution is, in
absolute value, twice as large as the second one. The addi-
tional increase AE’ of elastic energy, related to the displace-
ments V; [Eq. (8)] is given by

T

where X\ and w are the Lamé coefficients of the natural lat-
tice.

For small reduced amplitudes, ¢ = (G
be approximated by

nVl

2u(A+p)

AE'=
A+2u

U) << 1, AE can

AE=—

(14+8,2)(GD"'G) , 1)

where D! is thAe inverse of the dynamical matrix D. The
components of D are given by

3w
D¢ﬁ= 2

W[I—COS(G‘ ?,0)]

(a,8=1,2) 12)

in the coordinate system X'!— X? of the lattice (cf. Fig. 1).
Within the linear harmonic approximation the energy gain is
quadratic in ¥V, whereas the reduced amplitude ¢is linear:

t=V(GD~'G) . 13)

For the incommensurate configurations the energy gain is
simply AE:

AE;=AE . (14)

The orientation of the lattice, fixed geometrically for the
commensurate configurations only, enters the calculation via
Eq. (12), since G= (G cosd, — G sinf) in the coordinate
system of the lattice. Notice also that the equilibrium
translation, undetermined in the incommensurate phase, is
for m =2 different from that for m =3, since ® =/2 and
®'=—7/2 for m=2, whereas &= —7/3, ®'=2#%/3 for
m=3.

In the continuum approximation, the minimization of AE
[Eq. (11)] gives

F24n(1+7)] ° 13

where 7=17/G and n= (A +u)/u. The same expression for
Omin Was obtained in the elastic limit by McTague and No-
vaco® for a 2D substrate potential with a set of rotationally
equivalent G vectors.

To investigate the short-wavelength regime of deforma-
tion one has to use instead a discrete approach. So we have
evaluated numerically the optimum lattice oreintation 6,
as a function of lattice density n. Whenever n = n., we have
compared AE (0niy) with AE,.. It turns out that in many
cases the commensurate configurations are unstable, i.e.,
|AE.| < |AE;(8min)|. This happens whenever a better ac-
commodation to the pinning potential can be achieved by a
suitable orientation 6 # 6,. The results presented in Fig. 2
are valid, strictly speaking, in the weak pinning limit
(V1= 0) only; otherwise, new commensurate phases with
the same orientation #. are formed in the vicinity of each
stable C configuration. The width of the corresponding
plateau of the Omin(n) curve can be calculated from Eqgs.

COSOmin =
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FIG. 2. Minimum energy orientation angle 6,,;, as a function of
the reduced density 7=n/n(1]1,0)=46%/3a%. The stable com-
mensurate structures of the first, second, and third order are indi-
cated.

(9)-(11). We have not evaluated the widths of these re-
gions which are proportional to (V" ~1)Y2 for m = 3. This
can be shown when the nonlinear harmonic approximation
is utilized.® For the 1D case the analogous result is given in
Ref. 4. As long as the linear harmonic approximation is
valid, the stability criterion is independent of the pinning
potential amplitude, as can be seen from Eq. (11). There is
a strong influence of the orientation of first-order phases on
the form of the @n,ix(7) curve as seen from Fig. 2. This in-
fluence is also manifested in the energy gain AE dependence
on the orientation 6 (Fig. 3). For some of the considered
unstable C configurations the corresponding stable I struc-
ture is oriented in such a way that 8, is close to 6. of the
nearest first-order phase. Let us, for example, consider the
configuration (2]1,1) [see Fig. 3(a)], where 6,,,=5.6° is
much closer to the neighboring first-order phase orientation
6.(1/1,0) =0 than the 6,(2|1,1)=30°. Sometimes, the in-
fluence of the two neighboring first-order phases is evident;
an example of which is the structure (2/3,1) [see Fig.
3(d)], where the small minimum reflects the vicinity of the
(112, 0) phase, while the deep minimum shows the prepon-
derant influence of the (1]1,1) configurations. A signifi-
cant example of a stable C configuration is (2|2,1) [see Fig.

3(b)], where 6., for the I phase is equal to
0.(212,1)=19.11°.
Within the reduced density [#=n/n(1]1,0)] range

0.1 <7 <2, we find that out of 11 second-order geometri-
cally possible C phases only 3 are stable, and out of 26
third-order configurations only 3 are stable also. An impor-
tant result is that for 7 <2 only those C structures for
which 6, falls on the @min(7i) curve are stable, as seen in
Fig. 2. With increasing density the orientational effects be-
come less pronounced. The shape of the 0min(7i) curve is
the same as that in the case of modulated superconductors,?
i.e., it depends neither on the type of interactions nor on
the lattice pressure.

The conclusion that there are only a few stable higher-
order configurations confirms the conjecture made by
McTague and Novaco* that “‘several reported high-order
commensurate structures are likely to be incommensurate
orientationally epitaxial systems.”” Neon adsorbed on gra-
phite!® could be an example of such a system. The reported
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FIG. 3. Plots of the reduced energy gain AE/|minAE| vs orien-
tation angle 6. Six representative values of the reduced density

A=i,2lkyky)=4/(k? +kik,+k}) ,

such that second-order commensurability can be achieved at suit-
able =46, are chosen. The lattice is at zero pressure. (b) and (f):
stable commensurate phases; (a), (c¢), (d), and (e): unstable com-
mensurate phases.

density of monolayer coverage corresponds to the 7 x+/7
structure with four atoms per elementary cell, i.e., to the
(2]2, 1) configuration in our notation for which 6,=19.11°.
This structure is predicted to be a stable one; however, the
observed rotation with respect to the graphite axis is about
13°. Notice that the 0,;,(77) curve is rather steep and that
the pinning is weak here. Hence a possible explanation is
that the actual density differs slightly from 7., so that, in
fact, an I structure with 7 > 7, and of the corresponding
optimal orientation is observed.

The above results are applicable also to superconductors
whose structure is uniaxially modulated.”3 In this case, the
density of the natural 2D lattice, formed by the centers of
the flux lines, can be tuned continuously over a wide range
by varying the external magnetic field. The observed??
high and broad principal peaks of the critical current density
manifest the presence of the first-order C phase, while only
one second-order C phase is clearly seen. This is the
(2|1, 0) structure occurring at 7i = 4, which is, by our calcu-
lations, predicted to be a stable one. In the experiments
with thin Al films of modulated thickness,’ the (2]2,1)
structure, also predicted to be a stable one, is seen as a
small irregularity on the critical current curve.

In conclusion, a generally rare occurrence of the higher-
order C phases, in the case of weak pinning where the for-
mation of some lower-order C phase is not a more favorable
choice, can be explained by their orientational instability.
We expect the influence of the relative lattice orientation to
persist in the case of stronger pinning force as well. So, it is
probable that the devil’s staircase!! always remains incom-
plete in the 2D (and even more so in the 3D) periodically
modulated systems.
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