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Golden-rule approach to the soft-x-ray-absorption problem.
III. The temperature dependence
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The exact formulation of the soft-x-ray-absorption problem of previous work [Phys. Rev. B 28,
6833 (1983)] is generalized to the case of finite temperatures. By giving a closed-form expression of
the response function in terms of the overlap integrals between the initial and final electron states,
we demonstrate that the exactness can be pursued quite generally. The general formula, when ap-
plied to the case of a contact core-hole potential, leads to expressions of the dispersion integral and
the frequency shift, both modified from their T=Q forms by the temperature effect. In the near-

edge region, an analytical form of the response function can be derived, which reproduces precisely
the time and temperature dependences of that of Yuval and Anderson [Phys. Rev. 8 1, 1522 (1970)]
and, in addition, provides an exact expression for the prefactor of the open-line contribution of the
spectrum.

I. INTRODUCTION

The method of Nozieres and De Dominicis' (cited as
ND) of solving the soft-x-ray-absorption problem ' is
characterized by their time-space treatment of the Dyson
equation. In a series of papers ' [referred to as OT (Oh-
taka and Tanabe) and TO (Tanabe and Ohtaka)], we
developed for the same problem formulation in the fre-
quency space, using the Fermi golden rule for the absorp-
tion cross section. Our approach is composed of calculat-
ing the matrix elements of the dipole moment operator be-
tween the initial unperturbed ground state and the final
states perturbed by a core-hole potential, and then sum-
ming the transition probabilities over all possible final
states. We showed how the orthogonality catastrophe of
Anderson —zero overlap between the initial and final
ground states in the thermodynamic limit —manifests it-
self in the overlap integrals and how it disappears in the
process of summing the cross section over the final states,
to make the absorption cross section remain firute even in
the limit of N (number of electrons) ~co. The expres-
sion we derived for the response function I(t) is exact,
whose validity is not restricted to the long-time behavior
nor to some particular core-hole potential. %e demon-
strated that the integral equation involved, whi. ch can be
solved in the near-edge region in the case of a contact
core-hole potential, yields an analytical form for the pre-
factor of the power-law behavior of the open-line contri-
bution, besides reproducing the exact exponent of the
power-law response function obtained first by ND. It is
also to be noted that the total absorption intensities of the
main and secondary absorption bands in the presence of a
bound state, whose exact forms are given by To, are just
the quantities determined by the value at t=o of the
response function. These points clarified by our approach
have been rather difficult to explore in the time-space
treatment of ND, because a lot of information is lost from
the start in deriving the asymptotic (t= 00) formula of the
unperturbed pI'opagator to be used in the Dyson equation.

The purpose of the present paper is to extend the for-
mulation of OT at absolute zero of temperature to that of
finite temperatures. It is generally accepted that except
for a few tens-of-percents contributions in the case of
aluminum, the thermal effect on the linewidth of the
spectrum is rather minor, as compared to a finite lifetime
of a core hole due to the phonon and Auger effects. In
spite of that, however, how the infrared divergence is
suppressed at finite temperatures remains to be an in-
teresting theoretical problem in its own right.

There have been a number of studies on this topic.
Almbladh and Minnhagen calculated the spectrum by
applying the method of Schotte and Schotte of approxi-
mating a particle-hole pair as an excited boson. They
showed that the power law t de-pendence of I(t) at T =0
is replaced by that of sinh(~Tt)/AT in the case of a finite
T. The lowest-order calculation by Ferrell of the core-
hole propagator involved in I(t) as well as the perturba-
tion treatment of Mahan suggests strongly the exactness
of this T and t dependences. The work parallel to ND at
finite temperatures was given by Yuval and Anderson. ' '"
They showed that in the approximation of treating only
the long-time behavior, the Dyson equation can be dealt
with by generahzing the standard Hilbert problem en-
countered at T =0. They thus showed that the replace-
ment of time t by sinh(srTt)/AT is in fact the right way
of obtaining I (t) for T&0 from the ND solution.

Our interest in the present study is the same as that of
OT. We formulate the problem using the final-state wave
functions and calculating the cross section of x-ray ab-
sorption. Since the multiplicity of the excited states needs
to be considered even in the initial states, the calculation
is naturally much more involved than before. Our results
obtained finally are, however, exact.

In Sec. II we derive the matrix elements between the in-
itial and the final many-body states. In Sec. III the sum-
mation of the cross section over the initial and final states
is carried out to bring forth a closed formula for I(t). In
Sec. IV the response function in the case of a contact-type
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core-hole potential is derived. It is shown that in order to
obtain the absorption spectrum we need to solve two in-

tegral equations. One of them is solved in Sec. V. The
other integral equation is solved in Sec. VI. We solve the
latter in the asymptotic region of r, which appears to be
the only region where an analytical treatment is possible.
A summary is given in Sec. VII.

In this paper we do not consider the case where a bound
state exists in the final state. However, the r'esults of Secs.
II and III may apply to this case as such, if one occupied
state considered there is regarded as a bound state.

II. MATRIX ELEMENTS OF THE DIPOLE
MOMENT OPERATOR

We adopt as in OT (Ref. 4) and TO (Ref. 5) the Hamil-
tonian of ND for the system of N (spinless) conduction
electrons plus one core electron. In the initial state the
core level is filled, while in the final state N+1 electrons
in the conduction band suffer from scattering due to a
created core hole. Let ~ be the total number of states of
the conduction band. ~ N, the —number of unoccupied
states in the initial state, is denoted as M. Throughout
the paper N lowest states of the initial (final) conduction
band are labeled by the index m (p), and the remaining M
states are labeled by the index b(y). The sums g, g
etc., in what follows have their respective meanings in ac-
cordance with this rule. When there is no need to specify
a state relative to the Fermi level, we use the index k (a)
for the initial (final) state. The ground state of N conduc-
tion electrons is expressed by the Slater determinant of the
states m =1,2, . . . , N in the case of the initial state or
@=1,2, . . . , N in the case of the final state. The energy
of the state with m =N defines the Fermi level (chemical
potential at T =0).

At finite T our initial (N+1)-electron states are speci-
fied by the number of electron-hole pairs involved and the
way they are distributed in the conduction band. I.et

I
n & =

I
m i, . . . , m„,b i, . . . , b„& be an initial state with

n excited electrons at the states b],bz, . . . , b„and n holes
left behind at the states m~, mz, . . . , m„. The bar over
m; indicates that the state m; is empty. The existence of
the core electron in

I

n & is to be understood. Likewise,
the state

I
v& =

I pi, . . . , p i,yi, . . . , y & signifies the
final state with v excited electrons at the states [y;] and
v —1 holes at [p; J. Since there is a hole in the core state,
there is v —1 holes in the conduction band in the state

I
v&. Our aim is to obtain the expression of the matrix

element (v
I

8'
I

n & for the dipole moment operator W.
As the formulation of OT, the overlap integrals be-

tween two Slater determinants for 1V conduction electrons
are important. The inner product (a I

k & between the un-
perturbed one-particle state

I
k & and perturbed one

I

a.
& is

denoted by a„k. Let 6 be the overlap integral between the
ground states of the initial and final Hamiltonian for N
electrons:

Remember that the rows and columns of A are labeled by
the final and initial single-particle states, respectively. By
the orthogonality catastrophe, 6 vanishes in the limit
N~ 0o. In addition to A, we need, in the following, four
matrices: A(py

I
), A(

I
mb), A(p

I
m), and A(y

I
b).

They are defined as follows: Replacement of the iMth row
of A [ =(a&i a&2 a&iv)] by the new row
r [=(ayl ay2 ayN)] forms A(py

I
); its determinant

is an overlap integral between the initial ground state and
an excited final state with an electron at the state y above
the Fermi level and a hole at p. The matrix A (

I
mb) is

obtained from A by replacing its mth column by the new
column b; it determines an overlap integral between a
thermally excited initial state and the ground final state.
The matrix A (p I

m ) is defined to be —1 times the cofac-
tor b& of A. Finally, A(y

I
b) is an (N+1)X(N+1)

matrix obtained by adding the new row y and the new
column b to the original matrix A, with a&~ being insert-
ed as the (y, b)th element in the augmented matrix. Let
A(py I

), b, (
I
mb), h(p

I
m ), and h(y

I
b) be their respec-

tive determinants. By definition

~(Pr I)/&=pa, (A-') „,
b(

I
mb)/h=g(A ') „a„i, ,

A(p
I
m)/5= —(A ')~p,

(2.3)

~(r
I
b)/~=ayb 2 aym(A )mpapb .

m, p

The matrix element (v
I

W
I
n & will be expressed in

terms of these four determinants. In OT, the expression
of (v

I
W

I
0& is given. To avoid unnecessary complica-

tions, we derive here (2
I

W
I

1& and (2I 8' I2& from
(2

I
W

I
0&. The matrix element (2

I
W

I
0& is expressed

as

J (ri) ~(piri I
)/~

(2
I

8'
I
0&=b det ~ Pir~

=~ det
I

a i a2 I, (2.4)

where

p (y) =wy, —X[A (py I )/h]w„, , (2.5)

wr, (w&, ) being the optical matrix element between the
state y (p) and the core state c. The second line of Eq.
(2.4) defines two column vectors ai and a2. In calculat-
ing &2

I
~ Il&=&pl ri r21~ I mi»i & we no« that Eq.

(2.4) still applies, if we replace
I
0& of the initial state by

I
m i b i &. Thus it holds that

5=detA, (2.1)
&'(ri) ~'(Piri

I
)/~'

(2I WI i&=adet
with the N XN matrix A defined by (p, m =1,2, . . . , N)

(A )q~ ——a„ (2.2) =&'detIai az I
(2.6)
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with

p'(y}=~r. —g[~'(Ir)}/~']~p. . (2.7)

Using Eqs. (2.7) and (2.8) in Eq. (2.6), we find

a', =a, —cg( —1)[a(P I m, )/a'ltd„, ,
P

The quantities Q' and b.'(Py
I

} are the determinants of the
matrices A' and A'(py

I ), which are defined by replacing
the m&th column by the new column b& in A and

A(py I ), respectively. Note that b, '=6(
I m~b, ), by the

definition of b, (
I
m&b, ) given above. With regard to

b, '(Py
I ), Appendix A shows [the first relation of (A7)]

a,' =a, —c[a(p, I m, )/a'],
with the column vector c defined by

5(yz) b))/b,

(2;9)

(2.10)

~'(Py
I } ~(Py I

} ~(r)b&) ~(p I
rn&)

(2.8)
Putting Eq. (2.9) into Eq. (2.6), we obtain

a(
I
m, b, ) ~(1 i I

mi)
«t)ai az) —p(mi)detlc az)— det) a) c

)

with

p (ri) ~(pirl I
)/~

=hdet p(yz) b(p~yz I
)/& &(yz lb~)/&

p(m ) ) b (P) I
m ) )/b, b(

I
m )b ) )/6

(2.11)

p(m ) = —g[b, (p I
m )/b, ]tcz, . (2.12)

The expression (2.11) may now be used to derive (2) %)2)=(P&,y&, yz18' I m&, mz, b&, bz). Since the initial state

12) involves an additional excited electron at the state bz and a hole at mz, we need only to replace all the quantities in-

volved in Eq. (2.11) by the primed ones. The determinant 5 is now defined by the replacement mz~bz in the column
of A, 6'(P

I
m ) is obtained by the same replacement in the column of A (p I

rn }„and so on. Let us express the matrix ele-

ments in terms of three column vectors as follows:

(2) W)1}=bdet)b, bz

&2)~)2&=~'det lh bz

The expressions (A7) of the primed determinants as combined with the relation b, =6(
I rnzbz) then yield

b', =b, —dg( —1)[h(p
I
mz)/b, ']mq,

(2.13)

2b2 2bz d[~(LMi I
mz)/~ ] ~

b' =b —d[b(
I
rnzb))/5'],

with

h(yg) bz)/b,

d= b, (yzl bz)/b,

~(
I m, bz)/b,

Resolving det
I bI bz b3 I

with respect to the column vectors as in Eq. (2.11), we obtain

(2.14)

(2.15}

(21 8')2) =hdet
p(m, )

p(mz)

~(p~ril)/~ ~(rilbt)/~
~(Wyzl )/~ +rz) bl)/~ ~(yzl bz)/~

6(p) I
rn))/5 6(

I
m)b))/5 6(

I
m)bz)/6

b, (p~ I
mz)/b, b, (

I
mzb&)/5 b, (

I
mzbz)/b,

(2.16)
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Equations (2.11) and (2.16) are the results we have been

looking for.
Starting from the expression of (vl W IO) given by

OT, we can similarly construct (v
I

W
I

n ). It is a deter-

minant of a (v+n)X(v+n) matrix, whose rows are la-

beled by v y's and n m's and the columns by (v —1) ltL's

and n b's N. ote that the first column consists of p(y)
and p(m), as exhibited in Eq. (2.16). It is interesting to
note that multiple excitations of electron-hole pairs can be
described solely in terms of the five types of the overlap

integrals, 5, h(py I
), 5(

I
mb), h(p I

m }, and h(y
I
b),

even in the presence of the nonorthogonality between

one-particle wave functions of the initial and final states.

III. CLOSED FORM OF.THE ABSORPTION
CROSS SECTION

The absorption cross section is now obtained by sum-

ming
I (vl 8'

I
n) I

over all possible initial and final

states with energy conservation taken into account. The

energies of the initial state
I
n) =

I
ml, . . . , m„;bl,

...,b„) and the final one
I
v) =

I pl, . . . , p
pl, . . . , 1'~) ale wrlttell as

and

Et + g ~b g em+&core0

b=l m =1

v v—1

EF+ ger —pe„,

(3.1)

(3.2)

respectively, where e„„is the energy of the core state and

Et (EF) is the X-electron ground-state energy of the ini-

tial (final) conduction band. The difference of the ener-

gies (3.1) and (3.2) should be equal to the frequency co of
an x-ray quantum (%=1). We measure all the single-

particle energies from the Fermi level (eF, ;
——0). Thus

8&(t)= + e
y=1

8 (t)= ge
v—1

8p(t) = g e
@=1

(3.7)

t =t+ip (3.&)

and through the partition function g of the initial state

pg0~= Q exPl P(&k, +—ek + +&k„)] (3.9)

the sum being over all possible different choices of X
states out of ~ states of the conduction band. Note that
double occupancy of the single-particle states y, p, etc., in
I (t) is automatically eliminated because the expression of
(v

I
W

I
n ) obtained in Sec. II gives zero cross section in

such cases.
Our purpose is to obtain a closed form for I(t) by car-

rying out all the summations required in the above formu-
las. The calculation of Iz, z(t) is illustrative for deducing

I„„(t).The summation over Ip] and I bj is first carried
out. Let us denote that part of Iz z(t) as Iz z(t):

8p(t)8b(t)
Izz(t)= g "

I (2I 8' l2) I
(310)

II I (bI

with ( 2
I

= (p ),1 1,yz I

From Eq. (2.16) we have
and

I
2) =

I ml, mz, bl, bz ).

8,(t)=ge '
b=1

The temperature T or p ( =1/T with kzt =1}is involved

in I(t) through the parameter t* defined by

0 0 0
th =EF—EI —&-- (3.3) Iz z(t}=

I
~

I
'l

I p()'1)
I
'~y, + + II (mz }

I
'~,

I(co)=2Ref dte' " '" l(t),
where

(3.4)

defines the threshold (th) of the absorption band at T =0.
Temperature effect is incorporated into our theory

through the Boltzmann factor for the initial energy (3.1).
The absorption cross section or the response function,

as obtained from the Fermi golden rule, now reads

—I '(mz)p(m1)~~, 1 . (3.11)

Since the coefficient mr z, for example, involves a prod-
~1~2

uct of two determinants [two cofactors of Eq. (2.16)], we

can make use of the sum over [pj and I b I in Eq. (3.10)
to combine them into a form analogous to Gram's deter-
minant. We thus find

M N

I(t) = g g I„„(t),
v=1 n =0

with

8r(t)8 (t)I „(t)=
(r), (~l

(3.5) m1 m2
(2)~

~1 f2 m1 m2

m2

ml m2
(3.12)

8„(t)8b(t)
, ,

I(vlWln)lz,
(1 ) (bl

(3.6)

the factorials being put to eliminate double countings and

Pl 1 Pl2

y2 m1 m2

etc., where we employ the notation K(:::
I
t) defined by
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K(ai, bi
I
r)gj Q2 Q3

K b b b r =det K(a2, bi lr)

K(ap, bi I
t)

(3.13)

The matrj. x elements therein are

K(xi )'z I
&)=X~(ju)'i I

)e "[~(P)'z I )I*/
I
~

I
',

K(& ~ lr)=X~(Pr l)e l~(P Im&]*/I ~I'
K (mi, m2 I

t)=yh(
I mib)e ~ [6(

I
pyg2b)]*/I g Ii.

We next sum I2,2(r) ov« f /} and [ m } and divide the
result by (2)) . After the summation two terms propor-
tional to

I p(y) I
in Eq. (3.11) contribute equally to

Ii i(t). The same holds true for
I
p(m )

I

2m.

p (yi)p(y2)mz z, and p*(mt)p(m2)m~ ~, while there
are four identical contributions of the type
p (y)p(m)nz and p*(m)p(y)m . This fact serves to
cancel a part of the factor 1/(2!) . Then the sum g' '

may be carried out by using the following identity

(3.14)
K(vari &'

I
&)=g~(P

I
rn)e "f~(Pr I

)]'/
I
~

I

'

«~i ~i
I
&)=X~(P

I
~i&e "«(r

I
~~)]'/I ~ I'.

The notation g' ' in Eq. (3.12) requires explanation.
Consider, for example, n„,. There are three columns, yq,

mi, and mz, in the determinant on the right-hand side.
We construct a new determinant by replacing two [as in-
dicated by the superscript (2)] of the three columns by two
new columns defined by the matrix elements K (yi, y2 I r),
etc., given below. For example, the column

yg [=(K(y2, yg I r), K(m ),yi I
&), K(m2, yi I

r))", with the
symbol tr denoting the transpose] is replaced by
the new column yq [=(K (y2, yi I t), K (mi, yz I r),
K (in', yi I

r))"]. Totally, there are three different ways
of choosing two columns, each giving a new determinant
after the replacement. The sum g ' represents taking
the sum over the three determinants thus obtained. [In
the general case of

I (v
I
W

I
n & I, the factors n.z, n.r

etc., involve (v+ n —1)-dimensional matrices, in which we
should replace n columns by the new columns formed by
K (yi, y2 I

r), etc.] The matrix elements K (yi, y2 I r), etc.„
which define the new columns, are given by

K'(&'i &'2 I &)=X~()'i Ib&e
' [~()'2 lb)]*/I ~ I'

ai a2 ai 1 dg ai ag ag
x~ gbi bi bi 2mi & gi ~, bi bi b,

(3.16)

C being a contour enclosing the origin /=0 in the com-
plex k plane. In terms of the matrix K and Ko, the ma-
trix Ki is defined by

K, =K+XKO. (3.17)

The validity of Eq. (3.16) is checked by calculating the
residue at A, =O, as. combined with the definition of the
summation g' '. Equation (3.16) completes the deriva-
tion of I2 2(t). I„„(t)is obtained similarly.

We now proceed to sum I„„(t)over v and n to obtain
I(t). From Eqs. (3.11), (3.12), and (3.16) it follows thatK'(r*~

I
&)=g~()'l»e ' [~(

I
~b)l'/I ~ I'

K(ai, b2 I
r) K(ai, bi

I
r)

K(a2, b2
I
r) K(ai, bi I

t)

K(ai, b2 I
r) K(a3,bq I

r)

K'(r )'
I

&)=g~( I
~»e ' [+&'

I
b &]'/

I
~

I

'
b

XI *(1—')e

g p*(m)e Di(m, m'It)e p(m')
Nl~ Nl

(3.18)
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N M gN —n

D(t)= X X X n ~vt 'V1

M gN n—

D, (a,b, ~t)= g g
n =ov=O Iy. j (m I

Xvm1 ' ' mn
t exp

Xvm1 . mn

vm1 '' mn
t exp 'Xerjt 'ge~t

fvm1 ' mn

(3.19)

with a, b =y, y', m, m'. The first term of Di(t) with
n =—v=0 should be taken to be A, . Note that in
Di(m, m'

~
t) the term v=0 actually drops in Eq. (3.18)

due to the integral over A, . This should be so, since the fi-
nal states always must have at least orie electron above the
Fermi level.

From the theory of the Fredholm integral equation, '

we may rewrite Eq. (3.18) as

I

done so far in obtaining Eq. (3.20). In fact, Appendix B
shows

detHi (t) =detHi (0)exp f dr Tr 1nH&(w)
dw

(3.24)

with

I(t)= i ' f dA, A,
" 'detHi(t)

EP
detHi(0)=

~

b,
~

e ' g (1+he ") .
k=1

(3.25)

X Lp'(y)e ~ p*(m )e ™]

XHi '(t)Lp(y)p(m )]", (3.20)

—i+i
where p*(y)e is understood to be a row vector of di-

mension M and p'(m)e " is that of dimension ¹

They are row vectors within the spaces y and m, respec-
tively. The,vector jp(y)p(m)]" is a transposed row vec-
tor, i.e., a column vector of dimension ~(=N+M).
The matrix Hz(t), an important matrix that determines
I(t), is an ~X~matrix defined by

u(A)=A, ' Q(1+Re "),
k=1

(3.26)

Thus, the factor
~

b,
~

of I(t) just cancels that of
detHi (t), making the response function I (t) remain finite
even in the limit N~ oo. With Eqs. (3.24) and (3.25), we

can safely take the thermodynamic limit.
Finally, we consider the A, integrals involved in I(t) and

H. In the limit N~ ao, they are evaluated by looking for
a saddle point in the complex A, plane. From Eqs. .

(3.23}—(3.25) we see that the integrand of (3.20) involves

the same factor u (A, ) as the partition function H,

Hi(t)=

—ie t
Iy+K~e

Eye ~ A,~I +age
(3.21)

whose saddle point A,, is determined by

g (1+1,, 'e ) '=N or A,, =e~",
k=1

(3.27)

We have introduced four block matrices in the spaces
(y, y), (y, m), (m, y), and (m, m), with Ir (I ) the MXM
(N XN) unit matrix and two diagonal matrices er
(M XM) and e (N XN) defined by

(3.22)

e 'M= f did, '+(1+I, ").
I' C k=1

(3.23)

To reduce Eq. (3.20} to the final form of I(t), we first
rewrite the partition function N. As in Eq. (3.16), the
definition (3.9) of H leads to'

p being the chemical potential. But the integrand of Eq.
(3.20) has an additional A, dependence originating from the
factors detHi(t)/detH~(0) and Hi '(t}, showing that the
saddle point of Eq. (3.20} is not exactly the same as that
of N. The point is, however, that these factors are inten-

sive quantities which remain finite in the limit N~ ao, in
contrast to the factor u (k) whose exponent is related

directly to ¹ This may be seen by examining the N
dependence of these factors with the use of that of
b, (Py ~

)/5, etc. , given in the next section. So that one
can perform the A, integral in Eq. (3.20), only over

'detHi(0), and put A, =A,, in the rest. Then the I,
integral of I (t) cancels precisely the partition function N,
leaving only the additional A,, dependence due to
detHi (t)/detHi (0) and Hi '(t). Ultimately, we arrive

at
Next, the response function (3.20) is proportional to the

orthogonality factor
~
b. ~, which originally comes from

the 6-proportional matrix element (v
~

W
~

n ). This fact
does not, however, imply that I(t) vanishes in the limit
X—+ ao by the orthogonality catastrophe. It simply means
that the summation over the initial and final states should
be carried out before taking the limit N~ oo, as we have

with

A(~)=Tr cj
Hi (r) Hi (v)

—1

dw

I(t)=exp f dent(r) Io(t) (3.28)

(3.29)
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I (t)= [p'(y)e p~(m)e ]

~H b, '(t) [p(y)p(m )]".

The matrix Hi (t) is, from Eq. (3.21),

(3.30)

(3.15), they are related to h(py I
), etc., which are in turn

obtained from the inverse of the 'inatrix A of the overlap
integrals [Eq. (2.3)]. To proceed further, therefore, we
need an explicit form of the overlap integral a„k. Hereaf-
ter we restrict ourselves to a contact-type core-hole poten-
tial with the strength V:

I&+Xi e
~~m ~

e ~kk =-~ (4.1}

Hi (t)=

with

rC, e '+'
A,,~I+Xi e

(3.31) The forms of a„k and A ' of this case are given in OT.
The overlap integral is expressed in terms of the phase
shift 5„=5(e„)of the final state:

(3.32)
sin5„

a„k =5„kcos5„— PmN„e„—ek
/

(4.2)

I (t =0}=g I wk. I
'(1 —fk»

k

where

fk ——1/(1+e " ")

(3..33)

(3.34)

Equations (3.28)—(3.32) are the final closed forms for the
response function. They are exact, having, in particular,
no restriction on the form of the core-hole potential.

Let us consider the limit T +0 of o—ur result. Because
of the definition (3.8) of t*, the factors exp( ie —t") and
exp(iebt*) then vanish (note that e &0 and eb &0). Thus
in the final form of I(t) all the quantities involving the
block m disappear together with the matrix K which
contains in its summand the factor exp(iebt'). The
present result thus reduces correctly to Eq. (2.36) of OT,
as it should.

Finally, a comment is in order concerning the optical
sum rule —the total intensity of the absorption band. It is
determined by the magnitude of the response function in
the short-time limit. In contrast to the analysis of TO, in
which two absorption bands are involved because of the
existence of a bound state in the final state, the sum rule
concerned here is understandable intuitively. From Eq.
(3.28), it is found that

where 5„k 5(—e—„—ek)/N„with N„=N(e„), the state den-

sity of the conduction band at e=e„. The inverse matrix
A

—'is

(A ') ~
—— IXI+ I

I

N
(cos5 )5(e —e~)

sin5
+ P

&m —
&p

(4.3)

The dispersion integral with complex variable z

X(z)=exp ——f de1 D 5(e)
z —e

X(z) =exp ——f de1 0 5(e)
z —e

(4.4)

defines X„+ X(e„+ie——) with e=0+, etc., where D and
D are the upper and lower band' edges, respectively, of the
conduction band, measured from the Fermi level

(D) 0, D&0).
The quantities b, (py I

) and p(y) are also given by OT.
The other quantities such as b, (p I

m) are obtained similar-

ly by using Eqs. (4.2) and (4.3) in Eq. (2.3). We have

is the occupation number of the initial state
I
k ) and

rc Cl rkl8
k

«Py I
)«=

(3.35)
I'

I xi+ I I xy+ I

defines the optical matrix element wk, between the state

I
k) and the core state. If the k dependence of wk, is

dropped by putting

w~ =w, (3.36)

the total intensity of absorption becoines
I
w

I
times the

number M of the unoccupied states. Though we omit the
derivation (for details, see TO), the sum rule (3.33} illus-
trates the capability of our result of reproducing correctly
the short-time response of electrons to the created core-
hole potential.

IV. REDUCTION OF THE FORMULA
IN THE CASE OF A CONTACT CORE-HOLE

POTENTIAI.

In order to calculate A(t) and Io(t), we must know
p(y),p(m), E, and IC . By Eqs. (2'.5), (2.12), (3.14), and

h(p I
m)/b, =—cos5

5(e —e„)
m

+ P I'le+ I lx + I

5(
I
mb)!5=

&b —&m
I'IXb+

I lx + I

+ P
Eb —Er

I'
I xb+ I I xi+ I

and

p(y)= IX&+ I
w,

p(m)=IX +Iw,

cos5&
b, (y I

b) /5 = 5(e~—eb )

(4.5)

(4.6)

(4.7)
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with the (k-independent) matrix element ie introduced in

Eq. {3.39). In case denominators vanish in Eq. (4,5), the
principal part is needed as indicated therein. To obtain E
and Eo from their definitions (3.14) and (3.15), we use the
identity

i —d~e' = =P—
iver—

5(E) . (4.8)iE&
E+ie E

T11Cll, fol' CxailiplC,

where the presence of two subscripts shows that the quan-

tities defined here are treated in what follows as matrices

vnth respect to these time variables. The vray the variable

t is involved in the labels of their rows and columns is to
be noted.

Then it follows that

~(t)= f deaf d~t~o. (1 A—).„'(1-iq);, o

I('{)' x'
I
t)= —&o V'

I Xr+ I I Xr + I

X f"d~f,"dr'e ""'e '"' +(NoV) f dr f do'P, ~(1—A)~ (I(~, ,

Io{t)=Note f d~f der@, (1—A),'(1 i r—t), o,
(4.13)

&'{tr(,m'I t)= —&o V'I X.+ I IX. + I

'P V8 8

Xgi(t+r+~'),
where +o is the state dcrislty at tllc Fermi level and

Eog(t) =g I X~+ I e

(4.10)

with

A~~={NoV) f dp@~, +p%, +p, ,

(%),~, g=[(1 ii)—) '4],~,;,
(4')„+ ——[(1 ig)—'4],+g .

(4.14)

The product involved in the right-hand side of Eq. (4.14)
should be treated as

No/((t)=g IXb+ I
e e

The expression of the other matrix elements or the explicit
form of the matrix Hi (t) defined by Eq. (3.31) is given

by (C3) of Appendix C.
With Eqs. (4.6) and (4.9), we are now ready to derive

the response function I(t) for a contact core-hole poten-
tial. The procedure to be taken here is made up of form-
ing Hz (t), inverting it to obtain Hz (t), and arranging

the terms in the expressions of A (t) and Io(t) to give their
final forms. The calculation is outlined in Appendix D.
In writing the result, several quantities need to be intro-
duced. First, let gz and g be

gz
——I/(1+e ~e r "),

[{1—'» 'C'lt+;~ =f dp{1' &rt4~.—i+,@~+,g,

(4.15)

for example, where we have inserted the variable t +p, in
accordance with the definitions of il and 4 given by Eq.
(4.12). The inverse (1 i rt) is—hence obtained by solving
an integral equation.

Equations (4.13) and (4.14) show that, to push forward
ouI' program, we need to solve integral equations twice,
once for obtaining (1—ig) ', (1 ig) ', a—nd then for
(1—A) . The first step is taken in the next section.

with g& and g& defined similarly. In terms of them, we

define
—i» (t+r+8)

y
P(» I ) ( } 2 '»m(~++++)+ g e IX +I 8

In this section we obtain (1—i') ', (1—ill) ', (ll, and
(I' involved in Eq. (4.13) and reduce A(t) and Io(t) to
their final forms by making use of them. The derivation
of the four quantities are analogous. Let r be the inverse
of (1—ig):

—p(»b —p) i»b(&+&+&')
&o@~,~+~= A Ixb+ I

~
b

I
x

I

g t&~(t+r+8).

(4.12)

r, g ——(1 ig), g . —

By definition, it satisfies

r ~ i f dpi', —g~ ~=5(v ~') .

(5.1)

(5.2)

gy —P(» —'p) 2i5 —i» (v —8)
(e r 1)e r

y Xy

Note that ri, ~ is a function of (v —r') by Eq. (4.12), while

r, ~ is not. Equation (5.2) has a typical form solvable by
the method of Wiener and Hopf. '~ In writing the solu-
tion, the Fourier transform of the kernel i), ~ is needed.
%e defj.ne

LP2 P(»m —
(IM ) —215m —l »m (f'—T )+ e (e —1)e

It+~, t+8 Ir', r ~

'g(to) =f 7/~ oe d'r ~

From Eq. (4.12)„we find

(5.3)
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[1+(ez's'"' —1)f(co)] ', D&co&0

e 's'" [1+(e 's'~ —1)f(co)] 0&co&D
(5.4a)

and

e ' '"'[1+(e ' '"'—1)f(c0)] ', D&co&0
[1+(e '@"'—1)f(co)) ', 0& co &D

(5.4b)

1 iq(c—o)=1, co&D, co&D

with the Fermi-distribution functions

(5.5)

(5.6)

Note that Eqs. (5.4) and (5.5) are rewritten as

exp[ —i5(co)(co/
I
co

I )]cosh[P(co —p, )/2] D&u&D
1 —jq(co) = ~ cosh j [P(co p)—2i 5—(co)]/2 j

j., co&D, co(B .
(5.7)

I.et us decompose [1—ig(co)] as follows:

Z (co)
1 ig(c—o) =

Z+(c0)
' (S.g)

where Z+(co) [Z (co)] is determined so that it is regular
and free of zeros in the upper (lower) half of the co plane.
Explicitly, we find'

Z+(co) =exp — . J dco'1 D, in[1 iq(co')]-
2+i co —co+ i

(5.9)

The required analytic properties and the validity of the re-

iatjon (5.g) are easily confirmed. Now Appendix D shows

(5.10)

2
—i'(t+8)

+0+t+,g=gfk I +k+ I
~k(~)e

k

i6k(k+8)
&o'p. ,i+~=~a I&k+ I

c k(~)e
k

(5.11)

with the simplified notations of the Fermi-distribution
function [Eqs. (3.34) and (5.6)],

With regard to the quantities other than (1—i') ', we

note that (1—i') ' is a transpose of (1 ig) ' a—s show. n

in Eq. (5.10), 4,+, ~ defined by Eq. (4.14) is obtained if
the 5 function on the right-hand side of Eq. (5.2) is re-

placed by 4,+,~, and, finally, 4', ,++ is obtained if the
kernel i g and the 5 function in Eq. (5.2) are replaced by

iq and 4„+~, respectively. Their expressions are thus
obtained similarly to (1 iq) (see—Appendix D):

Z+ (co)/Z+ (ek )
crk(r) = . dco e —E EOV'

2&l ~ ek —co —i5

Z (ek )/Z (co)
crk(~) = — . dco . e'"' .

277l co ek —co+i'

(5.13)

Io(t)=Now' J d~%(t+~)F(t+~, t+),
where t + =t +e with @=0+ and

~dco 1 1

& 2m Z (c0) Z+(co)
(5.15)

is the quantity independent of t. The two functions %(t)
and %(t) are given by

In A (t) and Io(t) of Eq. (4.13) we only need the expres-
sion for r, w' & 0 for 'p, +, ~ and V, ,+, . By the analyticity
o Z+ (Z ) in the upper (lower) half co plane, as com-
bined with the asymptotic property Z+(co)~1(

I
co

I
—+ ao)

obtained from Eq. (5.9), we see that both ok (~) and ok (v )
vanish when w & 0. Thus as long as the expression (5.11) is
used, all the integrals in A (t) and Io(t) may be changed to
those from —oo to oo.

Now we proceed to reduce A (t) and Io(t). We substi-
tute Eqs. (5.10) and (5.11) into Eq. (4.13) and evaluate all
the integrals involved there. The details are given in Ap-
pendix E. The result is

A (t)= irP+(&o V)'

x o. ~% t+~
XF(t +cr, t +~)+(t+r),

(5.14)

and

fk=f «k»

fk=f«k»
(5.12)

&ot)=mfa Ixk+ I'[z+«k»-«k)] 'e
k

&o»=gfk Ixk+ I'Z+«k)Z (ek)e—
(5.16)
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and F(t+o, t+T) is defined by the following integral
equation:

F( t+o, t+ T) f—dp A(t+o, t+p)F(t+p, t+T)

A(t +tr, t +p) = (No V)

X f dg% (t +tr+g)@(t +p+g)
(5.18)

with the integral kernel

=5(o —T), (5.17)

The definitions of [1—iTi(co)] [Eqs. (5.4) and (5.5)] and
Z+(to) [Eq. (5.9)] enable us to rewrite i Tto, %(t), and %(t)
in terms of the one-particle quantities. First, from Eq.
(5.15) we have

dt0 1 o 5(e) 1 D ln[1+f(e)(e ' t' —1)]i' = exp —— de + . de
& 2m a D m —e 2mi N —E'

where the contour C encloses the branch cut in the range D &~ &D on the real axis of the complex co plane. Since the
integrand of the co integral is analytic everywhere except having the cut on the real axis, we can enlarge the contour C in-
finitely. The residue at to= co then yields

iri = i f—de + f deln[l+f(e)(e ' "—1)] .p . o 5(e) 1
(5.19)

For %(t) and 4'(t), Eq. (5.16) leads to

—le„r 1 D in[1+f(e)(e '+' —1)]
p t = ke "exp . e

k 1Ti D ek —e

1 D ln[1+f(e)(e ' "—1)]
p t = ke exp — e

k
1Tl' D ek —e

(5.20)

where use has been made of Eq. (4.4). Equation (5.14)
with Eqs. (5.17)—(5.20) is the conclusion of this section.

With Eqs. (5.19) and (5.20), A(t) and Ip(t) are now
directly comparable with those derived in OT. The limit
T~O is easily taken there to show

(i Ti )z=o=0'
D

[Npq (t)]r p= f dEN(e)'

X exp ——f de'P, e '", (5.21)
2 D, 5(e')

E' —E'

0
[Npq (t)]z p= f deN(e)

Xexp f d—e—'p, e'".2 o, 5(e')
e—e'

Hence %(t) and i'(t) tend respectively to P(t) and P(t) of
OT [OT Eqs. (5.3) and (5.6)] and the response function
reduces correctly to that of OT in the limit T~O. In oth-
er words, %(t) and %(t) of Eq. (5.20) present the exact
form of the dispersion integral' at finite temperatures.
Also, the limit Ti(co)—+0 as T—+0 is the reason why in the
formulations in OT and TO we encountered only one in-
tegral equation.

and obtain the exact asymptotic t dependence of A (t) and
Io(t) from Eq. (5.14).

Before concentrating on F, however, we consider the
constant term ig [Eq. (5.19)] involved in A (t). Since the
response function I(co) depends on A(t) as follows [Eq.
(3.28)]:

I(tp)=2Ref dte '" exp f d&A(T) Ip(t),

(6.1)

the t independence of iri shows that the real part of il
provides us with a shift of the spectruin as a whole, while
its imaginary part describing an exponential decay of I(t).
Although a clear-cut absorption threshold no longer exists
at finite T, let us define the modified threshold frequency
as follows:

~th (EF EI ecore) R0 0 0

=coth —Re'g 0 (6 2)

depth being the threshold at T=O [Eq. (3.3)]. The differ-
ence EF—EI of the ground-state energies arises from the
potential scattering by the core hole. Thus, by Fumi's
theorem, the exact expression of it is'

VI. THRESHOLD BEHAVIOR AT FINITE
TEMPERATURES o o p 5(e)

Ep- —EI ——— de (6.3)
The spectrum of the soft-x-ray absorption now depends

entirely upon the solution F of the integral equation
(5.17). In this section we treat F in the region of large t

The quantity g is given exactly by Eq. (5.19). From Eqs.
(5.19) and (6.3), therefore, we find
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1
co,h

——— de Im in[1+f(e)(e '+"—1)]—e„„,.

(6.4)

derive 4(t) and %(t) using Eq. (5.16). The expressions for
Z+(co) and Z (co) needed there are obtained in Appendix
G. The expressions of

~
Xk+ (

and
~
Xk+

~

valid for
ek-0 are given in OT:

The first term tends in the limit T~O just to Eq. (6.3),
thus showing that the phase shift in Fumi's theorem at
T =0 is replaced by the quantity given above, which is

determined by the combined effect of the phase shift and

the Fermi-distribution function. At moderate tempera-

tures and for ordinary conduction bands, however, it
holds that T/D, T/ ) D

~
&&1. The deviation of co,h from

co,q in these cases is therefore small, because —,
' Im ln[ ]

in cosh is different from 5(e) only in the frequency region
of the order of T near the chemical potential: The correc-
tion involved in co,h is of 0(T/D) relative to co,h, which is
in general of the order of the bandwidth of the conduction
band.

The imaginary part of gc will be combined with anoth-

, er (t-dependent) term of A(t) as seen later. Now we turn

to solving Eq. (5.17). The analysis based on Eq. (5.17) re-

quires an explicit form of the integral kernel

A(t+o, t+p) which is determined by qI and K We re-

strict ourselves to the asymptotic region of t. Also, in

parallel to the above estimate of co,h, we are concerned
with the temperature region much lower than the band

parameter D and ~D ~. In the following discussion,
therefore, t and T are respectively confined to

I Xk+ I

'=
I ek I

I Xk+ I'=
I ek I

where [OT Eq. (5.10)]

5(e)—5p
~

X(0)
~

=D exp —f de
e

5(e)—5o
I
X«)

I

= ID I
exp f-«

E

(6.8)

(6.9)

and

a=25p/m . (6.10)

XF(1——,'a 1 ——'a, l ie ~ ')

(6.11)

The combination of Eq. (6.8) with (G10) in Eq. (5.16) then
leads to (G12):

'I —a

~
X((})

~

2e eTt(1 ——a)[1 (1 )]2

and

tD, t iD [ »1

T«D, /D
/

.

(6.5)

(6.6)

%(t)=
~

X(0)
~

'e-"~'+'[1.(1+-'a)]'

XF(1+—'a 1+—'a, l
~

e ')

Img0=mr 0
m'

2

(6.7)

where 5c is the phase shift at the Fermi level.
In order to obtain I(t) for large t, we require only the

asymptotic forms of 4 and 4, as is obvious from the way
the time t is involved in Eqs. (5.14), (5.17), and (5.18). We

I

Consistently with the second condition, we can now put p,
the chemical potential, to zero (energy of the Fermi level),

neglecting the correction of 0 ( T/D) as in co,h.

First we write Im vP, whose expression valid for
T «D,

~
D

~
is obtained in Appendix F:

wh««(1+ —,a) is the gamma function and F(g, b, c
~

z)
is the hypergeometric function. 's

Several expressions different from Eq. (6.11) are possi
ble, using Kummer's relation for the hypergeometac
functions. One of them is given by (G13), which shows
that our %(t) and %(t) tends precisely to P(t) and P(t) [OT
Eq. (5.9)], respectively, in the limit T =0. The results de-
rived in what follows are based upon Eq. (6.11).

It looks difficult to obtain a closed analytical form for
'A(t+a, t+p). Thus we express A as a power series with
respect to the variable e ', and the integral over g in
Eq. (5.18) then leads to

CO OQ

A(t+a t+p)= ——,~Ta g +exp[ mT(1+a+2m—)(t+a)]A, „exp[ mT(1 —a+2n)(t—+p)],
m =On =0

(6.12)

where

(1+—,
' a) (1——,

' a)„
nf

1
m, n (6.13)

m! m+n+1
with Pochhammer's symbol (y) =I (y+m)/I'(y)
=y(y+1) . . (y+m —1). In eliminating

~
X(0)

~

2,

~
X(0) ~, and I (1+a/2) involved in Eq. (6.11), we have

made use of the relation

( X(e+ )
~ ~

X(e ) [ =sin[5(e)]/[m. VN(e)]

[OT Eqs. (3.13) and (3.14)].
With Eq. (6.12), the power-series expressions for

F(t+o, t+w), A(t), and Ic(t) are straightforwardly ob-
tained. They are given by (H2) and (H4). Our final task
is to find analytical expressions for A(t) and Ic(t) by
summing the infinite series for them. Since the form
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(6.12) of A involves a double sum and A (t) and Ip(t) are
written in terms of (1—A) ', the proof cannot be so sim-

ple. Though clUIQsy, our treatment given in Appendix H
provides us with asymptotically exact solutions for A (t)
and Ip(t),

2 (t) =i(Reti )—m.T coth(n. Tt),

20.0—
—T/0 =0.005

~T/0=0. 01

1 —e

Ip(t) = Nptc
2&T

1
~

X(0)
~

[I (1—
2 a)]2

X [2 sinh(m Tt) ] '+~, (6.15)

where i(Reri ) yields the first term of Eq. (6.4) whose
meaning has been discussed there, and the term

~T(5plm) of Eq. (6.7) is absorbed into the second of Eq.
(6.14). They are our final results, bringing forth the
response function I(t) as follows:

4.0

50
gp ——2

m'

5p

I(t)= NpDw Ap[I (1—2u)] —@pe' '""
' —1+gp

sinh(n. Tt)ia (6.16)
PIG. l. Absorption spectra near the threshold at a finite tem-

perature T. The spectrum I'(Q) is defined by Eq. (6.18). Q is
the frequency measured from the absorption threshold at T =0.
D is the distance between the Fermi levd and the upper band
edge of the conduction band, which normaHzes A, T, and I'(Q).
The curves for fouI different temperatures are plotted for 6p (the
phase shift at the Fermi level) chosen arbitrarily to be m/3.

l

sinh(m Ttp )
uo=

MT

tp

X exp[ —i(Reri )tp]exp I dr 2 (~) (6.17)

5(e)—50
Ap ——iX(0)

i
/D =exp —J de

The coefficient I10 describes a short-time co~trib~tio~ of
A(t), as introduced in TO by assuming that the long-time
form (6.14) remains to be valid down to t=t0.

The result (6.16) reproduces the result of Yuval and An-
dclson. ' Also our treatment yields an exact expression
for the prefactor of the power-law behavior of Ip(t), the
critical amplitude introduced by Penn, Girvin, and

Mahan. '9 It is identical with that of T =0. Note the ex-
istence of an additional contribution from the short-time
response summarized by the factor pp, which shows that
the exact form of the prefactor as a whole requires in-

herently the information on A (t) in the whole region of t.
Note also that within the restrictions (6.5) and (6.6) the
relative magnitudes of t and T are completely free. Equa-
tion (6.16) thus shows that the power law in the case of
tT g&1 is replaced by the exponential decay in the oppo-
site limit of tT ~~1.

Some typical absorption spectra are plotted in Fig. 1.
We put arbitrarily 50 ——m/3 and treat T as a parameter.
Because of the ambiguity due to the factor pp involved in
(6.16), t11c curves fol' I (0) defined below a1'c plotted 1n-

stead of I (co):

—] +gp
/Qg ED s1 1111(7TTt )

0 m'T

'
gp n)( —~+&p)Re e

D 2mT

1 gp inI —— —— I'(gp)
2 2 2mT

(6.18)

(6.19)

I

with that of T =0 (power-law spectrum of ND), while in
the region Q ~ 1/T the divergence at T =0 is removed by
the temperature effect to yield a rounded peak near the
absorption edge. In the opposite side of the threshold
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(0&0), the sharp cutoff of the spectrum at T =0 be-

comes gradually blurred with increasing T, inducing a
nonzero absorption spectrum spreading roughly of the or-
der of T below the Fermi level.

VII. SUMMARY

The present paper gives an exact treatment of the
thermal effect on the soft-x-ray absorption spectrum using
the Hamiltonian of Nozieres and De Dominicis. ' The
formulation in the first half of the paper consists of ob-
taining the matrix elements of the dipole moment between
two Slater determinants and summing the transition prob-
abilities over all possible initial and final states. Because
of the multiplicity of excited many-particle states, the for-
mulation needs several careful steps before arriving at the
closed formula for the response function. For example,
because of the orthogonality catastrophe, the summation
of the cross section should precede the process of letting
the system size tend to infinity.

The thermal effect is incorporated in our formulation
through the Boltzmann factor. The need of treating the
Slater determinants led us to consider the system with a
fixed number of N electrons (canonical ensemble}. This is
why our final form of the response function [Eqs.
(3.28)—(3.32)] involves a distinction with regard to the
roles played by the states above and below the Fermi level
at T =0. The distinction perhaps implies that the formu-
la may be further reduced quite generally, leading to a
description of the thermal effect solely in terms of the
Fermi-distribution function. (The calculation for a con-
tact core-hole potential in the rest of the paper shows that

this is indeed the case. ) However, to see the relationship
between the exact formula for T =0 given in the previous
work to that for T&0 obtained in this paper, the results
in the present forms (3.28)—(3.32) will probably be best.

In the second half of the paper, the exact formula was
applied to the case of a contact core-hole potential. The
explicit use of the wave functions in the final state reduces
the response function to Eqs. (5.14)—(5.20), whose validity
is not restricted to the asymptotic region of t Th. e result
shows the way the ground-state energy shift and the
dispersion integral are modified by the temperature effect.
We showed that the dispersion integral, when dealt with
in the asymptotic region, in fact, reproduces the result of
Yuval and Anderson. ' '"

Even in the asymptotic region of r, however, the deriva-
tion of the final answer [Eq. (6.16}]has not been straight-
forward at all. This is because of the unwieldy form of
the dispersion integral at finite temperatures [Eq. (6.11)].
But it is worth pointing out here that the complication
arose mostly because we had kept with an analytical for-
mulation for the whole problem. We have in fact con-
firmed that the power-law behavior exhibited by Eq.
(6.16) is derived quite easily by the numerical analysis
based on Eq. (6.12). In this sense, it will be interesting to
test the efficiency of the formulas (5.14)—(5.20) numeri-
cally in the frequency region far from the absorption edge.

Finally our approach yields the exact form of the pre-
factor of the power-law formula of the open-line contribu-
tion. It is expressed by the same form as that of T =0,
given by our previous study. The results of Yuval and
Anderson are thus improved in this respect by the present
analysis.

APPENDIX A: EXPRESSIONS OF b, '(Py
I ), 5'(

I
rnb ), 6'(p

I
m ), AND b, '(y

I b)

The determinant b, '(py
I

) is defined by

~'(py
I

) =det
I [~(py I }l,-b, I (A 1)

The symbol (mi +b&) means —the replacement of the m&th column of A(py I ) by the new column bi. Expansion of
4'(py

I
) with respect to the row y and column b

&
using the cofactors leads to

a'(py I)=a„,a„,+g"a, a„,b,
Bb,» I' ~ ~ » ~ ag„ aa„

(A2)

the primed sum meaning the exclusion of the terms with pi ——p and (or) m=mi. By Jacobi's theorem we can
transform the derivative in the second term into a determinant of the cofactors 6&

/b, b,q /b,

Ba&~ Baz ~ ~pm&/ p&m&/~
=4 det (A3)

Thus

a(py I
)/a g ar a„,b, a„, /a

»,m

6'(py
I )=a&b, b,&~ +hdet

pm& a( Im, b, )/a (A4)
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Combining the first term with the second and using Eq.
(2.3), we find the expression of b, '(py

i
) given by (A7).

Likewise, the determinant b, '(p
i
m ) is defined by

~'(P
I
m)= —det

I [A(p I m)], -b I
~

Expansion with respect to the column b1 yields

(A5)

b,(py i
)/5 b, (y i b, )lb,

A(p i
mi)/6 6(

i
mibi)/b,

6(
i
mb)/5 5(

i
mb, )/b

5(
i
mib)/b. b(

i mib))/6

b(p i
m )/5 b, (

i mb i )/5

h(p i
m&)/5 6(

i
mibi)/b,

(A7)

aa(p im)
uy|m

&

Bb,
' ' Bay,m Ba&,m,

Then we can make use of the identity (A3). In this way,
we obtain all the primed determinants. In summary we
have

indices +,—,etc., are introduced in relation to the Fermi
level to make explicit the labeling of the row and columns
of W. In this notation, A used in the text is A( ——). In
terms of M, the quantities h(py

i ), etc., defined by Eq.
(2.3) are rewritten as

~(Py i
)/&=[A(+ —)A '( ——)]r„,

&(y ib)/~=[A(++) —A(+ —)A '( ——)A( —+)] t, ,

(B2)

h(p i
m )/b, = —[A '( ——)]mp,

etc. The identity det
i
I+X Y

i
=det

i
I+ YX

i
then leads

to

LIz( ——
i
t) Hz( —+ i

t)
detHi (t):det H (

i
) Hg (

(B3)

where the block matrices Hi ( ——
i
t), etc. , labeled by p

(for minus) and b (for plus) are defined by (dagger stands
for Hermitian conjugate)

b(y
i
b)/5 h(y

i
bi)/5

Ql H'( —+ i
t)= A[A-'( ——)]tB(—+ i

t) (B4)

A( ——) A( —+)
A(+ —) A(++) (B1)

APPENDIX B: CALCULATION OF detHq(t)

The rows or columns of the matrix Hz(t) defined by
Eq. (3.21) are labeled by y and m. We extract the factor

from detHi (t) by converting the representation of
the matrix Hz(t) to that in terms of the labels p and b.
This may be carried out by the identity det(I+X Y)
=det(I+ YX), valid for arbitrary two matrices X and Y.
The forms (3.14) and (3.15) show that the matrices L and
Eo have in fact the form of a product of two matrices.

For our purpose, it is convenient to extend the dimen-
sion of the matrix A, origirially defined by Eq. (2.2). Let
W be an ~XM matrix defined by

—[A '( ——)]t[e +KB(——
i
t)]

xA '( ——)A( —+),
with the NXN diagonal matrix e given by Eq. (3.22).
Hi, (+ —

i
t) and Hi (++

i
t) are expressed similarly.

The matrices B(——
i
t), etc., in (B4) are the block ma-

trices which constitute an ~x~ matrix A(t) defined by

—iet
B(——it) B(—+ it)

A(t)=W e '-"W —B(
i

) B(
i

)
I

Its rows and columns are labeled by the unperturbed
states m (for —) and b (for +) in accordance with the
definition of W. The diagonal matrix e in (B5) is

(B6)—r.0 e

with ~e and ez defined similarly to ~e

By a direct matrix multiplication, it may be shown that

[A —i( )]t 0
detHi(t) = det

A t( )[A,( )]t I det
AB( —+

i
t).

e ~ +KB(++ i
t)AB(+ —

I
t)

with four block matrices: the N XN matrix A( ——) in E'=

the block (p, m); the N XM matrix A( —+ ) in the block
(p, b), the M XN matrix A (+—) in the block (y, m), and
the MXM matrix A(++) in the block (y, b); here the

I

e +KB(——
i
t)

Xdet
(B7)
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From 5=detA ( ——) and (85), it follows that

detHq(t) =
2

det
~

I+kA (t)e

XIIe"" IIe

with

(88)

f(t)=f(0)+ f,dr „
with

f(t) =TrlnH~(t) .

APPENDIX C: DERIVATION OF Eg. (4.13)

(811)

(812)

(89)

First we write down the full expression of H~ (t). We
S

introduce

from which, as combined with
h(t) =Hx (t)

S
(Cl)

detHq(t) =exp[Tr lnH~(t)], (810)

[X(0)l« =(~ ~)« =&«

due to the completeness of the initial and final states, we
have Eq. (3.25) for the expression of detH~(0)

The form (3.24) is obtained by the identity

where Iy (I ) is the M XM (NXN) unit matrix in the
space y(m), and

(gy)y&y2 gy& y&y2 ~ (gm )m&m2=gm&~m&m2 (C2)

define the diagonal block matrices gy and g~, with gy
and g~ given by Eq (4. 1. 1). Substitution of E and Xo
into Hq (t) [Eq. (3.31)] yields

h(t)=I iVf d—r[E&(r)e E2(r)+E2(t+r)e E;(t+r)] NOV f—dr f dr'E, (r)e@,(t+r+r')E&(t+r') . (C3)

All the matrices involved here are of dimension ~X~ and except for the matrix e defined by

(e); =1, 1&i, j&M (C4)

they are diagonal. In the rule of writing only the (y, y) and (m, m) elements in the form ((y,y), (m, m)), the diagonal ma-
trices are defined by

R«)=( lxy+ Ie ' I& + le

Ez(t+r)=( ~Xy+ ~

e ye y e

The quantity 4~(t +r+r') in (C3) is

4,(t+r+r ') =P(t+r+.r')+A, ,p, (t+r+r')

—ism imam(t+rj)

'~m '~m~ ~~~m
+~e e e gmj

(C5)

(C6)

P and P~ being given by Eq. (4.10).
Making use of the matrix h(t) and E~(t), etc., we can express A(t) [Eq. (3.29)] and Io(t) [Eq. (3.30)] in the following

orm:

3 (t) =i V Tr[e E~ (t)h '(t)E2(t)]+No V f dr%&(t +r}Tr[eEj'(t)h '(t)E~(r)],
1

Io(t) =w Tr[e E& (t)h '(t)Et(0)],
(C7)

where the derivative d ldt in 2 (t) has been used to evaluate the integral over r' in (C3).
The calculation of the inverse matrix h '(t) is most involved. By expanding h '(t) using (C3), the form of h ' is

found to be

I

h '(t) =I+f dr f dr'[E&(r)eMq~(r, t +r')E& (t +r')+E&(r)eM, 2(r, r')E2 (r')

+Ep(t+1 )eM2$(t +1, t +r')E$ (t + )+rE2(t +r}eM22(t +1,r')Eg (r'}], (C8}

with four c-number (not matrix) unknowns M»(r, t+r'), . . . , M2z(t+r, r') They are determ. ined so that they satisfy
h(t) h (t) =I I being an ~X~ unit matrix. A lengthy calculation using (C3) and (C8) then leads to the following
matrix relation:
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1 i—rl A—l —iVE0@I{1 i Ii)~iN0VcI» Mll MI2
—i' V4 I —l'g M2) M22

XOV 4] iV
(C9)

where ri, Ii, 4, and 4 are defined by Eq. (4.12), 4I by
(C6), and Al by

s)0
~+,

) ~~o

Al ——(N0 V)%I@ . {C10)
P

0, v~O
p

p ~~O

(Dl)

The multiplication between the time-dependent quantities
is understood to be the matrix multiplication, as in Eq.
(4.15). The time variables defining the rows and columns
of M J are shown in (CS). In accordance with the labehng
made explicit in Eqs. (4.12) and (CS), the matrix elements

(r, t+r'), (t+r, t+r'), (r, r'), and (t+r, r') of the time
variables are needed for the (1,1), (2,1), (1,2), and (2,2) ma-
trix elements of (C9), respectively.

Equation (C9) is solved algebraically. The result is

MII(r, t+~')=N0V [%(1—A) '{1—i'} ']

Ml. (r, ~') =IV[(1—A)-'(1 —I q)-']... ,

(

Mzl(t+r, t+v')=i Vf(1—A) '(1 —i'} ']»+, ,++,

M&2(t +r, r') = NV [%(1——A) '(1 —iI}) '],

All the quantities involved hire are defined in Eqs. (4.12)
and (4.14), except for A, which is defined by

A=(N0V) V%. (C12)

The right-hand sides of (Cl1) and (C12) should be dealt
with in a fashion similar to the example of Eq. (4.15).
The inverse matrix h '(t) with MJ given above is then
inserted into (C7) and arranged to give the final form. To
collvert A to A, the identity

(1—A)-'0 =%(1—A)-', (C13)

APPENDIX D: DERIVATION OP EQS. (5.10)
AND (5,11) BY THE METHOD

OP WIBNER AND HOPP

In order to solve Eq. (5.2), we introduce the following
two functions,

which is confirmed straightforwardly by the power-series
expansion with respect to A or A, is useful. After a tedi-
ous but eleQlentary calculation we Ieach the result suID-
marized by Eq. (4.13).

(c»») ~ e im'8

r+(co}~= . dco'
2&l ~ Z (67 )(c0 —c0 —E5)

The inverse Fourier transform leads to
+ 0' +ro y = 1Im I'& &»

a~0+

(D5)

*- dc0' e'"'" d~ Z+{c0)e '""+'
27T Z (c0 ) —~ 27TI C0 —c0 —l5

(D6)

(~)e —tm(0+ &

dco
27rl —~ C0 —C0 —I 5

1 ce Z+ (C0)
dc0

Irl CC C0 —CO —I5

=I ~ (D7)
as obtained by making use of the contour integration, it
holds that

dc0 e
2n. Z (c0') ' (DS)

wlllcll Is Eq. (5.10).
In derl»ng 'p»+, y de~»ed by Eq. (4.14), we have only

to replace e'"" in (D3) by

for the extended region of —~ gr~ ao and r'p0. Equa
tion (5.2) is then rewritten as

r,w
—r,e if— dp Ii,, r,y =e(r)&(~—r'), (D2)

8(&) being the step function. In Fourier Space we have

r+(c0)~ r (e»)~

Z+ (co) Z (co)

where tile decomposition (5.8) is employed, and

r (0I)y= f— der;;e'"' (D4)

defines the Fourier transform. By (Dl) and (D4), r+{co)&,
[r (c0)y] ls regular on the upper (lower) half co plane.
Thlls, solvlIlg for r (co)y alld r (c0)~ of (D3) is just a,

standard Hilbert problem. We find'5

I

—ie (1+8) —ie~{t+8)

f 6(~)@,+, ge'"'dr =gg '~X + ~

I +gg (g

Using the fact that g exp[P(e —p)] and gz defined by
Eq. (4.11) are both rewritten as fk(1 —i'(ek)) (k =m or
y) with the Fermi distribution function fk= 1 fk [Eq. —
(5.12)],we obtain

Z+ (co)e
+

N0%+(~)„=igfk ~X„+ ~' + . (D10)
Z+ Ekco ek +l5'—

For tile Folllml transforms for 4 and i', it is con-
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venient to define them in terms of the factor e '"' (the
complex conjugate to that used in 4 and i'), because it
then holds that g(to) =q(co). In this case, 0'+(co), is reg-
ular on the lower half co plane. We find

Z (ek )e
No++(co)~ —ig——fk ~ Xk+

~

k

(Dl 1)

The inverse Fourier transform of (D10) and (Dl1) then
gives Eq. (5.11).

are the matrix forms of the first and second terms of Eq.
(4.13), respectively. The prescription of the transforma-
tion is given prior to Eq. (5.14). As an example, we calcu-
late the term of O(A) of Az(t),

A, (t) =(N, V)'(q A% )„. (E3)

Since A=(NpV) %% [Eq. (4.14)], the explicit form of
Az" (t) is

A',"(t)= (No V}'

)& f dof 'dp f dr%',

APPENDIX E: DERIVATION
OF EQS. (5.14)—(5.18)

In accordance with the form (4.13), we divide A (t) into
two parts,

From Eq. (5.11), the first factor 'k, ~ contains ok(0+),
which is

Zg (oi)/Z+ (Ek)'
ok(0+ ) = . dc@ e

2&l ek —Co —t 5

A (t) =A, (t)+A, (t),
where

A, (t) = [ig(1—A) '(1 iq) —']o p

and

A2(t) =(No V} [qj(1—A} '0'], ,

(El)

(E2)
o k (0+ ) = 1/Z+ (ek ) . (E6)

With (E6) three integrals in (E4) are easily carried out.
We find

This integral is evaluated as in (D7) by the trick of drop-
ping the exponential factor and adding an integral along
the semicircle in the upper half co plane. The result is

ek ek +l5
2 1

Z+(ek~)/Z+(ek ) «& & Z (ek~)/Z (ek, )

k3 Ck2 l k4
—Gk3+ l

Z (ek )/Z (&k )
A2" (t}=iV'gfk,

I &k|+ I fk2 I +k2+ I

'
1 | Z+(e" ) 2 2+

(E7)

The energy denominators are then rewritten using Eq. (4.8). In addition to %(t) and %(t) defined by Eq. (5.16), we must
introduce the third quantity %i(t},

No'pi(t)=gfk
I
xk+1'Z (&k)e "

k

Then,

A,"'(t)=(N, V)'f do f dr%(t+o) (N, V)'f dp%(t+o+p)%(t+p+r) %,(t+r) .

The term in large parentheses gives A(t +o, t+r) defined by Eq. (5.18).
The higher-order terms of A2(t) and the terms Ai(t) and Ip(t} are similarly treated. In this way we obtain

A, (t}=f driqo(r)F(t+r, t+),
A2(t)=(NoV)'f do f dr%'(t+o)F(t+o, t+r)% i(t+r),
Ip(t)=Npio f dr%(t+r)F(t+r, t+),

with

(E8)

(E9)

(E10)

p dco
ig (p)= f —icup

Z+ (co)
(El 1)

where the quantity F is the solution of the integral equation (5.17). In (E10)„Ip(t) has just the form given by Eq. (5.14),
while in A (t) some more transformations are required before reaching Eq. (5.14).

Note first that

Noq'i(t)= f dpNoe(t+p) f (E12)
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as confirmed by integrating over p with the use of the definition of V(t) given by Eq. (5.16). Dividing 1/Z+ (co) into two
parts,

I

Z+ (co) Z+ (a) )
=1+ —1

we find

A, (t) = (X&V)'f do f dr+(t+o)F(t+cr, t+r)%'(t+r)

+(N, V)'f do f dr f dp%(t+o)F(t+o, t+r)%(t+r+p) f —1 e-'~i'.

(E13)

(E14)

Dividing F as well into two parts within A
~ (t), we find

Ai(t)=ii) + f dpi' (p)[F(t+p, t+)—5+(p)],

f . r0 fD f f I%I

(E16)

(E15)

where 5+{t)=lim, a+5(t e) a—nd go [=ri (0)] is, from
(El 1), given by Eq (5.1.5). The sum of the first terms of
3 i(t) and Az(t) is just given by Eq. (5.14). Our remain-
ing task is thus to confirm the exact cancellation between
the second term of 3 i(t) and that of Az(t). By means of
the identities

—imp

Z+ (co)

Z+(c0)=z (co), co&D, ai&D

as combined with the series expansion of F [=(1—p) ']
with respect to the factor A, the cancellation may be, in
fact, checked.

APPENDIX F: DERIVATION OF REAL PART OF i y

The real part of ig is, from Eq. (5.19),

Re(i ri )= f de in[1 —4f (e)f(e)sin 5(e)j,4~

with f(e)=1 f(E) [Eq. (—5.6)]. The Taylor expansion of the integrand yields

Re(i ri )= — g —f de[4f (e)f{e)sin 5(e)]"-—
4m. „,n & 4n „, n (2n —1)!

(Fl)

(F2)

In the second line we have set sin5(co) =sin5p D=
j D

~

= 00 ~ The procedure is obviously allowed when T &&D,
~
D (,

because of the factor f(e}f(e). Comparing (F2) with the Taylor expansion of (sin 'x), we find

Re(itic) = ——[sin '(sin5c)] = mT(5c/n)— .
7T

which is Eq. (6.7).

(F3)

~pPENDI~ G: ASYMPTOTIC FORM OF 4(t) &ND +(t)

We prment the derivation of Eq. (6.11) based on Eq.
(5.16), which is reproduced here for q'(t),

Imz
1

4' net
l I

1 l

l Ix~ Rez

c x~ R

~,q(t)=gf, IX,+ I'[Z, (e, )Z (e, )]-'e " (Gl)

The quantity Z+ (co} is defined by Eq. (5.9). For simplici-

ty, let us write Z+(co) as

Z+ (co)=exp[J+ (ai)],

~ -4mTnci

-(3) -(3)
FIG. 2. Contour C+ for J+ (co) and C for J (co) used in

(G7). Since the integrands g+(z) and g (z) have branch
points at z=co+ and z=co, respectively, the contours are
chosen so that they do not include the branch point inside.
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J+ (co) being the exponent of Eq. (5.9). Substituting
1 —i'(co) given by Eq. (5.7) into J+(co) and integrating it
by parts, we find

3

J+= g J+'(co),
k=1

with

J(i) 1
1 l, s(, ) cosh(pe/2)

cosh I [Pe—2i5(e) ]/2 j

0

D-

+ in(e —co )ln e-'"' cosh(Pe/2)
cosh [ [Pe —2i5(e )]/2 j

J'+'(~)= — ' f « '
ln(~ —~+) 1 — '

tanhI[p~ —2i5(g)]/2j 5(g),

J+ (co)= dain(e —co+)(3) sin5(e)
4~ D cosh(pe/2)cosh I [pe —2i5(e)]/2j

t

From 5(D)=5(D)=0, only the phase shift 50=5(0) at the
Fermi level enters in J+'(co). The integrand of J~'(co) is
appreciable when e & P '. The derivative 5(e)=(d /
d e)5(e ) is generally of the order of m /D, so that
J'+'(co)=O(T/D), which we neglect by the condition
(6.6). In J+'(co) the integrand is again appreciable when
e & T, but it has a value independent of D,D. In view of
Eq. (6.6), we can set D = ~D

~

=Do and 5(e)=50 therein.
In this way we obtain

and

J+'(co) =f de g+(E),
with

ln(e —co+ }
g +(e)= sin5O4nco. sh(Pe/2)cosh[(Pe 2E 5—0)/'2]

(G5)

(G6)

J+(co)=J'+'(co)+ J'+'(co),

where

e

0
(ln

~

co
)
+~i ), co & 0

J(~i) ( )

lil
~

co ~, co (0

(G3)

(G4)

J'+'(co) is derived by the contour integral. Let J+ (co) be

Ji (co) =f dz g +(z), (G7)

where C+ (C ), shown in Fig. 2, is chosen so that it may
not contain the branch point z =co+ (z =co ) inside it.
Within C+ or C, therefore, there are only a series of
poles due to [coshPz/2] ' and [cosh(Pz —2i50)/2]
Dropping the contributions along the vertical parts which
vanish in the limit R~ oo, it follows that

p ii ln(x co+) ln(x+4—~Tn, i——co+)
J+ (co)= sin50 dx

cosh(Px /2)cosh[(Px —2i50)/2]
(G&)

In the limit R —+ ao and n, ~ oo, the term with ln(x —co+ } yields just J'+'(co), while the rest may be evaluated by direct
integration over x by setting

ln( +x4mTn, i co+)~—ln(. +4m. Tn, i) .

On the other hand, J+ (co) is expressed as a sum of the residues at the poles inside C+. Hence, we have

5() "~ '
Pco+ —2i5()+ (2k +1)mi.

J+'(co)= lim ln(+4mTn, i)+ g ln
n 7T Pco++(2k+1)~i .

(G9)

Z+(co) =

Combining (G4) and (G9) and making use of the definition of Weierstrass for the I function, we obtain

p~ ' I ( —,
' —i(Pco/2n ) )

2m I'( —,
' —c[(Pco—2i5 )/2m])

(G10)

Z (co)= Pco I ( —,
' +i[(Pco—2i5 )/2n])

8
I ( —,

' +i(Pco/2m))

Now substitution of (G10) into (Gl), as combined with the definition of
~
Xk+

~

given by Eq. (6.8), leads to



42S4 K. OHTAKA AND Y. TANABE 30

Np%'(t) =
2m'

Np@(t) =
2m'

25p/e

25p

I ( —,
' —i[(pek —2i5p)/2n])r( —,'+t(pek/2m). )

I
x(0)

I
~gfg

k I"(—,
' i—(pek/2m))r. ( —,

' +i[(pek 2—i5p)/2n. ))

r( —,
' +i [(pek 2—i 5p)/2m ])I'( ,

' —i—(13ek/2~) }
I
x(o)

I
'gfk

I ( 2 +l (pek /2n))r. ( , —t—[(pek —2i5p)/2m ]}

(Gl 1)

The sum over k may be changed to the integral over —~ &ek & 00, which is evaluated by adding an integral along the
semicircle in the lower [for 4'(t)] and upper [%(t)] half of the coinplex ek plane. We have only to calculate the residues
at the poles. Noting that the poles due to fk are removed by the zeros of I ( —,

' —i(Pek/2m )) ' [in the case of %(t)], we

obtain %(t). The calculation of %(t) is similar. The result is
1—a '2

'I'(t)= IX(Q) I
e "' I 1 ——F 1 ——1 ——1 e

2 2' 2'

Ti(t) =
]+a

2s.T
'2

Ix(0)I e ~ t'I + ir 1+—F 1+—,1+—,l
2 2' 2'

(G12)

For the notations, see text. By means of Kummer s relation for the hypergeometric functions, we may rewrite (G12).
For example, we have

1 —a

%(t)= 7TT

i sinhm Tt

HATT

i sinhm. Tt

' I+a

Ix(o) I'r 1 ——
2 2' 2'

Ix(0)I r 1+—F ——,——1 e
2 2' 2'

(G13)

In the limit T =0, the identity

F +—,+—,1 1 =I'(1+a)/I 1+—a2' 2' 2

reduces (G13) to

2

(G14)

[+(t)]T=p (tt) '+ Ix(o)
I
'r(1 —a» ['p(t)]T=p (it) ' Ix(o)

I
'r(1+a» (G15)

which are precisely the asymptotic forms of P(t) and P(t) used in Eq. (5.9) of OT for the analysis of the edge anomalies
at T=O.

APPENDIX H: POWER-SERIES FORMS FOR A (/) AND Ip(t} AND THE DERIVATION
OF THEIR ANALYTICAL EXPRESSIONS

Using the expression (6.12) for A(t+o, t+p), the integrals over the tiine variables in Eqs. (5.14) and (5.17) are now
straightforward. In the following, the symbol x is used in place of e

(Hl)

All the summations over the integer variables, such as g, are to be understood to run from zero to infinity.
From Eq. (5.17) we find

F(t+cr, t+v)=5(o r) ,'n. Ta x—g e—xp[ m—T(1+a+2m)o—]
m, n, l

+ [~(x)lm, l I[1—4(x)l 'It,.exp[ —~T(1—a+2n)'r], (H2)

where

(1+a/2)
[A(x )]. „=x

2
(1—a/2)„

n

2
CXx", [L(x)] „=— xg [A,(x)),„.
4 +7+1 (H3)

Ix(o) I'r 1 —— "-x'"s,( ),x
2

Substituting (H2) into Eqs. (5.14) and using the expressions (6.11) for %(t) and 4(t), we find
1 —a '2

A(t)=inst —,'n.Ta xSi(x), Ip(t)=—Npw
l

(H4)
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where

S((x)= g [A(x)] )I[I—L(x)] 'I) „, S~(x)=g(1+1)[A(x)]0)I[I—L(x)]
m, n, r

From (H3), the explicit form of S)(x) is obtained as

S&(x)=g[(m(,mz)x ' '+( —~a x)(m), m2, m3, mq)x
fm)

+(——,'a'x)'(m, , . . . , m, )x
'+" ' '+. . . ], (H6)

where

1 1 1 1
(m, ,mz)=(+)~, ( —)~, (m), . . . , m, )=(+)~ ( —)~, (+)~, 34, ( —~, (H7)

with

(1+a/2)
( ) m!

1 1 k=0, 1,2 .
(1,2)k m)+m2+k '

For S2(x) we have

(H8)

S2(x)=g[(m()x '+( —~a x)(m(, m2, m3)x
(m)

+ ( —4a x) (m), .', m5)x ' '+ ],
with

(m))=( —), ,

(mi mzm3)=( —)- (+)- 23 (-)-31 1
(H 10)

A slightly different form arises in Sz(x) because of the presence of the factor [A,(x)]0 ( in place of [A(x)] ( in (H5).
Now we show that

S)(x)= 1/(1 —x), S2(x)=(1—x) '+

If (Hll) is established, substitution of (Hll} into (H4) leads immediately to Eqs. (6.14} and (6.15} [note that
Re(iq )= mT(5o/n) = ——,'m. Ta by Eq. (6.—7)]. The proof for S)(x) is given here. That for S2(x) is performed analo-
gously if the several key relations summarized at the end are employed.

The Taylor expansion of (H6) for S)(x) is a little involved: The term of O(x ) comes from the first term of (H6), that
of O(x) from the first two terms, etc. Let us denote the coefficients of l,x,x, . . . , of S) as shown in Table I. S) is
then written as

S (x) y( )+ y( )+

with

&2 (n)

2
y(1) + y(2)+

2
2

Xn-2+ '''+

'2
00

y(2)+ a y(&) 2+. . . y ~ n

n=0

2
y(n)

0

(H12)

(H13)

The following key relation exists between the two neighboring columns of Table I:
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TABLE I. Definition of gI"' used in (H12) for S~(x). The quantities (m~, m2), etc., are defined by
(H7). If (m1), (m1, m2, m3), (m 1, . . . , m5), etc. , defined by (810), are used in place of
(m~, m2), (m~, . . . , m4), etc., respectively, with an appropriate change of the constraint for, say, g m;
to that for g m;, this table defines gI" for Sz(x) used in (H30).

(0) (1) (2) (3)

(1) (2) (3)

(2) (3)

(3)
0

(m&, m2)
2

g m,. =o

(m), m, )

(m), . . . , m4)
4

2

g m,.=2
i=1

(m), m2)

(m1, . . . , m, ) ~ ~ ~

m. =0

CX(n) ~(n —1) (n) ~ (n)
l —M~l —i +al + al —i ~ (H14)

with

(n)
an

1
(m &,m2, m3, mg)

Nf ~ =n —2

1 1

(m2+1)(m3+1) (m3+1)(m4+1)

(H15)

ap ——1.(n)

(m„m2, m3, m4)=(m) —1, m2, m3, m4)a)

=(m(, m2 —1, m3, m4)ap, (H16)

The first of (H15), a„'"'=0, is easily checked by a direct
calculation of g„'"' and g„'"

&

' using the definition of
gI"' given in Table I. The last of (H15) holds due to the
restriction gm;=0. If the relation (H14) holds, we then
have, from (H13), A„=A„~—— ——1, i.e., the relation
(H 1 1) follows.

Our aim is thus to prove (H14) with (H15). The proof
for I =n —1 is given below, since it is easily extended to
general l. By definition, it holds that

m3 + a/2 (2,3)o(3,4)o

(2, 3)i(3,4) i

2
m4 —a/2 (3,4)o

mg (3,4))

(1,2) ~, etc. , being given by (H7). For gm;= n —1, (H16)
relates g„'"'

&
with g„'" 2". When m& ——0, for example,

the term (m~ —1, mz, m3, m4)a~ loses its meaning. These
cases are discussed later.

Let us define p&, . . . , p& by

PT )
pi =pi(m i, . . . , m4) =

(1,2)o

with

1
p2 ——p2(m), . . . , m4)=m2

(1,2)o

1

(»3)o

m ) +a/2 (1,2)o

mi (1,2)i
—1 1

P3 ——P3(m&, . . . , m4)=m3
(2 3)

+
(3 4)

(H18)

a/2 ( 1 2)o(2 3)o

m2 (1,2))(2,3))
(H17) and

1
p4 ——p4(m~, . . . , m4)=m4

(3~4)o
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pi ——pi(mi+1, mz, m3, m4),

pz ——pz(m i, mz+1, m3ym4) (H19)

E 1
p, (0,0,mz, m4) = lim

@~0E'+ 6' 2
(H20)

When, e.g., mi ——mz ——0, the definition of (H18) for pi
and pz breaks down. In these cases we define p; by taking
the limit of (H18). For example (m &m4&0),

pz(0, 0,m3, m4) =lim e
e~o

1 1

6'+ E' 6+Pl 3

With these I p; I and Ip I, it holds that

1

2

«) pi+pz+p3+p4=1
(1,2)i (1,2)i(2, 3)i (2, 3)i(3,4)i (3,4)i
(,2)z (1,2)z(2, 3)z (2, 3)z(3,4)z (3,4)z

(1,2)i, (1,2)i(2, 3) i (2,3) i(3,4) i
(C) pl —pz +pz

(m )+ 1)(1,2)z (mz+ 1)(1,2)z(2, 3)z (mz+ 1)(2,3)z(3,4)z

(3,4))

(m4+ 1)(3,4)z

(H21)

They are confirmed by direct substitution. By condition (A) as combined with (H16), it holds that

(mi, . . . , m4) =(mi —1, mz, m3, m4)a&p|+(m„mz —1, m3 m4)azpz+ (H22)

When, e.g., m i ——0, the first term with ( —l, mz, mz, m4) loses its meaning. In such cases, the decomposition is revised as
follows: For example (m3m4&0),

(0,0, m3, m4) =(0,0,mz, m4)pi+(0, 0,mz, m&)pz+(0, 0, m3 —1, m4)a3p3+(0, 0,mz, m4 —1)a4pq . (H23)

It is checked that the coefficient of 0(a/2) thereof vanishes by condition (B) of (H21) and that of 0((a/2) ) is equal to
unity by condition (C). Calculating the coefficient of a /4 of (H24), we then find that (H24) equals

cx 1 1 11+ + (m'i, mz, m3, mz) .
4 (m i+1)(mz+1) (m&+1)(mz+1) (m3+1)(m4+1)

(H25)

Namely, when (m i, . . . , m4) has no zeros, we use (H22), and when there are a number of zeros, we replace the terms
containing —1 in (H22) by the original (m 1, . . . , m4) times p;.

Suppose that we have already carried out the decomposition of all the terms in g'„"',. The result is composed of a
number of terms, which are divided into two groups: group I, consisting of the terms involved in g'„" z

' (apart from
the m;-dependent constant), and the rest, called group II. In the example of (H22), the last two terms belong to group I
and the first two to group II. Group I gives g„'" z"+ (a / )a„'"'z, and group II gives a„'"' i, as proved in what follows.

Let us first consider the terms in group I. There are, altogether, four ways in which (m'i, . . . , m4) (with
gm =n —2) arises by the decomposition mentioned above; from (m i+1,mz, m3, m4), from (mi, mz+1, m3 m4),
etc. After the decomposition, therefore, g„'"'

i carries the factor (m i, . . . , m 4) in the following form:

mi+1+a/2 (1',2')i, mz+1 —a/2 (1',2')~(2', 3')~
p& +p' . . . , + (m', ,m', m', m' ) . (H24)m)+1 7 2 m2+1

Considering all the terms in g„" z
', we have

CX

(H26)

with a„'"'z just given by (H15). The first and third terms
of (H14) thus arise here.

We next examine I, which represents collectively the
contributions of group II in the decomposition. They
come from (mi, . . . , m4)(g m;=n —1), which has at
least one zero. As an example of the term containing one
zero (called the one-zero term), consider (O, mz, mz m4)
with mzm3mq&0. Its contribution to X is
(O, mz, m3 m4)pi by our rule of decomposition, which is
actually zero because of pi(O, mz, m3, m4) =0 from (H18).
The same holds true for the other one-zero terms, showing
that the one-zero terms do not contribute to X. Consider

(0,0,m3 m4)(p&+pz)=(0, 0,m3 m4) .

The sum of the three two-zero terms then leads to

(H27)

m;+0
m ) +m2 =1l —1

[(0,0,m i, mz ) —(m i,0,0,mz)+ (m |,mz, 0,0)] .

(H28)

I

next two-zero terms. There are two kinds of them, de-
pending on the position of zeros. Two zeros of the first
kind occupy separate positions such as (O, mz, m3, 0) or
(mt, O, m3, 0), etc. They again contribute nothing because
p i ——p4 ——0 for (0,m z, m &,0) and pz ——p4 ——0 for
(mi, O, m3, 0). The other terms of the first kind may be
treated similarly. The terms belonging to the second kind
are those which have zeros occupying two neighboring po-
sitions such as (0,0,m3, m4, ). The contribution to X from
this example is, by (H20) and (H23),
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The terms with more than two zeros are treated similarly.
We find that their contributions to X amount to removing
the restriction m;&0 in (H28). By rewriting each term of
(H28) in terms of (m ~,m2), we find

, +m, =n —1

1
(m), mz)

(m, +1)(m, +1) ' (H29)

which is a„'"'2 defined by (H15). With (H26) and (H29),
our proof for I=n —1 of (H14) is completed. Hence,
(Hl 1) for S&(x) follows.

The proof for S2(x) proceeds similarly. Using (H9), we
'

define gt"' for S2(x) as in Table I. The key relation be-
tween gI"' is (a„'"'=0, izo"'=1)

2

Xl Xl —1 + hatt + &I —I
(n) (n —1) + (n) & (n)

4
(H30)

with new at'"' defined below. In the Taylor expansion,
S2(x)=g&„x", the relation (H13), which still holds for
Sq(x), yields

n —a
A

n
n—

(1—a)„
nf

(H31)

Thus (H30) leads to (Hl 1). To prove (H30) for 1 =n —2,
conditions (A), (B), and (C) given for S~(x) by (H21) are
replaced by the following ones for five p s [we need five
p;, because gt"' with l =n —2 involves (m ~, . . . , m q )j,

5

(A) gp;=1,
i=1

(1,2)( (1,2))(2,3)),(4,5))
(1,2)2 (1,2)2(2, 3)2 (4,5)2

(1,2)~ (1,2)&(2,3)& (4, 5)&

(H32)

If the I p; I are found, the proof of (H30) may be performed in exactly the same way as S& (x). Now the I p; I are found to
be

m &(1,2)& m2(1, 2), m3(3, 4)
& mq(3, 4) ~

Pl
( 1 2)

w P2
( 1 2)

0 P3 (3 4) P4 (3 4)
I Ps

In terms of (H32), the validity of (H30) is confirmed with

m2+m3+1
(m~, m2, m3)

m&+1 (m2+1)(m3+1) n

m5

(n)
&n —3=

m ~ =n —3l

] m2+m3+1 m4+m5+1
m t + 1 (m2+ l)(m3+ 1). (m4+ 1)(ms+ 1) n

(H34)

wtth (m ltm2&m3)~ (m1~ ~, m5), e«., defined by (H10). The proof of (H30) for the other I can be performed similarly.
Thus we obtain (Hl 1).
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