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The R matrix of Wigner and Eisenbud has been widely used in nuclear scattering theory and in
the theory of electron scattering by atoms and molecules. To consider problems in solid-state or sur-

face physics, where atoms are in complex environments, this theory must be put into a form that is
valid for volumes enclosed by surfaces of arbitrary shape. A variational principle for an A operator
in general geometry is derived. This operator relates function values to normal derivatives on a sur-

face X of a closed volume 0 inside which the function satisfies Schrodinger's equation. Using a
spherically averaged potential function, the 9' operator for a Wigner-Seitz atomic cell can be com-

puted from solutions of the local radial Schrodinger equation. Formulas that eliminate a common
interface between adjacent cells are derived. With these methods, calculations carried out in modu-

lar subcells can be extended to larger structures. For regular solids, it is shown that periodic boun-

dary conditions applied to functions and normal derivatives at the surface of a translational unit cell
lead to a secular determinant expressed in terms of the A operator for the unit cell, whose zeros
determine energy-band structure.

I. INTRODUCTION

The derivative matrix or R matrix of Wigner and
Eisenbud' is defined as the matrix that transforms first
derivatives into function values at a boundary point, for
solutions of coupled ordinary second-order differential
equations. For functions of a radial variable r, the defin-
ing equation at ro is

Here fz, (r) is the solution s in channel p of the coupled
equations, and R~ is the R matrix. Developed for elec-
tron scattering calculations by Burke and collaborators,
R-matrix theory has been used for many calculations of
electron scattering by atoms and molecules. The existing
theory has been used to couple a local variational calcula-
tion, inside a spherical boundary, to solutions of the dif-
ferential equations appropriate to an external vacuum.
The generalizations considered here convert this to a
theory suitable for cellular models of condensed matter or
of impurity or surface environments.

The concept underlying the theory is that Schrodinger's
equation is to be solved in a strictly delimited closed
volume 0, to obtain information sufficient to match at
the enclosing surface X to external whve functions. In
this way, solution of the Schrodinger equation in the inte-
rior of 0 is decoupled from the external environment.
Different computational techniques or different physical
models can be used in the two regions. Adjacent cells can

, be joined, by eliminating a common interface, to build up
complex clusters from modular calculations carried out
independently for physically distinct cells.

The required information on surface X is embodied in
an A' operator, the linear operator that produces function
values on X when acting on normal derivatives at this sur-
face, for functions that are solutions of the Schrodinger

equation throughout the enclosed volume Q.
A stationary variational principle for the A' operator is

derived here. Using this variational principle, the 9P
operator is constructed by combining matrix elements of a
modified Hamiltonian operator, in a basis of linearly in-
dependent functions defined in the volume 0, with the
values of these basis functions on the enclosing surface X.
Calculating the A' operator should be no more difficult
than variational solution of the Schrodinger equation with
specified boundary conditions.

To show how this theory might be used in practice, a
cellular model based on Wigner-Seitz polyhedra is con-
sidered here. In muffin-tin and atomic sphere approxima-
tions, . it is assumed that a spherically averaged potential
V(r) is valid in the neighborhood of each atom in a solid.
If it is assumed that this V(r) is valid throughout the lo-
cal Wigner-Seitz cell 0, the A' operator on the cell surface
X can be evaluated by computing a surface integral over
X. This development is extended to a polyatomic transla-
tional unit cell by deriving equations for concatenating A
operators for adjacent subcells. Hence the A operator for
a translational unit cell can be constructed from those
computed for constituent atomic cells. Periodicity condi-
tions for a regular lattice can be expressed in terms of the

operator for a translational unit cell. A secular deter-
minant is defined whose value must vanish. This condi-
tion determines energy-band structure.

II. VARIATIONAL PRINCIPLE
FOR THE A OPERATOR

Consider a volume 0 enclosed by a surface X. Using
the one-electron Schrodinger Hamiltonian h, defined
throughout 0, at energy e, define the volume integral

:-=f g'(h E)fdr— (2)

=a ——,
' f y'v„ydr,
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where g is a trial wave function and V„g is its outward
normal derivative at X. From Eqs. (2) and (3),

A = f [—, Vf' V g+ g'( V e)—g]dr,

1(=A'g on X .

When g is specified, the boundary integral

Ai ———,
' f g'g'dX (10)

such that the matrix

Aab f T a ~ b+ a ~ ~ b (5)

is Hermitian in any representation basis, if the potential
function Vis real.

If f and V„f are given on the enclosing surface X, the
9P operator is defined by

$(1)= f 9F(1,2)V„Q(2)dX2, (6)

which will be symbolized here by

P=AV„P .

Considering the function g as given on X, boundary con-
ditions that determine a solution of the Schrodinger equa-
tion throughout Q are

V„g=g, on X,
or, given A',

A=Ai ——Ai .

Infinitesimal variations of f about an exact solution give

5A= Re 2 f 5$*(h e)gd—r+ f 5g'V„gdX (12)

and

5Ai ———,
' f 5$'gdX . (13)

In analogy to the Schwinger variational principle of
scattering theory, consider the functional

[A]=AiA 'A;, (14)

which is real for any trial function. From Eqs. (12) and
(13)

is defined.
For an exact solution of the Schrodinger equation in Q,

the functional:- of Eq. (2) must vanish, which implies
that A] and A are equal, and because A is real,

5[A]=[A]Re Ai ' f 5g*gdX A' f —5$'V„gdX+2 f 5$'(h e)gdr— (15)

From Eq. (11), for variations about an exact solution, Eq.
(15) reduces to

A bcb (a
I k)x ail a

b

(21)

5[A]= Re f 5$'(g V„g)dX—

—2 f 5$'(h e)gdr— (16)

where

I
k)x= f 0:kdX .

Hence, explicitly,

(22)

Since variations of P are unconstrained throughout Q and
on X, Eq. (16) implies the variational theorem: 5[A]=0
if and only if

(i) (h —e)/=0 in Q,

(ii) V„g=g on X .
(17)

Equations (17) implicitly determine an A' operator. To
make this explicit, introduce a basis IP, ] of functions
that are linearly independent in Q. Then

0= g4'aca

cb ———,
' g [A ']b, (a

I g)x, all b . (23)

[A]=A =Ai ——Ai

= —' 2 Q (k I
&)x[A '].b(b

I C)x .

(24)

(25)

In terms of the A' operator, Eq. (10) is

A) ———, *1 12 2 X2 X).
Comparison with Eq. (25) indicates that

(26)

When these values are substituted into Eqs. (4), (10), and
(14), it turns out that

A'(1, 2)= —,
' g g P, ( l)[A '],blab(2),

a b

(27)

or, integrating 'by parts and using Eq. (5),

(20)

When expressed in this basis, if 5[A] vanishes, Eq. (16)
implies

g f p', (h e)kbdrcb ———,
' f p—', g —QV„pbcb dX,

Q X

which must hold for all points 1,2 on surface X, because
the function g is arbitrary.

Equation (27) is the principal result of the present pa-
per. Because [A] is stationary and the surface function g
is arbitrary, the A' operator itself is stationary. It is evi-
dently real and symmetric. The basis functions IP, I are
required only to be linearly independent in Q. In fact, re-



4232 R. K. NESBET 30

quiring orthonormality through a fixed boundary condi-
tion on X imposes a lack of completeness with respect to
determining the A operator. Equation (27) is familiar in

electron-atom scattering theory, ' but in a slightly dif-
ferent form, since radial basis functions are multiplied by
r for use in spherical polar coordinates. This r multipli-
cation modifies the apparent boundary term in Eqs. (3)
and (16) and introduces the factor ro in the standard defi-
nition of the R matrix, Eq. (I). The present derivation is
independent of choice of coordinate system.

III. CONCATENATION OF ADJACENT CELLS

If Q3 is contained within Q1, sharing a common outer
boundary X2 with outward normal vectors pointing in the
same direction, similar equations can be derived. Equa-
tions differ in the two cases only by sign changes due to
the different definitions of outward normal. This process
could be used, for example, to eliminate the common sec-
tor of two overlapping atomic spheres.

The operator inverse required in Eqs. (32) ean be
represented as a matrix inverse in a local basis of surface
functions on X2. Appropriate surface basis functions
might be projections of spherical harmonics or finite ele-
ments.

As applied to ordinary differential equations with a
progressive independent variable r, an E. matrix at ro can
be propagated to successive coordinate values r j,r2, . . . .
As shown by Light and Walker, this can be done by con-
sidering two-sided R matrices appropriate to the succes-
sive coordinate intervals. Adjacent intervals are con-
catenated by eliminating reference to functions of the
shared intermediate coordinate value. This procedure is
generalized here for adjacent cells of arbitrary geometrical
shape.

Consider adjacent cells Q1 (surface X1 plus X +) and Q3

(surface X3 plus X ), where X + and X refer to the

common interface of Q1 and Q3, but with outward normal
directed oppositely in the two cases. The defining equa-
tions for the A operator are

41= f ~11V.1t1dX1+ f ~12+V.42+dX2+

$2 ——f A'+, V„$1dX,+ f A' + +V„g dX

Vn'(t'2 —= Vn't('2+

if follows that

f (~2+2++~2 2 )V &2+dX2--

(29)

g2= f A, ,V„g,dX, + f O', , V„P, dX,

Q3 ——f ~33V„$3dX3+ f %32 V„Q2 dX

The two equations for $2 can be combined to give an
integral equation for V„$2. Using

IV. ATOMIC-SPHERE MODEL
FOR A SIGNER-SEITZ CELL

f1~(r) =$1(r)I'1~(8,p), (33)

where $1(r) is a radial wave function at a given energy.
Normalization in the present theory is arbitrary, since
boundary conditions are not imposed except by requiring
regularity at r =0.

The surface X of Q can be subdivided into facets
X~,Xp, . . . . Functions on a particular facet X~ can be
represented in terms of displacements from the equivalent
sphere S of radius s. Since the Wigner-Seitz cell is con-
vex, each point on X is uniquely defined by polar coordi-
nates (8,$) about the atomic center. Radial displacement
of a point on X is defined by

Consider a potential function V(r), spherically averaged
about a given atom. This is a working assumption in
several standard methods of energy-band theory. In par-
ticular, in the atomic-sphere approximation, as in the
original cellular method, this averaged potential is as-
sumed to be valid throughout an atomic sphere whose
volume equals that of the local Wigner-Seitz cell. It will

be shown here that the A' operator for the Wigner-Seitz
cell can be computed directly from the radial wave func-
tions of this model.

Consider a Wigner-Seitz cell Q and the local atomic
sphere S of equal volume. Given the spherically averaged
potential V(r), postulated to be valid throughout Q, the
Schrodinger eigenfunctions are of the form

= —f A' +,V„$11X1+f A2 3V„Q2dX3 (30) r (8,$)=s+M (8,$),

Assuming that the linear operator A'2+ ++A' is non-

singular, its inverse is defined and Eqs. (28) reduce to the
form

41 f ~11V 4ldX1+ f ~13V P3dX3
(3 I)

1)'3= f ~31V.41d»+ f ~33V.AdX3

where

12+ 2+2+ 2 2 2+1

—1

12+ 2+2+ 2 2 2 3 '

(32)

and the displacement of the outward normal vector is de-
fined by

n =r(8,$)+An (8,$) . (35)

Here n~ is constant for a given plane facet X . At any
point on X~, the value of f~ is given directly by Eq. (33),
and the normal gradient V„ f~~ is easily computed in
terms of the radial and transverse components of n

Since the functions f~~(r) are local solutions of the
Schrodinger equation, matrix elements defined by Eq. (5)
reduce to a surface term. In general, as in Eqs. (2) and
(3),

f p*, (h e)pbdr=A—,b
——,

' f Q, V„$1,dX .(A' +2++%2 2 )

(A'2+2++%2 2 ) Hence, for the functions f~ (r),

(36)
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1 fi V. fi (37)

Using Eqs. (34) and (35), the required integral can be
represented for each facet as an integral in polar coordi-
nates (9,$). Given values of the matrix elements, Eq.
(37), and values of f~ evaluated on X, the A operator is
given by Eq. (27) in the form

minant of Eq. (43) vanishes.
It should be noted that, because the equations refer only

to a half-surface, the number of algebraic equations de-
rived from Eq. (43) in a basis representation is equal to
the number of unknown coefficients. Hence the algebraic
equations are nonsingular except for specific choices of
k(e).

~(1»)= 2 g g firn(1)[A 'llm, l'm'f&*m (2) .
l, m I', m'

(38)
VI. DISCUSSION

for points (1,2) on X.

V. PERIODIC BOUNDARY CONDITIONS

Consider a polyhedral translational unit cell 0, enclosed
by surface X and assume that the A operator is known.
Translational invariance requires that X should consist of
sets of paired facets that displace into each other. A par-
ticular pair of facets X~,XB can be labeled such that points
on X& are obtained from matched points on X by transla-
tion vector ~ p. At a given one-electron energy e and
wave vector k(e), the translation conditions on periodic
wave functions are

f(P) =e' "' f(a),
V„f(P) = —e' '

V„f(a),
(39)

(40)

f(A)=e '"''f(8)
= f e ' '[~B~ ~BBe' "' ]V,f(A')dXg.

(42)

Here 8 denotes a point on half-surface XB, matched to
point A, and similarly for 8' and A'. Consistency be-
tween Eqs. (41) and (42) requires

[~AH' ~AB'e e ~BA'

(43)+e '"''ABBe'"' '] V f(A')dXA =0
for all points on X~.

This integral equation can be converted to algebraic
equations by expanding functions and operators in a basis
of surface functions or finite elements. The vector k(e) is
to be chosen so that the determinant of these algebraic
equations is zero. This determines V„f on half-surface
X~, except for normalization. Then V„f is determined on
XB by translation, and the surface values of f are deter-
mined by the A'-operator equations. Thus a full solution
of the periodic potential problem is obtained, except for
normalization, if k(e) is chosen so that the secular deter-

for matched points a,p and translation vector r~~.
If the enclosing surface is divided into two half-surfaces

A (all facets X ) and 8 (all facets XB), then the combina-
tion of A-operator definition and translation conditions
gives two distinct expressions for f(A ), evaluated at some
point of half-surface Xz,

f(A)= f [~„~,Be'"' ]V.f(A')dX~, (41)

This paper has presented a development of the R-
matrix theory that is intended to open up new applica-
tions of this theory to studies of electrons in complex en-
vironments, relevant to solid-state and surface physics. A
variational principle has been derived for an A operator
appropriate to any closed volume Q with enclosing sur-
face X. The variational principle gives a stationary ex-
pression for the A' operator, expressed in terms of basis
functions required only to be linearly independent in Q.

Equations required to concatenate adjacent volume cells
have been derived, making it possible to build up the A'
operator for a complex cluster from A' operators for
simpler subcells. To illustrate use of this methodology,
the 9F operator for a Wigner-Seitz atomic cell is derived,
assuming that a spherically averaged potential function is
valid within the ce11. Periodic boundary conditions, in
conjunction with the defining equations of the % operator
for a translational unit cell, lead to a secular determinant
condition that determines energy-band structure of a
periodic solid.

The development given here, valid for Wigner-Seitz
polyhedra, in principle solves the problem of overlapping
spheres inherent in the atomic-sphere approximation. The
further step of incorporating nonspherical terms in the lo-
cal potential is straightforward. If nonspherical effects
are relatively small, the eigenfunctions f~m of a spherical
potential can be used as variational basis functions. From
Eqs. (5) and (27), only incremental matrix elements
(lm

~

b, V
~

l'm')n have to be computed, where hV is the
nonspherical potential and 0 is a signer-Seitz cell. In-
tegrals (lm

~

b, V
~

I'm')s over the equivalent. local sphere
reduce to sums of radial integrals multiplied by vector-
coupling coefficients. The difference between the required
integral over Q and the corresponding integral over S can
be computed as if it were a surface integral, by use of Eqs.
(34) and (35), if M and b, n are fitted over each facet of
the signer-Seitz cell by low-order polynomials.

It is interesting to compare the present A'-operator for-
malism with the Green-function method of Inglesfield. '

Green functions for complex clusters can be built up from
those for simpler elementary cells (or for a periodic sub-
strate) by eliminating common interfaces between adjacent
cells. This method has been applied to problems in sur-
face physics.

The Green function Gii(r, r ') for a closed volume Q is
only defined when boundary conditions are specified on
the enclosing surface X. In contrast, the A operator pro-
vides a consistency condition for boundary values of g
and V„g, but does not itself depend on a specific choice of
these boundary values. The A operator computed for a
local cell Q suffices for boundary matching to any exter-
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nal wave function. Hence the A operator is modular in a
inuch stricter sense than is the corresponding Green func-
tion. In detail, the embedding potential that modifies a
local Schrodinger equation in the method of Inglesfield
depends on the external environment, while the variation-
al equations for the A' operator make no reference to this
environment.

Another apparent advantage of the present approach is
that the A' operator relates two points on the surface X,
while the Green function relates two points in the en-
closed volume Q. This reduces six coordinates to four in
general geometry, which should simplify calculations in
which these operators must be represented explicitly.

The most efficient computational implementation of
the present formalism remains to be developed. The basic
variational equations are no more complicated in principle

than those that determine a variational solution of
Schrodinger's equation with fixed boundary conditions.
While energy-dependent basis functions, regular solutions
of a radial Schrodinger equation, have been used here to
derive the % operator for a Wigner-Seitz atomic cell, an
energy-independent basis could have been used. This
would require evaluation of energy-independent volume
integrals rather than energy-dependent surface integrals,
but might be the more efficient procedure in practice.
Various computational options will be considered in ex-
ploratory calculations with the proposed methodology.
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