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The diffusion-controlled deposition of particles onto surfaces has been simulated in two and three
dimensions. The deposits generated in these simulations are substantially larger than those used in
earlier work and allow the geometric scaling relationships which characterize the surface deposits to
be more precisely determined. Several of these geometric scaling relationships are investigated in
this paper. All of our results are consistent with the idea that surface deposits generated by
diffusion-limited particle deposition have a fractal-like structure with a fractal dimensionality (D)
equal to that of clusters generated by the Witten-Sander model for diffusion-limited aggregation.
Our results are also consistent with the relationships between the cluster-size-distribution exponent

(r), the fractal dimensionality and the Euclidean dimensionality (d) [~=1+(d—1)/D) recently ob-

tained by Racz and Vicsek. Results are also presented for the way in which the size of the old-

growth —new-growth interface depends on the size of the old growth.

INTRODUCTION

The formation and properties of random fractals' are a
topic of considerable current interest which may find im-
portant applications in diverse areas such as material sci-
ence, colloid science, and biology. One of the most impor-
tant models which generates fractal structure is the
Witten-Sander (WS) model for diffusion-limited aggrega-
tion. The WS model has stimulated a considerable
amount of theoretical work " and has encouraged the
development of a number of more or less similar
models' ' including diffusion-controlled deposition on
fibers and surfaces. '

The main conclusion of our earlier work' on
diffusion-controlled deposition on fibers and surfaces was
that these processes are very similar to diffusion-
controlled deposition on a single growth site (the original
WS model) to the extent that the exponent describing the
density profile is invariant to the geometry (boundary con-
ditions} within the uncertainty of the simulations. Unfor-
tunately, the results obtained from the two-dimensional
(2D) and three-dimensional (3D) simulations seemed to be
subject to substantial uncertainty due to finite-size effects.
The results of our simulations of surface deposition have
been compared with theoretical predictions, " but more
accurate results are needed for this purpose.

In this paper we report the results obtained from a
larger-scale simulation of diffusion-controlled deposition
on surfaces in 2D and 3D systems. More accurate results
are obtained for the density profile (root-mean-square
thickness) exponents. However, the main objective of this
paper is to present results for other properties which
characterize the structure and growth of surface deposits.
In particular, the size of the old-growth —new-growth in-
terface and the cluster-size distribution are emphasized.
Other properties such as the mean height of the upper
surface of the deposit and the deviation of the height of
the upper surface from the mean and the density-'density

correlation functions are also discussed.
It is hoped that the results presented in this paper will

provide useful comparisons with theoretical results and
will contribute to the development of a better understand-
ing of diffusion-limited aggregation in general.

SIMULATION RESULTS

The procedures used to simulate diffusion-controlled
deposition on surfaces have been discussed before. No
significant modifications were made to our computer pro-
grams for the present study. The structure of clusters of
occupied lattice sites (or particles} grown using the
Witten-Sander model for diffusion-limited aggregation ex-
hibit geometric scaling relationships which are charac-
teristic of fractals and can be used to estimate an effective
fractal dimensionality (D, ) which has a value of about —',

for d =2 and about —', for d =3. Similarly, the structure
of surface deposits formed by diffusion-limited aggrega-
tion can also be described in terms of an effective fractal
dimensionality (D, ) which can also be determined from a
variety of geometric scaling relationships such as

I/(1 —d+D )
(1)

where X is some measure of the deposit thickness, X is
the mass of the deposit, and d is the Euclidean dimen-
sionality of the simulation. If Eq. (1) is taken as a defini-
tion of D„our earlier results indicated that D, =D, .

2D SIMULATIONS

In the 20 simulations particles were deposited on a
"surface" (line) of 2048 growth sites. The deposition pro-
cess was allowed to continue until the deposit had reached
a height of 400 lattice units. A typical deposit contained
about 50000 particles or occupied lattice sites and eight
such deposits were generated. These calculations were
carried out using an IBM 3081 computer.
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Cluster- (tree) size distribution

The 2D surface deposits consist of a number of natural-
ly separated clusters or "trees" (see Fig. 3 of Ref. 19).
Since the number of clusters or trees of size I [N(I)] is
small for all but very small values of I, it is convenient to
explore the cluster-size distribution by examining the total
number of clusters of size )I(NTi) as a function of I.
Figure 1 shows a plot of ln(NTI) versus ln(I) averaged
over all eight simulations; from this figure we can con-
clude that NTz-I" (v= —0.55). Additional results ob-
tained from all eight of the 20 simulations are shown in
Table I. The results given in Table I indicate that
v= —0.55+0.05. Consequently, we conclude that the
number of clusters of size I are related to I by the power
law N(I)-I ' (v=1.55+0.05).

Racz and Vicsek have deduced that the exponent w is
related to the Euclidean dimensionality d and the fractal
dimensionality (D) by

w= 1+(d—1)/D, .

Assuming that D, =D, and that D, has the value of =—',
(obtained from simulations using the WS model for d =2
and from recent theoretical results) then the predicted
value of r is 1.6, in good agreement with our results. Al-
ternatively, we can use the measured value of r to estimate
D and obtain D=(d —1)/(~ —1)=1.8+0.17. This does
not seem to be a good way of determining D since quite
accurate values of v arc needed and the cluster-size distri-
bution contains only a small part of the total information
concerning the aggregate structure.

Root-mean-square deposit thickness

In our earlier work on diffusion-limited deposition the
only quantity which was quantitatively determined was
the dependence of the root-mean-square (RMS) thickness
( T) on the number of particles (occupied lattice sites) in
the deposit (N). The results obtained indicated that T
was related to N by a limiting (N —+Do ) power-law rela-
tionship

(3)

6.5 I

5.5

5.0

C

4.0

2.50 2 4 5
in {I)

FIG. 1. This figure shows the dependence of ln(XTI ) on ln(I)
for 20 surface deposits. XTI is the total number of clusters (or
trees) with size greater than or equal to I.

In order to estimate e the dependence of T on N was
fitted assuming that

ol

T=A "N (1+8"N r ) . (5)

The same procedures have been used for the larger scale
simulations. Using Eq. (4) we find e'=1.36+0.05 and
«om Eq. (5) &"=1.55+0.1. In our earlier simulations we
found e'=1.31+0.06 and a value of 1.33 was estimated
for e" by fitting Eq. (5) to the dependence of T on N ob-
tained by averaging all of our 2D simulations. Now that
we have "better statistics" a value of e" can be obtained
from each individual simulation and the statistical uncer-
tainty (95% confidence limits) can be estimated.

The density profile in a 2D cluster grown using the WS
model can bc expressed as

p, (r, )=r, (6)

where p, (r, ) is the mean density at a distance r, from the
origin and a, is the fractal or Hausdorff codimensionality
(a, =d —D,=—, ). If the 2D surface deposits have the
same density profile

TABLE I. Values for the exponent v, which relates the number of cluster of size &I (NTI) to I.
The results were obtained by least squares fitting straight lines to the coordinates (ln(NTI), ln(I)) over
the range Il &I &I2.

—0.584
—0.537
—0.572
—0.556
—0.542
—0.562
—0.564
—0.531

—0.515
—0.602
—0.440

- —0.584
—0.456
—0.541
—0.614
—0.568

—0.550
—0.566
—0.471
—0.500
—0.534
—0.508
—0.562
—0.630

—0.514
—0.522
—0.593
—0.585
—0.510
—0.525
—0.580
—0.517

—0.630
—0.541
—0.618
—0.543
—0.577
—0.590
—0.544
—0.516

0.556+
0.015

0.540+
0.054

0.540+
0.041

0.547~
0.033

0.570+
0.034
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—a
ps("s ) =rs (7)

where p, (r, ) is the mean density at a distance r, from the
surface and as has a value of —,

' we expect to find that
T-N' where the limiting (N~ao} value for the ex-
ponent e is given by

0

e= I/(I —a, ) =1.5 . (8)

Our results seem to support the idea that u, =a, or
D, =D, .

If Eq. (8) is used to estimate a fractal dimensionality
(D, ) for the surface deposit (D, =d —I+a '), we find
D, = 1.74+0.02 (from e'} and 1.645+0.004 (from e").

-4
4

A i

5 10

FIG. 2. Dependence of the mean upper surface height (h ) on
the total number of particles deposited on a "surface" of 2048
lattice sites in 2D simulation of diffusion-limited deposition.

Upper surface properties

By "upper surface" we mean the surface which an ob-
server would see looking straight down at the deposit.
The height of the surface at any position on the surface is
either zero (the original surface with no deposit) or the
maximum height of any particle (occupied lattice site) at
that position. Figure 2 shows the dependence of ln(h)
where h is the mean height of the upper surface on ln(N).
It is apparent from Fig. 2 that ri is related to N (in the
large-N limit) by

The results shown in Fig. 2 are the average for all eight
2D simulations. The results obtained from the individual
simulations are shown in Table II. These results indicate
that the effective value of P is 1.44+0.03. Since the value
of P is not sensitive to the range of deposit sizes
(thicknesses) used to obtain P, we conclude that this value
is probably a good approximation to the limiting (N~ oo )
value. The exponent P has also been obtained by fitting
the dependence of h on N by functions of the form given
in Eqs. (3) and (4). Using these methods we obtain the re-
sults P'=1.44+0.03 and P"=1.47+0.04. Taken together
these results indicate that P = 1.45+0.05. Assuming that
P is related to the fractal dimensionality (D, ) in the same

way that e is related to D, (D, =d —1+/ '), we obtain
the estimate D, = 1.690+0.025.

The RMS deviation of the upper surface height (h)
froin the incan upper surface height (h) has also been
measured. Figure 3 indicates that the RMS upper surface
height deviation from h is related to N by

((p Ii }2)»2 (10)

for large N. The straight line in Fig. 3 has a slope of 1.28
and indicates that co=1.28. However, the curvature ap-
parent in Fig. 3 indicates that co may be substantially
larger than 1.28. Consequently, the limiting (N~00)
value of ro has been obtained by least squares fitting the
dependence of ((h —h) )'i on N by expressions of the
form shown in Eqs. (3) and (4) [((h h) )'i =A—'N
+B' and ((h —Ii) }'i =A "N" (1+B"N r )). The re-
sults obtained in this way are co'=1.32+0.08. It was not
possible to obtain co" for each individual simulation but a
value of 1.50 was obtained using the averaged data shown
in Fig. 3. These results indicate that ((h —h) )'~ and h
scale with N in the same way in the limit N~ oo. This
result is consistent with a surface deposit structure which
can be mapped onto the surface deposit structure at later
and earlier stages of growth (in a statistical sense) by a
change of length scale.

TABLE II. Values obtained for the mean upper surface height exponent (P) by least square fitting
straight lines to the coordinates (ln(A'), ln(N) ) over the range N~ & N & N2.

2D Surface
deposit size

(N,.)

53 053
49 441
52 307
49 749
54664
49 599
47 246
50283

Ni ——0.5N, x

N2 =Nmax

1.45
1.50
1.40
1.40
1.44
1.44
1.46
1.44

Ni ——0.25N, x

N2 Nmax

1.41
1.48
1.43
1.43
1.43
1.42
1.46
1.45

N) ——0. 1Nmax

2 =Nmax

1.42
1.49
1.44
1.45
1.45
1.44
1.47
1.46

Ni ——0.25Nm, x

N2 ——O. SN ax

1.42
1.43
1.51
1.43
1.44
1.45
1.40
1.46

' Avg.
50793

1.44+
0.03

1.44+
0.02

1.45+
0.02

1.44+
0.03
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FIG. 3. This figure shows how the RMS deviation of the
upper surface height [((h —h ) ) '~ ] depends on the total num-
ber of particles deposited in 2D simulations of diffusion-limited
deposition on a surface (line).

where a is the codimension (d D). In p—ractice we ex-
pect that Eq. (11) will be accurate over only a limited
range length scale with upper and lower cutoff lengths
due to lattice effects and finite-size effects, respectively.
In calculating the two-point density-density'correlation
function for the surface deposits, one of the two points in
the correlation function was confined to lattice sites
which had become occupied when the simulation was be-
tween —, and —, complete. This was done to avoid sam-

pling the anomalous" region adjacent to the original sur-
face and the outer regions of the deposit which are not
fully formed and are subject to additional growth. Table
III shows estimates obtained for a by analyzing C(r) over
various length scale ranges. The results shown in Table
III indicate that ln[C(r)] is linearly related to ln(r) over
length scales ranging from a few lattice units to about 30
lattice units, and that the exponent a has a value of

Density-density correlation function

One of the most fundamental quantities characterizing
the structure of random fractals is the density-density
correlation function. For a structure with a fractal
dimensionality of D and a Euclidean dimensionality of d
we expect to find that the density-density correlation
function C(r) depends on distance (r) according to the
power-law relationship

C(r)-r

0.38+0.02 corresponding to an effective fractal dimen-
sionality of D =1.62+0.02.

Old-growth —new-growth interface

The old-growth —new-growth interface consists of the
points of contact between particles in a deposit containing
M particles and additional particles added at a latter stage
of growth to give a total of N particles. The size of the
interface can be defined as the number of "new-growth"
particles occupying lattice sites adjacent to lattice sites oc-
cupied by "old-growth" particles. In this paper. we ex-
plore how the size of the interface (in the liinit N~oo
where the interface is saturated) depends on M and how
many old-growth particles must be added to complete half
of the old-growth —new-growth interface. The same
quantities have recently been investigated by Meakin and
Witten for diffusion-limited aggregation on a single
growth site in two and three dimensions.

Figure 4 shows the dependence of Nz (the number of
old-growth particles at the interface) on M. The results
shown in Fig. 4 are the average for all eight 2D simula-
tions. The results shown in Fig. 4 are given in the form of
a log-log plot in Fig. 5. Figure 5 indicates that in the ear-
ly stages of deposition Nl increases linearly with M but
eventually crosses over to a much slower rate of increase
(NI -M, 5=0.11). A more careful determination of the
exponent 5 by least squares fitting straight lines to the
coordinates (ln(NI), ln(M)) for each of the simulations
gives the result 5=0.161+0.032 for 0.2N &M &0.8N,„
and 5=0.166+0.033 for 0.25N &M &0.75N, „where
N,„ is the number of particles in a deposit at the end of
a simulation.

The number of particle additions needed to half satu-
rate or half complete the interface (Ni&2) has also been
measured. Figure 6 shows the dependence of Ni~2/Nl on
the number of old particles (M). The results shown in
Fig. 6 are averages for all eight simulations. Nir2/NI
starts off with a large value (inainly because NI is small)
and reaches a minimum at N-3000 (about 1.5 particles
per "surface" site). Ni~2/Nl then grows and finally levels
off and declines towards the end of the siinulation. The
final decrease in Ni&2/Nl is a result of the fact that the
growth of the interface is incomplete for M=N, „. It is
not clear from the results shown in Fig. 6 if N&~2/Nl

TABLE III. Density-density correlation-function exponents (a) obtained by least squares fitting
straight lines to the coordinates (1n[C(r)], 1n(r) ) over the range ri & r & r2.

ri ——1

rq ——50

0.377
0.415
0.403
0.413
0.420

ri =3
r2 ——30

0.362
0.394
0.380
0.390
0.389

ri =2
r2 ——10

0.359
0.385
0.362
0.361
0.367

r) ——5

r2 ——25

0.365
0.383
0.377
0.386
0.385

r) ——10
r2 ——50

0.394
0.469
0.457
0.476
0.500

Avg.
0.406+
0.021

0.383+
0.016

0.367+
0.013

0.379+
0.011

0.457+
0.028
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FIG. 4. Size of the old-growth —new-growth interface is

shown as a function of the size of the old growth during 2D
simulations of diffusion-limited deposition.

would continue to increase as the deposit size increases or
would level off at a value not much larger than 1.0.

3D SIMULATIONS

In the 3D simulations particles were deposited on a
200X200 surface until the deposit reached a maximum

height of 100 lattice units. A typical deposit contains
about 65000 particles or occupied lattice sites. Seven

deposits were generated using a CDC Cyber 205 comput-
er.

FIG. 6. This figure shows how the ratio between the number

of added particles which half complete the old-growth —new-

growth interface and the size of the interface depend on the old

growth size during 2D simulations of diffusion-limited surface
deposition.

ject to additional systematic errors. If we assume that the
correct valuez for D is 2.5 (the results obtained from
diffusion-limited aggregation on a single growth site),
then Eq. (1) indicates that the exponent r( —(v+1}}
should have a value of 1.8. The result from our simula-

tion v =1.84+0.08 is considered to be in good agreement
with Eq. (1). If Eq. (1} is used to estimate the fractal
dimensionality, we find D =(d —1)/(~ 1)=2/(0—.84
+0.08)=2.38+0.23.

Cluster- (tree) size distribution

The cluster or tree size distribution has been investigat-
ed in three' dimensions using the same methods which
were used to analyze the 2D surface deposits. Figure 7
shows the 'dependence of ln(NTI) on ln(I) where NTI is
the total number of clusters of size )I. The slope of
—0.84 indicates that the cluster-size-distribution ex-
ponent (~) has a value of about 1.84. The results shown
in Fig. 7 are averaged over all seven of the simulations.
Table IV shows the results obtained from the individual
3D simulations. The results shown in Fig. 7 and Table IV
indicate that JTq is related to I by a power-law relation-
ship (NTI-I") where the exponent v has an effective
value of about —0.84+0.08. However, the variation in
the values obtained for v over different ranges of cluster
size is larger than would be expected from statistical un-

certainties alone, indicating that our results may be sub-

RMS deposit thickness

Assuming that the RMS deposit thickness ( T) is related
to the number of occupied lattice sites in the deposit (N)
by T-N' (in the limit N~oo), Meakin'9 estimated a
value of 1.70+0.2 for the exponent e using deposits
grown to a maximum height of 60 lattice units on a
100X100 surface. The results obtained from our new
simulation should provide a better estimate for e because
of improved statistics and a closer approach to the N~ ao

limit. Using Eq. (3) to fit the dependence of T on N, we
find that e'=1.69+0.06 (versus a value of 1.62+0.06 in
Ref. 18). Similarly, using Eq. (4} we find e"=1.79+0.10
(versus a single value of 1.816 obtained from the averaged
data in Ref. 18). Overall, our results indicate that e has a
value of about 1.75+0.15. With further increases in the
scale of the computer simulations, it is probable that our
estimates for e would approach more closely the value of
2.0, corresponding to a density profile p(r) of the form

7.0

6.5

I I I I I I I
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35/ I I I I I I i I I I I I I I

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7;5 8.0 8.5 9.0 9.5 10.010.5 11.0
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FIG. 5. This figure shows the dependence of the old-
growth —new-growth interface size (Ni) on the size of the old
growth (M) in the form of a log-log plot. Initially, Nq-M
(every old site is on the interface). At later stages in the growth
process the interface grows much more slowly as M increases.

8.5
8.0
7.5
7.0
6.5

+ 6.0
5.5
5.0
4.5
4.0
3.5
30 I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
ln ( I )

4.0 4.5 5.0 5.5 6.0

FIG. 7. The dependence of NT~ (the number of clusters of
size greater than or equal to I) on I is shown in the form of a
log-log plot.
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TABLE IV. Values for the exponent v which relates the number of clusters of size &I (XTI} to I for
3D surface deposits. The results were obtained by least squares fitting straight lines to the coordinates

(ln(XTI), ln(I)) over the range I~ &I &I2.

5
500

—0.863
—0.921
—0.826
—0.892
—0.875
—0.90S
—0.832

10
100

—0.771
—0.895
—0.763
—0.791
—0.835
—0.846
—0.923

5

50

—0.808
—0.914
—0.839
—0.808
—0.869
—0.864
—0.847

20
200-

—0.833
—0.843
—.0.793
—0.78S
—0.730
—0.820
—0.803

50
500

—0.917
—0.953
—0.856
—0.955
—0.941
—0.967
—0.818

—0.873+
0.033

—0.832+
0.058

—0.850+
0.035

0.801+
0.034

0.915+
0.052

p(r)=por ' found in Witten-Sander clusters with a frac-
tal dimensionality of 2.5. The observed effective exponent
of 1.75 can be interpreted in terms of an effective dimen-
sionality of D=2.57+0.1, which is in reasonably good
agreement with estimates of the fractal dimensionality of
3D Mitten-Sander clusters' ' ' obtained from similar
simulations in which particles are deposited on a single
growth site.

2.0

1.5

1.0
5

QO

—5

-1.0
-1.5 — ~

9.0 9.2

()
9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 1 1.0

in (N)

Upper surface properties

The height of the upper surface (see above) (h ) has been
determined during the growth of the 3D surface deposits.
Figure 8(a) shows the dependence of ln(h ) on ln(N) aver-
aged over all seven simulations. Figure 8(a) shows a
crossover from h -N (the expected behavior at low sur-
face coverage) to h -N~(/=2. 0) for large N. An expan-

sion of the upper right-hand corner of Fig. 8(a) is shown

in Fig. 8(b). The results obtained by least squares fitting

straight lines to the dependence of ln(h) on ln(N) over

various ranges of deposit size. (N) are shown in Table V.
The results shown in Table V indicate that the limiting

(N~ ao ) value for (I) is probably about 2. 1+0.1. If an ex-

pression of the form shown in Eq. (3) is used to fit the

dependence of h on N, we find /=2. 11+0.05. If an ex-

pression of the form shown in Eq. (4) is used to fit the

averaged data, we find P"=2.02. These results are in

quite good agreement with the results we would find if the

density profile in the surface deposit was the same as that
in a 3D Witten-Sander cluster with a fractal dimensionali-

ty of 2.5 (/ =2.0). If we used the result /=2. 1+0.1 to es-

timate D, for the deposit, the result is D, =2.475+0.025.
Figure 9 shows the dependence of ((h —h) )'~ on N.

Figure 9 indicates that ((h h) ) '~ -—N for small N and

((h —h) )'~ -N (co-1.7) for large N. However, be-

cause of the curvature apparent in Fig. 9, the limiting

(N~oo) value for co is probably larger than 1.7. The

dependence of ((h —h ) )'~ on N was fitted using an ex-

pression of the form ((h —h ) ) i~ =A "N" ( 1+8"N r ).
From the results averaged for all seven 3D simulations the

result is co"=1.82. Overall, our results for the upper sur-

face are consistent with the value of about 2.0 for both P
and co. These results support the idea that the surface

deposit formed by diffusion-limited aggregation is a sta-

3D
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Ic —2
—-3—
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-7

4 6 7
ln (N)
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FIG. 8. (a) shows the growth of the mean upper surface
height (A ) during 3D siinulations of diffusion-limited deposition
on a surface. The crossover from a linear to quadratic growth
with increasing X can be clearly-seen. (b) shows an expansion of
part of (a) to show the dependence of In{A ) on in{A) at large X.

ln (N)

FIG. 9. Here the dependence of the RMS deviation of the

upper surface height from the mean surface height on deposit
size is shown. The results used in this figure were taken from
seven 3D simulations.
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TABLE V. Results obtained for the mean upper surface height exponent (P) by least squares fitting
straight lines to the coordinates (1n(h), 1n(N)) over the range NI (N (NJ. N is the number of parti-
cles deposited on a 200)(200 surface in the 3D simulations.

Deposit
size (N )

67 816
54 721
75 663
68 991
68 782
55 580
67 249

Ni =o.5&max

2 ' mRx

2.04
2.18
2.04
2.06
2.09
2.02
2.07

Ni ——0.75N,„
N2 ——1.0N

2.06
2.15
2.06
2.05
2.18
2.05
2.10

Ni ——0.25N „
N2 ——0.5N,„

2.01
1.87
1.91
1.93
1.93
1.84
1.87

Avg. 65 543 2.07+
0.05

2.09+
0.05

1.91+
0.05

tistically self-similar structure with a fractal dimensionali-
ty of about 2.5 and a mean density profile of the form
p(r)-r ' (a, =0.5).

Old-growth —new-growth interface

Figure 10 shows the size of the old-growth —new-
growth interface (NI) as a function of the old-growth
mass (M). The results'shown in Fig. 10 are averaged over
all of the 3D surface deposit simulations. The interface
exponent (5) was determined for each of the deposits by
fitting straight lines to the coordinates (1n(Nr), ln(M))
over the range 20000&M &N,„—20000, where X,„ is
the maximum number of particles in the deposit. This
procedure gives the result 5=0.047+0.028.

The dependence of Ni~i/NI on the number of old-
growth particles (M) which is qualitatively similar to that
found in the 2D simulations is shown in Fig. 11. Here
NI&2 is the number of particle additions required to half
complete the interface and Xl is the size of the old-
growth —new-growth interface. The ratio X~~2/Xl at
first falls rapidly and reaches a minimum when the old
growth contains 15000—20000 particles (about 0.4 parti-
cles per surface site). The ratio NI~2/Nq seeins to ap-
proach a limiting value of about 0.80—0.85. The ap-
parent decrease in NI &2/Nl at the right-hand side of Fig.
11 results from the fact that the interface is not complete-
ly saturated towards the end of the simulation.

DISCUSSION

Except for the properties associated with the old-
growth —new-growth interface, the quantities which we
have determined for 2D and 3D surface deposits can be
directly related to the fractal-like structure of the deposits.
Our results give strong support to the idea that the struc-
ture of the random surface deposits can be described in
terms of a fractal dimensionality of about —', for d =2 and
about 2.5 for d=3. Consequently, the structure of the
surface deposits is very similar to the structure of clusters
grown by the Witten-Sander model for diffusion-limited
aggregation which have the same fractal dimensionality
(about —', for d =2 and about 2.5 for d =3).

One of the most interesting quantities which we have
measured is the cluster-size-distribution exponent (r).
The measurement of v. was motivated by the importance
of cluster-size distributions in models for critical phenom-
ena and the possibility that cluster-size distributions
may be helpful in understanding the physics of nonequili-
brium systems. ' The cluster-size distribution in sur-
face deposits has been investigated independently by Racz
and Vicsek. ' ' They derived a simple relationship be-
tween the cluster-size distribution (r) and the fractal
dimensionality D, describing .the structure of the surface
deposit [Eq. (1)]. According to Eq. (1) r should have a
value of 1.6 in 2D deposits and 1.8 in 3D deposits if
D, =D, = —, for iI =2 and D, =D, =2.5 for if =3.
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FIG. 10. This figure shows how the size of the old-
growth —new-growth interface (NI) depends on the number of
particles in the old growth. The results shown in this figure are
the average for seven 3D simulations.
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FIG. 11. The dependence of the ratio between the number of
particles needed to half complete the old-growth —new-growth
interface (Niqq) and the size of the interface (Nq) on the mass of
the old growth (M).
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From their 2D simulations Racz and Vicsek obtained the
result ~=1.35+0.1. Our result (~=1.55+0.05} obtained
from larger scale simulations is in much better agreement
with the results obtained using Eq. (1}. Similarly, in three
dimensions our value for 1.84+0.08 is in good agreement
with the value obtained from Eq. (1) assuming D, =2.5.

The dependence of the size of the old-growth —new-
growth interface (Nt ) on the number of particles (mass) in
the old-growth (M) has been investigated for 2D and 3D
Mitten-Sander clusters by Meakin and Witten. They
found that NI is related to M by a power law (Nt-M )
where the exponent 5 has a value of about 0.60 for d =2
and about 0.74 for d=3. These results are consistent
with a naive geometric interpretation in which Ni -8
or Nt -M'~ '~ '. Here R is the cluster radius. If the re-
sults of Meakin and Witten are taken at face value, we
might expect that the size of the old-growth —new-growth
interface should be independent of the mass of the old
growth (5=0) for surface deposits. Instead, we find
5=0.16 for d =2 and 5=—0.05 for d =3. The 2D and
3D surface deposits are considerably larger than the 2D
and 3D Witten-Sander clusters used to obtain the inter-

face exponent. However, the results obtained from the
surface deposits are probably subject to larger uncertain-
ties because of the large "anomalous" region near the
original surface. As a result, the dependence of In(Nt) on
ln(M) is linear over a much smaller range of deposit sizes
for the surface deposits. For the surface deposits, our re-
sults are in poor agreement with a simple mean-field
theory which leads to the prediction that

(D, —d)
2(1+D,—d)

for d =2 and —0.5 for d =3. However, our results are
consistent with the expectation that the mean-field theory
should provide a lower limit for 5.
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