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Magnetic field detrapping of polaronic electrons on films of liquid helium
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We have applied an extension of the Feynman path-integral formalism to the problem of nonin-
teracting polaronic electrons on the surface of a liquid-helium film in a perpendicularly applied
magnetic field. The ground-state energy, the Feyn~an-model mass, the magnetization, and the sus--

ceptibility of the system are calculated. We find that at a certain magnetic field value, the polaronic
electron undergoes a transition from a heavy-mass, self-trapped state to a quasifree Landau state.
This detrapping mechanism would have a dramatic effect in a cyclotron-resonance experiment.

I. INTRODUCTION
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The system of electrons on the surface of liquid helium
is a fascinating system. Because the electrons above the
surface fall into image-potential bound states relative to
motion perpendicular to the surface, at low temperatures,
the system forms an almost ideal two-dimensional (2D)
electron gas. For most areal densities achieved to date,
the system acts as a classical 2D electron gas. signer
crystallization has been observed in this system for elec-
trons on bulk helium. ' A desire to study 2D melting, re-
lated phase-diagram phenomena, and the modes of the
helium itself, has led to an interest in electrons on films of
liquid helium. Thin films allow a higher areal density of
electrons ' to be sustained on the helium surface, which is
necessary to study quantum-mechanical melting and to
allow stabilization of surface modes. ' But for thin
enough films (d & 1000 A), new, nonperturbative ("pola-
ronic") effects appear due to the strong electron-
surface (i.e., electron-ripplon) coupling due to image-
potential coupling of the electron not only to the helium
itself, but to the substrate as well. What makes this sys-
tem particularly interesting as a 2D polaron problem is
the variability of the electron-ripplon coupling (by chang-
ing the liquid-helium film thickness or the substrate).

In a previous calculation, Jackson and Platzman for-
mulated this problem (in the low-density limit
n, & 10 /cm ) as a 2D polaron problem, with the Hamil-
tonian, describing the interaction of a single electron with
the ripplon modes of the liquid-helium surface,
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In general eE& is a function of k, due to the image poten-
tial from the liquid heliuin, and is a function of e„ the
dielectric constant of the substrate. In the simplified
treatment of Ref. 5 a linearized cutoff, ripplon spectrum
was used, i.e., cot, =sk, where s =V'g'd for k &k„g' is
the van der Waals acceleration of the liquid helium, i.e.,
g'=g[1+(3c/pgd )] with c equal to the van der Waals
coupling of the helium to the substrate, g equal to the ac-
celeration of gravity, d equal to the film thickness, and
k, [=(pg'/o)' ] is the capillary constant (where p and o
are the density and surface tension of the helium, respec-
tively). An electron-ripplon coupling constant can be de-
fined,

with
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where the major contribution (for thin films) comes from
the substrate image potential. The coupling constant is
variable by changing the film thickness (in the presence of
an applied field), or by changing the underlying substrate.
On the basis of this model, using Feynman path-integral
techniques, Jackson and Platzman predicted the forma-
tion of a polaron state on the surface, characterized by a
jump in mass of the electron of at least 5 orders of magni-
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tude at a particular value of a (in the T=0 limit).
Recent measurements of Andrei appear to corroborate

this prediction. Rapid changes in the low-frequency
response have been observed at certain film thicknesses.
The experiments measure the spring constant E, charac-
terizing the coupling of an electron to ripplons, and a mo-
bility p, , measuring damping in the system, as a function
of helium film thickness d. The experimental results ap-
pear to bear out in a qualitative way the predictions of the
single-particle polaron treatment of this problem, i.e., the
order-of-magnitude changes in the restoring force (spring)
constant K, and in p (Refs. 9 and 10) are correct. The ac-
tual measured values of IC and the apparent binding ener-

gy (E~ & 1 K) indicate that other effects (perhaps
Coulomb) play a role.

This suggests the appropriateness of considering the ef-
fects of other probes of the single-particle polaronic state.
To this end we consider in this paper the effect of a mag-
netic field, applied perpendicular to the helium surface, on
the polaronic state of a 2D electron on the surface. In
earlier papers, Peeters and Devreese" investigated, for the
Frohlich polaron, the free energy of a gas of noninteract-
ing polarons in a magnetic field. Using an extension of
the Feynman path-integral formalism, they calculated the
free energy, magnetization, susceptibility, internal energy,
entropy, and specific heat for various values of electron-
phonon coupling. They extended the formalism to define
variational parameters for a mass parallel (m ) and per-
pendicular (mi) to the applied magnetic field. They
found that, in the direction perpendicular to the applied
field, the polaron transformed from a true polaron state

mi ) to an almost-free I
II
»m, —1) Landau

state. In this problem the phonon frequency was fixed
and it was what set the scale of energy in the problem. In
the electron on helium system the phonons become rip-
plons and are acousticlike. There have been previous stud-
ies' ' on the problem of the cyclotron resonance of a
2D electron on a liquid-helium surface in a magnetic
field, but most previous studies considered the case of
bulk helium (not thin films) and the case where the size of
the deformation on the surface in which the electron sits
(R~) is large compared to the magnetic length (R, ), i.e.,
Rz »R, . These studies indicated a shift up in the
cyclotron-resonance frequency co, when the deformation
of the helium was present.

In this paper we consider the thin-film case and the
case where the localization length of the particle on the
surface and the magnetic length are comparable
(Rz (R, ). We find a phase transition from strong
electron-ripplon coupling where the particle goes from a
large mass, self-trapped state to a free Landau-type elec-
tron state. This phase transition is also reflected in the
behavior of the magnetization and the susceptibility. We
discuss these results in the light of recent experiments and
their connection with previous calculations. In Sec. II we
formulate the problem of a polaronic 2D electron on the
surface of a liquid-helium film in a magnetic field. In
Sec. III we present our results and compare them with
previous results. We conclude in Sec. IV with a discus-
sion of the significance of the results and discuss experi-
mental implications.

II. POLARONIC ELECTRONS
IN A MAGNETIC FIELD

1
S, = — I drI [r(r)] +i co, [x(r)y(~) —y(r)x(r)] I2m

[we choose the symmetrical Coulomb gauge A
= —,'8( —y,x)]. In his original formulation of the polaron
problem, Feynman' used the Jensen inequality with
respect to a trial action, i.e.,

exp S Dr ~ )exp S—Sp exp Sp Dr r, 9

to derive a variational upper bound on the ground-state
energy

Eg (Ep —3 —B, (10)

where Eo (the ground-state energy of trial action), A, and
8 depend on the variational parameters of the trial action
Sp. Since the Jensen inequality was proven to hold only
for real actions, and the action S is complex, there is a
question of whether we can, in fact, perform such a varia-
tional calculation of the energy. However, in their papers
on the properties of the Frohlich polaron in a magnetic
field, Peeters and Devreese" presented an argument which
suggests the validity of the Feynman-Jensen inequality for
the magnetic field case, based on the Bogoliubov inequali-

16
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The Bogoliubov inequality can be derived from the Jensen
inequality [Eq. (9)] provided the Hamiltonians H and Ho
are Hermitian and local in time. Since, in the presence of
a magnetic field, H and the trial Hamiltonian Ho are
Hermitian (even though the actions S and So are com-
plex), the Jensen inequality should still hold. Even though
S and Sp in the Jensen inequality are nonlocal in time,
they are derived from Hamiltonians which, before elim-
ination of the ripplon variables, are local in time.

Assuming then that the Jensen inequality holds in this
instance, we choose as a trial Hamiltonian

2
/t

p+ —A + M+ —,
' K(r —r ') . (l2)
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1
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This allows us to define the usual Feynman variational
parameters U, w in terms of K and M [i.e.,

For a polaronic electron in a magnetic field B, perpen-
dicular to the electron layer, the Hamiltonian becomes"

'2
1 e-H= p+ —A + ga a ficok+U

2m c k k
k

[where U is given in Eq. (2)], with resultant action (after
elimination of the ripplon coordinates),

S=S,+S, ,

where SI is the usual electron-ripplon interaction piece of
the action and
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u /w =(M+m)/m, X/m=v —w ]. The trial Hamil-
tonian in diagonalized form is 0.6

~ .f.Hp ——g fis;(c; c;+—, ) (13)

with the eigenfrequencies s; determined by" [ro,
=(eB/mc)]

s;(s; —v )+(—1) co, (s; —w )=0.2 2 i 2 2
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FIG. 1. Energy of polaronic electron vs magnetic field (in
units of Pic@0 flak, /2m——) for a= 1 (solid lines represent the
stable phase).

and

A= I dr I dkkIQ(k)I e e " " (18)

20!
p =1+

(1+g)' (21)

3

D(r)= g d;(1—e '
) . - (19) and where

For co, ~O, the above expression reduces to the expression
for the ground-state energy given in Eqs. (6) and (7) of
Jackson and Platzman. We now minimize the expression
for E with respect to the variational parameters u, w for
various values of the magnetic field to determine the mass
mp ——v /w of the Feynman polaron model, the magneti-
zation M, and the susceptibility X. We again find that for
thin films a good approximation to the ripplon dispersion
relation is rok =sk for 1 (k, .

III. RESULTS AND DISCUSSION

For co, =0, we reproduce the zero magnetic field results
of Jackson and Platzman and others where, for a = —,',
there is a sudden jump in the mass of 5 orders of magni-
tude, i.e., mp/m =10 . For finite magnetic field co,&0,
our results are summarized in Figs. 1—5. The results for
the energy, the magnetization, and the susceptibility are
referred to the respective results for a free electron in a
magnetic field, i.e., &E=E fuu, /2. For a ( —,

' and-
co& /cop ((ri, the ground-state energy (in units of IIcop) is

sk, =2.5 ~ 10-' (22)
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is the adiabaticity parameter noted in previous work.
The first term in Eq. (20b) is the energy shift due to
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where m*/m (the model effective mass) is given by

(20b)

FIG. 2. Effective mass vs magnetic field (sohd lines represent
the stable phase).
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FIG. 3. Magnetization vs magnetic field (solid lines represent

the stable phase).
FIG. 5. Value of magnetic field needed to cause detrapping

vs electron-ripplon coupling constant.

electron-ripplon interaction and the second term is the en-

ergy of a particle in the lowest Landau level modified by
the mass renormalization due to ripplons. Yt is interesting
to note the inset in Fig. 2 for a =0.3, where m 0
[=(U/w) ] becomes mo ——1 at co, /coo ——g=2. 5X10 3. So
for small values of electron-ripplon coupling the adiabati-
city parameter (or ripplon frequency) sets the energy scale,
as found in the zero magnetic field case. In Figs. 1—4,
we have performed our variational calculation for an
electron-ripplon coupling value that is above the zero-field
self-trapping value, i.e., a= l. We find that at a certain
value of the magnetic field strength, co, /coo ——0.37, we
have a transition from a self-trapped to a free-electron
state (note that %coo——flak, /2m). This transition appears
in all the calculated quantities, ground-state energy E,

ci

C l.25

N lO

e
I.OO

O

Feynman-model mass u /w, but especially the magneti-
zation M = —BbEIB(co,/coo) and the susceptibility
X= —8 KEIR(co, /coo), where b,E=E (R/2)co, (M—and
X are defined in units of 2pb ——eR/mc and 4p~/iricoo,
respectively). For a 100 A film this occurs at a magnetic
field 8= 1 ko. In Fig. 5 we plot the value of the magnet-
ic field strength necessary to cause the first-order transi-
tion versus electron-ripplon coupling constant. Note that
since

(eEi )

8m.o.
iri k

2m
(4b)

the value of the inagnetic field where the transition occurs
is a function of film thickness d, since Ei depends on d.

Figures 1—4 indicate a transition from a strongly cou-
pled self-trapped state to a "quasi free" state at
co, =0.37coo for a= 1. In the strong-coupling regime
(a= 1), the electron moves in a self-induced ripplon po-
tential well with a characteristic energy proportional to
a(flak, /Zm) (which is essentially the binding energy of
the self-trapped state). When the energy of the oscillatory
motion imposed by the magnetic field approximately
equals the self-trapping energy, we expect the self-
trapping mechanism to break down. Looking at Eq. (17)
for the energy, we see for the case u =w (quasifree state),

Kl
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FIG. 4. Suseeptibi1ity vs magnetic field (solid lines represent
the stable phase).

Therefore for co, /coo~&1,

(26)
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2
a ~pM=—
2 coc

'3
COp
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(28)

while for q «co, /coo « 1, we get

b,E= —aco, /coo,

M=a,
X=0,

(29)

(30)

(31)

where the maximum in 7 occurs when co, = —,~o. These
results all agree well with Figs. 1—4. Here the energy
scale is clearly set by the magnetic energy co„although
there is a lowering of the energy due to ripplon effects
(i.e., the —a term). In the usual self-trapping limit
v &&w, we find, as usual,

G g Aqsh(qd )

C= g A~sh(qd)
q

co e/p

(E+Kq m—co )2+
p

E —Dl CO
2

q

(E+E —mco ) +

2

2

(34)
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behavior indicates is the existence of a self-trapping (or
detrapping) transition in an ideal polaron gas (gas of
noninteracting polarons).

A more reasonable way to look at the polaronic transi-
tion is in terms of the effective coupling in the Feynman
model K/m =u —w . This is, in fact, one of the param-
eters measured by Andrei. She extracted it and a mobili-
ty, in the polaron regime, from expressions for the capaci-
tance C and dissipation 6 in a capacitance bridge when a
time-dependent electric field was applied parallel to the
electron layer. She found

EsT ——au(——1 —e )
V —1/u

2

1 — u(1 —e '~")
~p Nl pg

/

2
Coc' . —,

' —a & —e-"" 1+—
8v V

L

where EsT and u are in units of coo. In the extreme
strong-coupling limit (a~ ao } we have

2
COc COc

EsT ———a+ +2' p 8v
(33)

The first term in Eq. (33) is the ground-state energy in the
limit a~ ao without a magnetic field, the second term is
the zero-point energy of a free particle with mass
(mo ——2a/g ) in a magnetic field, and the third term is
the diamagnetic shift in the energy because the electron is
bound in a potential well with characteristic frequency u.

Equations (23) and (32) suggest that a transition should
occur when E~F—Esr, i.e., m, =cop. We find co,
=0.37coo. There are contributions from the internal excit-
ed states in the effective potential well due to the com-
bined effects of the ripplons and the magnetic field which
are left out of the simple expressions in Eqs. (23) and (32).
We would expect these contributions to affect the exact
value of co, where the transition occurs. Nevertheless
what we are observing, roughly speaking, is the electron
going from seeing just the "polaron" well (radius equals

R& } to seeing the "magnetic" well [radius
=8,=(fi/mco, )'~ ].

As mentioned previously, in a recent experiment An-
drei observed what is believed to be the polaronic or a re-
lated transition for electrons on a thin film of liquid heli-
um. Despite evidence in her experiment that interaction
effects play a role, the fundamental ideas of the single-
particle picture appear to be correct. We can ask then,
what experimental consequences emerge from our single-
particle model of a polaronic electron in a magnetic field.
While it is generally accepted that the Feynman-model
mass is not necessarily the true particle mass, what its

where p (the mobility) is a measure of relaxation in the
system. These calculations were done for a sheet of elec-
trons where

2
Eq =PlNq (36)

co( 1/re@+ N —co~ )

—21 2 2 4co
+COc —N +

Veff jeff

(37b)

(3&)

and 0 (=K/m) measures the restoring force (spring)
constant and r,rr is the (in general, frequency-dependent)
relaxation time which, in the case where the motion of the
fictitious particle is heavily damped, is given approxi-
mately by

2 2
CO ~Cop

1/r, rr= 1/r)+ rp
67

(39)

co& is the 2D plasmon frequency appropriate for her
geometry, and the sum is over plasmon modes. We can
examine what happens when a time-dependent electric
field is applied parallel to the helium surface (in the x
direction, for instance) and a magnetic field is applied per-
pendicular to' the sheet of electrons in the symmetric
Coulomb gauge [A = —,

' 8 ( —y,x )] by studying the single-
particle classical equation of motion. We take the
plasmon frequency co& to be fixed (one mode) and
represented by an effective spring constant mcoo. We take
the electron to be coupled to another fictitious particle via
a spring with spring constant E with a loss-term propor-
tional to r, 'v, for the electron and r2 'u~ for the ficti-
tious particle. We calculate a conductivity and find

( 1/r ff)( 1/r ff+co —co, )
Reer cc . . - 2

. , (37a)
4 2

+Q)c —CO +
, jeff jeff
L
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(here, coi ——E/M) [note the similarity of Eqs. (37a) and
(37b) to Andrei's expressions, neglecting the sum on
plasmon modes]. In Eqs. (37a) and (37b), co, =e8/mc is
the cyclotron frequency (m is the electron bare mass). If
we vary the frequency of the applied electric field, we
might expect to see a cyclotron-resonance signal which
varies with coupling of the electrons to the ripplons (e.g.,
with film thickness). The cyclotron linewidth is deter-
mined by co,~, where ~ is the relaxation time in the sys-
tem. If co,r&1, we might expect to see a distinctive
cyclotron-resonance signal. If the external perpendicular
electric fields are such that a= 1, for example, then our
results suggest that a transition from a self-trapped to a
detrapped state occurs when 8=1 kG or co, =1.80)&10'
sec . We assume that, at this transition, the mobility p,
or relaxation time r, takes on comparable values (i.e.,
there is a comparable jump) as would be the case at the
self-trapping transition in the absence of a magnetic
field. ' Since the apparent energy scale in the Andrei ex-
periment (for d =1000 A) is similar to our energy scale
(for d =100 A), we assume that' at this transition the
values of p, hence ~, are similar to those given by experi-
ment at the lowest temperature T=0.4 K (since our re-
sults are T=0 results). ' Then, in the self-trapped state
co,r=3X10, while in the quasifree regime, co,r=1.03.
This suggests that if the film thickness is such that we be-
gin in the self-trapped state, there would be no cyclotron-
resonance signal. Then, at a certain value of the magnetic
field (=1 kG for d =100 A), a clear cyclotron signal
would suddenly appear. Alternatively, the film thickness
could be varied as in the Andrei experiment and a cyclo-
tron signal would rapidly appear or disappear as the film
thickness is varied. This is quite a different regime than
that considered by Cheng and Platzman, ' and by Shi-
kin, ' who found that the presence of a deformation under
the electron (due to coupling to ripplons) caused a shift up
in the cyclotron resonance. Here, the electron in the dim-
ple state has a lower cyclotron-resonance signal than the
quasifree electron. However, Cheng and Platzman, ' as
well as Shikin, ' worked in a regime where the dimple ra-
dius R~ was much larger than the cyclotron radius, i.e.,
Rz»R, . The polaron radius is defined by
Rp-(I/ak, )' . For our self-trapped state and reason-
able fields (8 & 1 kG), Rz &R, and at the point of transi-
tion, Rz&R, . In fact for B=l kG, R, =840 A, while
for a= 1, d =100 A, Ri -363 A. If 8 is increased past
the point where the transition from the self-trapped to the
quasifree state occurs, a regime could be reached where
R, & Rp and a further shift up on the cyclotron-resonance
signal is expected (as calculated by Cheng and Platzman'
and by Shikin' ).

IV. CONCLUSIONS

We have performed, for an electron coupled to ripplon
modes in a magnetic field, a Feynman path-integral calcu-

lation of the ground-state energy, model mass, magnetiza-
tion, and susceptibility for an ideal polaron gas. We find
that at a certain value of the magnetic field (roughly pro-
portional to the electron-ripplon coupling constant a),
there is a transition from a self-trapped to a quasifree
electron state, characterized by order-of-magnitude
changes in the mobility p and internal coupling E. Since
the magnetic fields necessary to cause this phase transi-
tion are quite reasonable (8=1 kG), our results suggest
that a cyclotron-resonance experiment (or the Andrei-type
experiment with both magnetic and electric fields ap-
plied) would be an appropriate way to further probe the
nature of the polaronic transition, particularly if done
within an experimental arrangement where film thickness
also can be measured.

Our variational calculation is mean-field-like in the
sense that the coupling of the electron to a second ficti-
tious particle simulates the effective potential in which
the electron moves. However, it goes beyond the usual
mean-field theory because the retarded form of the trial
action incorporates memory effects, and, in that sense,
takes some account of fiuctuations. Our numerical results
indicate the magnetic field detrapping transition to be
first order. Since our results are for T=O, at finite tem-
perature, the apparent order of the transition may be
changed. Our primary result, of a transition from a self-
trapped to a Landau-type state at a particular value of the
magnetic field, we expect to remain and to be observable
experimentally.

The magnitude of the changes expected in the
cyclotron-resonance signal due to the size of the changes
in the quantities E and p should lead to quite dramatic
effects in any experiments in a magnetic field in which
single-particle polaron effects play a dominant role. Fi-
nally, this calculation assumes that the phase transition in
the presence of a magnetic field is independent of
particle-number density. However, since we now know
that interaction effects play a role (at least in setting the
absolute energy scale), we expect these effects to play a
role here. Indeed, if the density of particles is high
enough that Wigner crystallization occurs, we expect to
see no cyclotron signal and no sudden appearance or
disappearance of one at a particular magnetic field value.
This would then provide a test of whether a single-particle
polaron state has formed or a multiparticle crystalline
state has formed.
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