Hybridization and screening effects in the Mg $KL₁V$ Auger spectra of Mg-Ni, Mg-cu, Mg-Zn, Mg-Pd, Mg-Ag, and Mg-Al alloys

M. Davies and P. Weightman

Oliver Lodge Laboratory, Department of Physics, The University of Liverpool, Oxford Street, P.O. Box 147, Liverpool L693BX England, United Kingdom

(Received 30 April 1984)

Mg KL_1V Auger spectra from Mg-Ni, Mg-Cu, Mg-Zn, Mg-Pd, Mg-Ag, and Mg-Al alloys are presented. Mg-Ni, Mg-Cu, Mg-Pd, and Mg-Ag Auger spectra show peaks to high binding energy which increase in prominence with increasing transition- or noble-metal content and which arise from hybridization of the Mg s and p bands with d bands of the other metals. The positions of these features are shown to be consistent with the positions of similar features in the $L_{2,3}V$ soft-xray emission spectra of corresponding Al alloys: This agrees with the prediction of the equivalentcores model that the local density of states around a core-ionized Mg atom should correspond to that around a neutral Al atom in the same environment. In Mg-Zn and Mg-Al alloys, d-band hybridization is not important and the high-binding-energy peaks in the Mg KL_1V spectra lose intensity with decreasing Mg content, as do the corresponding features in the Al $L_{2,3}V$ x-ray spectra observed from comparable Al alloys.

I. INTRODUCTION II. EXPERIMENTAL

The line shapes of core-core-valence Auger transitions from wide-band materials such as Na, Mg, and Al are expected to be well represented by the sum of the local s and p valence-band partial densities of states (PDOS) in the vicinity of a core-ionized atom weighted by the appropriat Auger transition probabilities. $1-3$ The calculations of von Barth and Grossman^{2,3} indicate that whereas the shape of the local valence p PDOS is almost unchanged by the presence of a core hole the local valence s PDOS is strongly distorted by the core hole and a peak develops to high binding energy. These theoretical results are supported by the observation that due to matrix-element effects simple-metal $KL_{2,3}V$ transitions are expected to be dominated by contributions from the local valence p PDOS and the experimental profiles of these transitions are very similar to the ground-state valence p PDOS.¹⁻³ The experimental profiles of simple-metal KL_1V transitions are more difficult to interpret since they are expected to be influenced by both the local s and p PDOS and the former is expected to be radically distorted from the ground-state $PDOS.¹⁻³$

In a recent paper⁴ the Mg $KL_{2,3}V$ Auger spectra of Mg-Ni, Mg-Cu, Mg-zn, Mg-Pd, and Mg-Ag alloys were presented. It was shown that for Mg-Ni, Mg-Cu, Mg-Pd, and Mg-Ag alloys hybridization of the Mg valence p PDOS with the d bands of the other alloy constituents caused an extra peak to occur to high binding energy in the Mg $KL_{2,3}V$ profiles. A similar effect is known to occur in x-ray emission spectral profiles of simple metals alloyed with d-band metals and the hybridization effect is well understood.⁵⁻⁹ In this work we study the Mg KL_1V Auger spectral profiles of the alloys studied previously⁴ together with the Mg KL_1V and $KL_{2,3}V$ spectra of Mg-Al alloys.

The experimental procedure employed in the present work was identical to that used previously⁴ and the KL_1V experimental results were taken on the same specimens as those from which the $KL_{2,3}V$ spectra reported earlier were obtained. The Mg-Al alloys were prepared by cosputtering the two elements onto a Cu substrate using the procedure described earlier.⁴ The Mg-Al phase diagram is complex¹⁰ and it is likely that the $Mg_{13}Al_{87}$ and $Mg_{23}Al_{77}$ specimens were mixtures of α and β phases and that the Mg-Al specimen was a mixture of β and γ phases. The presence of two phases in the Mg-Al specimens is not of great significance since, as found in x-ray mens is not of great significance since, as found in x-ray emission spectroscopy,¹¹ we expect the Auger spectrum to be sensitive to the immediate Mg environment but not to the crystal structure. The three Mg-Al specimens should produce Mg sites in which the average numbers of nearest-neighbor sites occupied by Al atoms differ significantly.

III. RESULTS AND DISCUSSION

The Mg KL_1V Auger spectra of Mg-Ni, Mg-Cu, Mg-Zn, Mg-Pd, Mg-Ag, and Mg-Al alloys are shown in Figs. 1–6, respectively. The Mg $KL_{2,3}V$ Auger spectra of Mg-Al alloys are also shown in Fig. 6. We expect the final-state holes to be well screened in these materials and that the interaction between them is negligibly small. If these conditions are fulfilled the binding energies of the two-hole final states, $E_B^F(L_1 V)$, can be decomposed into a sum of the binding energies of the single-hole states and the shape of the Auger spectrum will be related to the local densities of states around a core-ionized Mg atom modified by matrix-element effects. We may determine the binding-energy scale of these densities of states from

$$
E_B^F(V) = E_B^F(K) - E_B^F(L_1) - E_{kin}^F(KL_1V) , \qquad (1)
$$

30 4183 61984 The American Physical Society

FIG. 1. Mg KL_1V Auger spectra of Mg-Ni alloys. FIG. 2. Mg KL_1V Auger spectra of Mg-Cu alloys.

where the quantities are all referenced to the Fermi energy and those on the right-hand side are, respectively, the binding energies of the K and L_1 core levels found from x-ray photoelectron spectroscopy (XPS) and the observed kinetic energies of the KL_1V Auger spectra. The profile of the KL_1V spectrum of pure Mg, shown for comparison purposes in all the figures, is now well understood.^{$1-3$} The peak just below the Fermi energy is due to the p PDOS in the vicinity of a core-ionized Mg atom: the shape of the p PDOS is not significantly changed by the presence of the core hole. The shape of the s PDOS is changed by the core hole and the peak to high binding energy in the Mg KL_1V spectrum is due to the sharp peak created at the bottom of the s PDOS by the core hole.¹⁻³ The figures show that on alloying with Ag, Pd, Cu, and to

'Peak positions are given relative to the Fermi edge in the spectra.

FIG. 3. Mg KL_1V Auger spectra of Mg-Zn alloys.

a lesser extent with Ni, this peak in the s PDOS moves to higher binding energy and becomes more pronounced while the peak associated with the p PDOS remains near E_F : thus the separation between the two peaks increases. The positions of the peaks in the s PDOS in the Mg KL_1V spectra of these alloys are shown in Table I. The peak associated with the s PDOS is not enhanced by alloying with Zn or Al (Figs. 3 and 6). In both these cases alloying tends to reduce the intensity of the peak in the s PDOS and eventually the Mg KL_1V profile resembles the $KL_{2,3}V$ profile (Fig. 6 for Mg-Al, the earlier work⁴ for the Mg-Zn $KL_{2,3}V$ profiles). We postpone discussion of the Mg-Zn and Mg-Al spectra until Sec. IIIC and consider first the other alloy systems.

In the earlier work⁴ we established the identity of peaks

 $\cdot \cdot \cdot$. \sim \sim oo vo os +.MgPd lit ç. \mathbf{x}^{\bullet} units io al 1992 de la 1992 $\mathbf{E}[\cdot, \cdot]$, we have $\mathbf{E}[\cdot]$ ~ E Mg₂Pd ^o Pe o r Mc \cdot \cdot \cdot 8 4 0 E_B (eV)

MgPd₃ ohio

FIG. 4. Mg KL_1V Auger spectra of Mg-Pd alloys. The spectral profile is distorted in the region of the Fermi level by the Pd 3d XPS line excited by Al $K\beta$ x rays. This line produces a shoulder on the extreme right of the MgPd₃ and MgPd spectra.

induced in the Mg $KL_{2,3}V$ Auger spectrum by alloying by comparing the Auger profiles with corresponding Mg KV x-ray spectra. The extra peaks, which occurred at high binding energies in the $KL_{2,3}$ V Auger spectra, were shown to arise from hybridization of the Mg p PDOS with the d band of the other alloy constituent. The identification was straightforward because the Mg $KL_{2,3}V$ spectra are dominated by the p PDOS around a core-ionized Mg atom and this is expected¹⁻³ to be almost unchanged from that around a neutral Mg atom. Furthermore, the

FIG. 5. Mg KL_1V Auger spectra of Mg-Ag alloys.

shape of the Mg p PDOS is revealed by Mg KV spectra. Due to the distortions induced by the presence of the core hole we do not expect the s PDOS revealed by the Mg $L_{2,3}V$ x-ray spectra of these alloys to correspond to the s PDOS contributing to the Mg KL_1V Auger spectra. However, making the equivalent-cores approximation, we expect the s PDOS around a core-ionized Mg site in a Mg—noble-metal or Mg—transition-metal alloy to be similar to the s PDOS around a neutral Al site in the corresponding Al—noble-metal or Al—transition-metal alloy. We expect the shape of the s PDOS around a neutral Al

FIG. 6. (a) Mg $KL_{2,3}V$ and (b) Mg $KL_{1}V$ Auger spectra of Mg-Al alloys.

site to be revealed by Al $L_{2,3}V$ x-ray spectra and the profiles of these transitions observed from Al-Ni, Al-Cu, Al-Pd, and Al-Ag alloys do show additional peaks induced files of these transitions observed from Al-Ni, Al-Cu, Al-Pd, and Al-Ag alloys do show additional peaks induced
by alloying.^{5,11–14} The positions of these peaks in the Al L_2 3 V x-ray spectra of Al alloys are shown in Table I. If the peaks to high binding energy in the Mg KL_1V Auger spectra result from the hybridization of the Mg s PDOS with the d band of the alloying constituent we expect them to have the same binding energies as the peaks in the Al $L_{2,3}V$ x-ray spectra of corresponding Al alloys. Table I shows that this expection is borne out quite well by the data.

A. Mg-Cu and Mg-Ag alloys

Figures 2 and 5 show that the peaks to high binding energy in the Mg s PDOS in Mg-Cu and Mg-Ag alloys become more pronounced with increasing noble-metal content. This is similar to the behavior of the peaks to high binding energy in the Mg p PDOS observed in the $KL_{2,3}V$ Auger spectra of the same alloys.⁴ We interpret the effect as being due to the increased hybridization with the d band as the number of noble-metal nearest neighbors increases. Table I shows that the positions of these features

in the Mg $KL_{1}V$ Auger spectra are in reasonable agreement with the positions of corresponding peaks in the Al $L_{2,3}V$ x-ray spectra of Al-Cu and Al-Ag alloys of similar composition. In particular, in both the Mg-Cu $KL_{2,3}V$ spectra and the Al-Cu $L_{2,3}V$ spectra the peaks to high binding energy in the s PDOS move to higher binding energy with increasing Cu content.

B. Mg-Ni and Mg-Pd alloys

The Mg KL_1V Auger spectra of Mg-Pd alloys overlap with Pd 3d photoelectron lines excited by the weak Al $K\beta$ x rays which accompany the Al $K\alpha$ x rays generated by the x-ray gun of the instrument. However, the distortions produced by this overlap are small, they are confined to the region of the Mg KL_1V profile which corresponds to the Fermi edge, and they are only significant for alloys with high Pd content (Fig. 4).

The KL_1V Auger spectra of Mg-Pd alloys show the trends noted in the KL_1V and $KL_{2,3}V$ Auger spectra of Mg-Ag and Mg-Cu alloys: the high-binding-energy peaks become more bound with increasing transition-metal content. This behavior is reflected in the Al $L_{2,3}V$ x-ray spectra of Al-Pd alloys. The trend is less obvious in the Mg-Ni system since the peak in the s PDOS is less bound than in the Mg-Cu, Mg-Pd, and Mg-Ag systems. A comparison of the KL_1V spectra of alloys of the same composition in the Mg-Ag and Mg-Pd systems shows that in Mg-Ag alloys there is more intensity in the unhybridized peak in the p PDOS near the Fermi energy than in the hybridization feature to high binding energy in the s PDOS whereas in Mg-Pd alloys this situation is reversed. The peak in the p PDOS is also less prominent relative to the s PDOS peak in the KL_1V spectra of Mg-Ni alloys than in corresponding Mg-Cu alloys. Similar differences were noted between Mg—transition-metal and Mg—noble-metal $KL_{2,3}V$ spectra⁴ and we suggested earlier⁴ that the explanation for these differences is that the hybridization of the d levels with the Mg s and p levels is stronger in the Mg—transition-metal alloys than in the Mg—noble-metal alloys.

C. Mg-Al and Mg-Zn alloys

The Mg KL_1V spectra of Mg-Al and Mg-Zn alloys are strikingly different to those of the Mg—transition-metal and Mg—noble-metal alloys. With increasing Al or Zn content the peak in the s PDOS in the Mg KL_1V spectrum falls in intensity and eventually with low Mg concentration the Mg KL_1V profile has a similar shape to the Mg $KL_{2,3}V$ profile. The fact that this behavior is observed in Mg-Zn and Mg-Al suggests that the Zn d band is too bound to hybridize with the Mg bands and that both the Mg-Zn and Mg-Al alloys can be considered as alloys between two simple metals.

The expectation, based on the equivalent-cores model, that the PDOS of states around a core-ionized Mg site should correspond to the PDOS around a neutral Al site in the same atomic environment is borne out for the Mg-Al system by the experiments of Neddermayer¹⁵ which show that as the Al content of Mg-Al alloys is increased the broad peak at the bottom of the Al $L_{2,3}V$ x-ray emission spectrum falls in intensity relative to the intensity of the peak near the Fermi edge: this corresponds to the loss of intensity of the s PDOS peak in the Mg KL_1V spectrum with increasing Al content. A similar consistency between the Mg KL_1V spectrum and Al $L_{2,3}V$ x-ray spectrum is shown for the Mg-Zn and Al-Zn alloys.¹³ Kapoor et al.¹³ have shown that the Al $L_{2,3}V$ x-ray spectra of Al-Zn alloys show little change in shape as the Zn content is increased for 0% to 55% and do not show a peak to high binding energy. This is consistent with the absence of the s PDOS peak in the Mg KL_1V spectrum of MgZn. We may conclude that the Al $L_{2,3}V$ x-ray and Mg KL_1V Auger profiles establish that in Mg-Al and Mg-Zn alloys the presence of a core hole on the Mg site does not produce the sharp feature in s PDOS at the bottom of the band that occurs in pure simple metals $1-3$ and in Mg —transition-metal and Mg—noble-metal alloys.⁴ In alloys between simple metals there is clearly some change in the mechanism of core-hole screening.

IV. CONCLUSIONS

It has been shown that for Mg-Ni, Mg-Cu, Mg-Ag, Mg-Pd, Mg-Zn, and Mg-Al alloys the Mg KL_1V Auger spectral profiles may be understood by comparison with the Al $L_{2,3}V$ x-ray spectral profiles of Al alloys of similar composition. The shape of the Mg KL_1V spectra reflect the s and p PDOS around core-ionized Mg sites. The shape of the s PDOS around a core-ionized Mg atom is sensitive to the environment of the Mg site and by the equivalent-cores model should correspond to the s PDOS around a neutral Al atom in the same environment. The close agreement between trends in the contribution from the s PDOS to the Mg KL_1V Auger and Al KV x-ray spectra on alloying confirms the equivalent-cores model. In the Mg—transition-metal and Mg—noble-metal alloys hybridization of the Mg s band with the other alloy component's d band causes the peak derived from the s PDOS to grow in intensity in the Mg $KL₁V$ spectra with increasing transition- or noble-metal content, the effect being more pronounced in the Mg—transition-metal alloys than in the Mg—noble-metal alloys. It is also likely that there is some contribution to the peaks to high binding energies from d hybridization with the Mg p PDOS since the p PDOS also contributes to the pure Mg KL_1V profile and the Mg $KL_{2,3}V$ spectra of these alloys, which are dominated by the p PDOS, show similar features.⁴ In Mg-Zn alloys the peak in the Mg s PDOS is reduced in intensity with increasing Zn content indicating that the Zn d band does not hybridize with the Mg s band and that Mg-Zn alloys should be considered as alloys between simple metals. For both Mg-Zn and Mg-Al alloys the presence of a core hole on a Mg site does not induce a peak in the s PDOS at the bottom of the band. This is contrary to the behavior of the s PDOS around coreionized sites in pure simple metals or in Mg—transitionmetal or Mg—noble-metal alloys.

- ¹R. Lässer and J. C. Fuggle, Phys. Rev. B 22, 2637 (1980).
- U. von Barth and G. Grossman, Solid State Commun. 32, 645 (1979).
- U. von Barth and G. Grossman, Phys. Scr. 28, 107 (1983).
- 4M. Davies, P. Weightman, and D. R. Jennison, Phys. Rev. B 29, 5318 (1984).
- sL. M. Watson, in Band Structure Spectroscopy of Metals and Alloys, edited by D. J. Fabian and L. M. Watson (Academic, London, 1973), p. 125.
- W. L. Baun and D. W. Fischer, U.S. Air Force Materials Laboratory Internal Research Publication No. AFML-66-191 (unpublished).
- 7W. L. Baun and D. W. Fischer, J. Appl. Phys. 38, 2092 (1967).
- 8J. Kudrnovský, L. Surcka, and B. Velický, in Proceedings of the International Symposium on x-ray Spectra and Electronic

Structure of Matter, Miinchen, 1972 (unpublished).

- ⁹A. C. Switendick, in *Electronic Density of States*, Natl. Bur. Stand. (U.S.) Spec. Publ. No. 323 (NBS, Washington, D.C., 1971),p. 297.
- 10 M. Hansen, Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York, 1965).
- $11Q.$ S. Kapoor, Solid State Commun. 11, 1755 (1972).
- 2C. Curry and R. Harrison, Philos. Mag. 21, 659 (1970).
- ¹³Q. S. Kapoor, L. M. Watson, D. Hart, and D. J. Fabian, Solid State Commun. 11, 503 (1972).
- ¹⁴K. Ichikawa, J. Phys. Soc. Jpn. 37, 377 (1974).
- ¹⁵H. Neddermeyer, in Band Structure Spectroscopy of Metals and Alloys, edited by D. J. Fabian and L. M. Watson (Academic, London, 1973), p. 125.