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Alexander and Orbach have recently proposed that the ratio of the fractal dimensionality of the incipient

infinite cluster in percolation to the fractal dimensionality of a random walk on the cluster is 3, indepen-

dent of the spatial dimensionality of the system. As a consequence, they predict that the electrical conduc-
tivity exponent t/v =0.9479. . . in two dimensions, where v is the correlation-length exponent. Our nu-

merical data, which are obtained from large-lattice finite-size scaling calculations, give a value
t/v =0.973+IIIj, in disagreement with the conjecture by 2.6%.

which, using generaly accepted and probably exact values
v =. T and P = + gives

=0.9479166. . .
v 96

In this Rapid Communication we present data which,
although close to (1), are probably inconsistent with it.

We use a large-cell renormalization-group or finite-size
scaling approach, which has been discussed elsewhere.
We consider a square lattice composed of links which have
unit conductance with probability p, and zero conductance
with probability 1 —p. Since the bulk conductance 6 of an
infinite sample varies as (p —p, )' near the percolation
threshold p„ it can be argued that the average conductance
(G) of finite samples at p =p, is given by

(G) =b '"lc~+c2 f (b2)+ ] (3)

where f2(b) 0 as b, the sample size measured in units of
the lattice constant, approaches infinity, and where cq and c2
are constants. s 'a In order to determine t/v, then, (G)
must be determined accurately for large samples, and a
b ~ extrapolation performed. In order to determine
(G), we have developed an exact algorithm using only
series, parallel, Y-V, and V- Y transformations to reduce
each realization to a single conductance. ' The algorithm is
extremely efficient, allowing all of the data in Table I to be
obtained on a DEC LSI 11/2 and a VAX 11-780. At
b =200, an average realization took 11.5 sec on the VAX,
and took 1.04 sec in test runs on an IBM 3081. The entire
data set of Table I could be obtained in under two hours on
an IBM 3081. A Monte Carlo program using the algorithm
was written which kept track of arithmetic, geometric, and
harmonic means of conductances. The data thus obtained
are listed in Table I. Our Monte Carlo calculations were
done on self-dual lattices; the advantages of this have been

The properties of fractals, and their application to percola-
tion, are a subject of growing interest. ' Recently, Alex-
ander and Orbach' (AO) considered diffusion on fractals,
and pointed out that, to very good accuracy, the critical ex-
ponent t for conductivity in the percolation problem could
be related to the static exponents P and v via

r = ~[v(3d —4) —p]

—' = 0.973+II IIj (4)

where the value chosen reflects our preference for the log

described elsewhere. "'2 s 9 From (3), we see that plotting
In((G) ')/lnb against I/Inb will give t/v as the y intercept;
this has been done in Fig. 1. We note that, even without ex-
traporation, the AO conjecture (2), which is indicated by the
arrow, seems to be much too low for the data.

This disagreement becomes even more striking when the
data is analyzed. To do this, a number of choices for f2(b)
in (3) were tried. Our first choice was f2(b) = b a/"; that
is, the correction is a po~er law, by analogy to the standard
percolation case. ' A least-squares fitting was done, varying
t/v, 5/v, and the number of points included in the fit, to
determine the minimum X for various mean conductances,
as well as the parameter values which give the smallest sum
of the three X . The results are summarized in Table II.
The values of t/v thus obtained are between 0.975 and
0.979, with 5/v varying between 1.4 and 2.

Another alternative is that f2(b) = I/Inb, as suggested by
Kirkpatrick. '~ When this was tried, t/v had a narrower
spread for the different means, varying between 0.9725 and

, 0.973, but the resulting X were slightly larger, as seen in
Table II.

To explore the correction term more systematically, a
form which interpolates between the two forms above was
tried. Since lnx = (x —I )/n+ . as n 0, we use
f2(p) = I/(ba "—1), which approaches I/lnb for 8 0 and
the power law form for b~" large. This procedure revealed
a "valley" in X2(t/v, 5/v) which had two local minima cor-
responding to the minima found above. We thus see that
they are the only two choices suggested by the data.

On the basis of X2 alone, it would be difficult to distin-
guish between power law and log corrections. We favor the
log correction for two reasons. First, the various means
give a t/v which varies by 0.4% when a power law correc-
tion is used; this is reduced to 0.05% when the log correc-
tion is used. Second, the value determined here of
5/v —1.4—2 is greater than one. In such a case, we have
ignored a possibly stronger analytic correction; i.e.,
f2(b) = I/&+higher- rdeor terms. In fact, the I/b correc-
tion does not give too bad a fit, with t/v =0.974. On the
basis of this, we suggest that
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TABLE I. Average conductances at p =
2 as a function of lattice size b. N is the total number of realiza-1

tions considered; N, are the numbers which conduct, and the subscripts a, g, and h stand for arithmetic,
geometric, and harmonic means.

Nc

all

all

1
2

1
2

0.566. . .

0.3845. . .

0.5424. . .

0.3629. . .

0.5217. . .

0.3443. . .

5
6
7
8
9

10
12
14
16
17
18
20
22
25
30
40
50
60

100
200

110000
110000
110000
30000

110000
40000

110000
40000
20000
40000
20000
40000
20000
40000
20000
20000
20002
20000

2 704
2400
1 300

55 166
55 094
54994
15 063
55 295
19923
55 067
20005
10075
20094
9 946

20091
9 978

19935
10105
9992

10032
9 938
1 368
1 197

661

0.2886
0.2315
0.1939
0.16669
0.1455
0.1294
0.11714
0.0981
0.0846
0.07411
0.0702
0.066 117
0.059 78
0.05435
0.0478
0.039 87
0.030 20
0.024 30
0.0203
0.012 42
0.006 329

+0.00047
+0.000 58
%0.00032
+0.000 53
+0.00024
+0.000 36
+0.00020
+0.00028
+0.00034
+0.00021
+0.00028
+0.000 19
+0.00024
+0.00015
+ 0.000 19
+0.000 16
+0.00012
+0.000 10
+0.000 23
+0.000 14
+ 0.00010

0,2707
0.2168
0.1812
0.1557
0.1359
0.1207
0.10926
0.0915
0.0788
0.06905
0.0652
0.061 65
0.055 55
0.050 61
0.04946
0.037 09
0.028 08
0.022 59
0.0188
0.01154
0.005 876

0.2554
0.2041
0.1703
0.1462
0.1276
0.1132
0.102 45
0.0857
0.0737
0.06466
0.0609
0.057 72
0.051 92
0.047 36
0.041 60
0.03469
0.026 24
0.021 11
0.0175
0.01078
0.005 481

0.99-

0.98

200 50 20

I t t

10 6 5
I

correction and the error bars are chosen qualitatively to en-
close most of the valley in X2(t/v, A/i ) space. (We have
recently run 1000 realizations at b=500 and 400 cases at
b =1000 which do not significantly alter this result. ) Using
v = exactly ' ' we obtain

r =1.297+IIL7 .
0.97
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FIG. 1. Plot of ln((G) ')/lnb against 1/lnb. According to (3),
the y intercept of this data gives t/v. Symbols indicate arithmetic
(b), geometric (0), and harmonic ( ~) means. The lines are fits
to (3) with f2(b) = I/lnb, and are three independent fits. The ar-
row indicates the AO conjecture, t/v =0.9479. . . . The error bar at
b =200 (the least accurately determined point) corresponds to one
rms deviation from the mean.

We thus see from (4) that our data are inconsistent with
the AO conjecture. They are also inconsistent with the sim-
ple result t =v. ' ' We know of no theoretically proposed
value which is consistent with our value.

Our determination of different means gives information
on the shape of the conductance distribution, as well as its
scale invariance. We find that the ratios of the various
means are roughly independent of b. This is expected at the
critical point, where changing b should change only the scale
of the distribution, but'not its shape. For example, the ra-
tio of the arithmetic mean to the geometric mean varies
from 1.04 for b=2 to 1.08 for b =200, and extrapolates to—1.08 at b = ~. Similarly, the ratio of the harmonic mean
to the geometric mean approaches —0.93 at b = ~, starting
from 0.96 at b=2. This relatively weak dependence on
sample size indicates that the distribution is scale invariant
even for fairly small cells, and thus accounts for the close
agreement between exponent values obtained from the dif-
ferent means.

While a longer version of this work' was being prepared,
we became aware of a number of other manuscripts which
report similar results from a variety of independent tech-
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TABLE II. Fitting parameters for the various mean conductances using both power law and logarithmic
corrections.

Mean
t

v

Power law correction

X2

Logarithmic correction

r/v X

Arithmetic
Harmonic
Geometric
All three

0.976
0.979
0.9775
0.976

2.0
1.8
1.8
1.4

0.805
0.467
0.593
0.642

0.973
0.9725
0.973
0.973

0.824
0.486
0.,613
0.642

niques. Using a transfer-matrix method, Zabolitzky ob-
tained precisely the same value for t/v as we have; this
agreement from two independent methods is strong support
for (4). Herrmann, Derrida, and Vannimenus2' used a
transfer-. matrix technique to calculate s (which is identically
equal to t in two dimensions); their result also disagrees
with the AO conjecture. In addition, Hong, Havlin, Her-
mann, and Stanley have studied a random walk on the
percolation backbone; their result gives t/v =0.970+0.009,
again in violation of the AO conjecture. The range of appli-

cability of the conjecture has still to be determined, but we
believe that it is not true for two-dimensional percolation.

We are grateful to D. Stauffer and S. Kirkpatrick for their
useful comments and suggestions in the course of this
work, and to Abel Weinrib, F. Family, and H. E. Stanley,
for their helpful advice and discussions of the AO conjec-
ture. This work was supported in part by the National Sci-
ence Foundation under grand No. DMR80-20247 through
the Harvard Materials Research Laboratory.
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