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Breakdown of Alexander-Orbach conjecture for percolation: Exact enumeration
of random walks on percolation backbones
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We carry out the first exact enumeration studies of random walks on the percolation backbone. Using a
relation between the backbone and the full cluster, we find for the d=2 conductivity exponent
t/v =0.970 20.009, which means that the Alexander-Orbach conjecture for percolation can hold only if our
error bars were multiplied by a factor of 3. We also perform the first calculations of the chemical length
exponent dI that measures the dependence on l of the number of backbone sites within a chemical distance

l; we find dI=1.44+0.03.

Considerable recent interest has focused on how the laws
of diffusion are modified when the diffusion takes place on
a random fractal instead of in d-dimensional Euclidean
space. ' It is becoming clear that Pick's law connecting the
rms displacement with the number of steps of a random
walk, N- R, must be replaced by a more general power-

law relation N- R ". Here, d„ is the random-walk dimen-
sionality, since it relates the number of objects (steps) N to
the characteristic'distance (range) of the walk. One finds
for percolation fractals that d„ is a strong function of d,
varying from 2 for d = 1 to 6 for d = 6.

If we are to understand dynamics fully, it is clearly of im-
portance to learn which features of the fractal determine the
diffusion exponent d„. Therefore, considerable interest
arose when Alexander and Orbach (AO) made the remark-
able numerical discovery that to within the accuracy of cal-
culation, d„= Tdf, for d ~ 2.' Here, df is the fractal

dimension of the substrate, M- R f, which in percolation
increases from 48 for d = 2 to 4 for d = 6. Much effort has

gone into testing this conjecture for percolation, and into
finding out whether it applies to other classes of fractals as
well. ~ However, all determinations thus far of d„and df
have had an accuracy in the range of 4/0-8/0, and so have
not provided a sufficiently searching test. 5 Clearly it is of
importance to determine d„and df to an accuracy of 1/o —2/0
in order to put the AO conjecture to as stringent a test as
possible. Here, we use a new exact enumeration procedure
to calculate random walks on the backbone, which has less
fluctuation than the full percolation cluster. As a by-product,
we will calculate a new topological exponent dI.

Our work is based on two new ideas. The first of these is
to enumerate random walks not on a percolation cluster but

rather on the backbone; the backbone between two points on
a percolation cluster is the set of bonds carrying current
between these two points. %e find considerably less statisti-
cal fluctuation when considering random walks on the back-
bone only, because the dangling ends are excluded. Com-
bining the relation' connecting the conductivity exponent
t/v to d„- d~ with a recent identitys connecting the percola
tion exponents d„and df with the corresponding backbone
exponents d„and df, we find for d = 2 that

t/v = d„—df = d„—df

Hence, the AO conjecture for percolation, t/v = ~df, can be
tested by calculations on the backbone fracta! alone.

The second new idea is to enumerate the random walks
exactly for a given backbone configuration which was gen-
erated by a Monte Carlo method. Normally, in percolation
problems, we enumerate random walks by a Monte Carlo
sampling procedure. However, it is possible to analytically
solve for the statistics exactly, once the origin is chosen for
a given cluster configuration (see Fig. 1). The advantage of
exact enumeration is evident if one realizes that the total
number of random walks of N steps on a square lattice is 4~
and N is typically of order 10 -10, so any Monte Carlo pro-
cedure cari enumerate only a minute fraction of the total
number of walks.

The chemical distance l between two sites is the minimum
number of bonds that link the two sites. ' Our simulations
are carried out in the "constant-l" ensemble, which consists
of clusters that contain only sites with chemical distance
smaller than I,„ from the origin of the walk. This renders
the calculaition far more efficient because it provides a cri-
terion for the minimum size cluster needed for an N-step
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N steps,

Po(N) —N f "—N (2b)

X

N=

Our goal is thus to obtain accurate estimates for both ex-
ponents in (2a) and (2b), since we can then use (1) to ob-
tain d„df =—t/v for the full percolation cluster and, hence,
test the AO conjecture. To accomplish this goal, we first
note that since our enumerations of random w'alks are ex-
act, the quantities R (N) and Pa(N) vary extremely smooth-
ly with the number of steps in the walk, N. Thus, methods
of extrapolation previously reserved for series expansions
can be utilized. For example, from (2a) we want to find the
limiting slope, as N ~, of the log-log plots of 8 vs N
There is a weak curvature in this plot, as in all critical
phenomena plots, due to the presence of corrections to the
leading scaling behavior. Hence, one can analyze the se-
quence of "successive slopes" obtained by joining a line
segment between successive pairs of points. Geometrically,
this corresponds to calculating the local random-walk dimen-
sionality"

L=
0

X
2'

walk (thus, avoiding edge effects). We found the same
value for d„and df/d to six decimal places for 1,„=150
as for l,„=400 for 2000-step walks, so we set l,„=150 in
this work. This value of L,„=150 corresponds to an effec-
tive radius rg =100 of the cluster. Specifically, we have cal-
culated two quantities (Table I): (i) the rms displacement

R (N) ((l.2) )t/2 N w (2a)

and (ii) the probability of the walk being at the origin after

FIG. 1. Illustration of how one calculates exactly the weights for a
random walk on a very small backbone fractal connecting sites I and

j. Shown are three successive times and the exact probability P&(r)
for the last step to be at site r. The origin of the walk has a cross.

[d„(N) ] '= log[R (N+ 1)/R (N) ]/log[(N+ 1)/N], (3a)

d, (N) = 2 log[Pa(N+ 1)/Pc(N) ]/log[(N+ 1)/N] . (3b)

The local fractal dimensions corresponding to Eqs. (2a)
and (2b) [Figs. 2(a) and 2(b)] vary smoothly with N, so it is
straightforward to substitute in (1) to obtain

d„(N) —df(N) = d„(N) [1—d, (N)/2]

(see Fig. 3). We see that this function varies smoothly with

N, is nearly constant for N ~ 500, and is always considerably
la~ger than the AO prediction d —df = ~df = ~6=0.9479; the

data used for calculating d„(N) —df(N) in Fig. 3 (the cen-
tral value) were obtained from averaging (r ) ~ and Pz(0)
over 3200 configurations. We also calculated d „(N)
—df(N) for each set of 50 configurations for which smooth
curves were obtained, representing the effect of correlations

TABLE I. Results for (i) [R (N)] and its standard deviation A(R ) for 3200 realizations, (ii) P&(0) and its standard deviation
b [P~(0)], and (iii) d~(N) —df(N) and its standard deviation 4[d~(N) —d~(N)].

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
1980

[R (N) ]2

41.420
71.409
97.965

122.482
145.580
167.602
188.767
209.222
229.077
248.412
267.291
285.764
303.873
321.651
339.126
356.323
373.262
389.960
406.435
422.698

5 (R21

0.446
0.817
1.101
1.370
1.643
1.916
2.182
2.437
2,682
2.915
3.138
3.350
3.554
3.751
3.939
4.122
4.298
4.468
4.634
4.795

0.038 83
0.025 35
0.01970
0.01646
0.01432
0.012 78
0.01160
0.01067
0.00991
0.009 28
0.008 74
0.008 27
0.007 87
0.007 51
0.007 19
0.006 91
G.GG665
0.00641
0.006 20
0.00604

&[P (0)l

0.000 54
0.000 32
0.000 25
0.000 22
0.000 20
0.00018
0.00016
0.00015
0.00014
0.000 13
0.000 12
0.00011
0.000 11
0.000 10
0.00010
0.000 10
0.000 09
0.00009
0.000 09
0.000 09

d „(N) —df (N)

0.982 78
0.972 84
0.96940
0.968 98
0.969 39
0.96968
G.970 27
0.97062
0.970 71
0.97079
0.97044
0.97047
0.970 54
0.97032
0.970 55
0.97039
0.97069
0.97028
0.971 22
0.97096

6 [d„(N) —df (N) ]

0.012 80
0.01501
0.012 96
0.01058
0.008 78
0.00800
0.008 04
0.008 04
0.008 97
0.009 32
0.009 42
0.009 45
0.009 32
0.009 02
0.008 68
0.008 18
0.007 59
0.007 29
0.006 91
0.006 23
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= d„(N) + D/N" (4c)

an analytic correction in Eq. (4a). Then we take the func-
tional form

d„(N) —dt(N) = a+ —.+ cN (4b)

But, here analytic correction term b/N can be eliminated by
forming new effective exponents d (N) and dy(N)/
d„(N)"
dw= [(&N+1 ~N)(&n ~w t)ll[~-g (&Jv+—t&tv t)]

0.60 I

400
t t I t l t t

800 l200 l600 2000
N

FIG. 2. Successive estimates for exponents (a) d„and (b)

2 d, = dt/d„calculated from the local slopes of the log-log plots of
(r2) vs N and Pp(N) vs N, respectively. Walks were enumerated
exactly on a total of 3200 distinct backbone configurations. The er-
ror bars were obtained by calculating the standard deviations for
each N between the results obtained from ensembles of 50 confi-
gurations.

between successive points. The error bars reflect the fluc-
tuation of these curves and, therefore, are not effected by
the correlation between the individual points in the same
curve. We estimate the limiting value of d„(~)—dt(~)
by the following procedure.

(i) We consider the usual functional form

d„(N) —dI(N) = a + bN " (4a)

where co is the leading correction to scaling exponent. For
each trial value co =co„;,&, we fit the best straight line to the
points xn=N "and y~=d„(N) —dt(N) in Eq. (4a). The
quality of fit is measured by

x'(~~ .i) = X (yn —a —bxn)'
N

The value co=co„;,&=0.81 corresponds to the minimum in
x'(~«, ,&), for which a = d (~)—dI(~) =0.969+0.008
and b =—0.4; the error bar is obtained by taking into account
the effect of the error bars of all successive points using the
usual least-squares-fit method.

(ii) The second way of analyzing our data is to consider

The same technique can be utilized for d~/d„. The same
analysis used in procedure (i) yields d„(~) —df (oo )
=0.970+0.008 with o&=—3.07. Thus procedures (i) and
(ii) —even though they assume different functional forms
for the correction to scaling —result in the same final esti-
mate, which we take to be

t/v = d„—dt = 0.970 +0.009

Thus, our error bars would have to be multiplied by a factor
of 3 to encompass the AO conjecture. Our result is also not
consistent with the Straley conjecture 3 for d = 2, t/v = l.

Since we used the chemical distance l in fixing the "en-
semble of clusters, " it is natural to consider this variable in
more detail. For example, we can calculate the exponent dI
defined by'

w(i) i', - (6)

dI = 1.44 J0.03

1000—

where M(l) is the number of sites within a chemical dis-
tance l. Alternatively, if we imagine that sites are "burned"
successively starting from some origin, '4 then M(l) is the
number of sites burned after time t= I. For the backbone,
we found (Fig. 4)

AA ———— — ———— $I 00~~~ M(g)

)
0.98—

I

0.96—
C)

C) C) C) C) C) C) C)

I

0.94
0

I t I l I t )

400 800 l200 l600 2000
N

FIG. 3. Successive estimates of d„—d~= d~ —1&. Here, d~ was

obtained from 2d, = 2dt/d„[Fig. 2(b)] while d~ was obtained

directly [Fig. 2(a)]. The Straley and AO conjectures —l and

2 d&=0.9479, respectively —are indicated by dashed lines.

FIG. 4 Dependence of mass on chemical distance I; the slope of
the straight line, d&=1.44 %0.03, is the chemical exponent defined
in (6).
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This number was confirmed by two other computations.
First we calculated the dependence of the radius of gyration
Rs of backbone sites on I, Rs —I", where clearly v = d~/df.
Second we calculated the dependence on N of the rms value

chemical distance traveled by the walker, (i')' ' —N 1/4

where d„'/d„= di/d~= v. Our values v =0.87 +0.02,
d„=2.69+0.04, and d' = 2.34+0.04 are consistent with the
direct estimate (7). We note that v for backbone has the
same value as for percolation clusters. ' This can be under-
stood from scaling arguments.

In summary, we have used the identity (I) to provide a
way of obtaining information about the fractal properties of
percolation clusters by studying the percolation backbone —a
far simpler fractal from the point of view of random stalks
since there are no dangling ends. We have carried out exact
enumerations of random walks on 3200 configurations and
find results that vary smoothly with the number of steps N
for N up to 2000. Our results fall midway between the AO

conjecture and the Straley conjecture, and exclude the possi-
ble validity of both.

We recently learned of parallel work by three other
groups, each using a completely independent technique. At
Universitat Koln, phenomenological renormalization has
been used to calculate r/v, '5 while at Saclay the same tech-
nique has been used to calculate the superconductivity ex-
ponent s, which is equal to t for d=2. ' At Harvard
University, the large-cell, position-space renormalization-
group approach was used for cells of up to 200X 200.' All
three groups obtain the same basic result: the AO conjec-
ture fails by about 3% for percolation in d = 2.
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Z. Djordjevic, D. Stauffer, and especially I. Majid for many
extremely helpful discussions throughout the course of this
work. We also wish to thank the authors of Refs. 15-17 for
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