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Superconductivity exponents in two- and three-dimensional percolation
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The first transfer-matrix calculation of the superconductivity exponent s of a random mixture of normal

and superconducting elements is presented: The exponent s is defined through the divergence of the con-

ductivity X as the critical fraction p, of superconducting elements is approached: X —(p —p, ) '. We ob-

tain very accurate values for the exponents which disagree with the Alexander-Orbach conjecture as well as

other conjectures. Our results are s/v=0. 977+0.010 in two dimensions and s/v=0, 85+0.04 in three

ddimensions.
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FIG. 1. Two-dimensional strip of conductors (some are normal
and some superconducting). The strip has width n =4 and periodic
boundary conditions in vertical direction. At column 0 the voltage
is 0 and at column L, which is just being constructed, the i th row

has a current I; coming from a voltage V, .

The conductivity X of a random mixture of superconduct-
ing (fraction p) and normal-conducting (fraction 1 —p) ele-
ments diverges for p p, as

& —(p, -p)
where p, is the percolation threshold. We will only treat
bond percolation in this Rapid Communication. The ex-
ponent s plays an important role in the transport properties
of random systems. It has been of theoretical' ' and experi-
mental " interest, and some conjectures about its value
have been proposed. ' ' It appears, in particular, in the
critical behavior of the dielectric constant, ' in the absorp-
tion coefficient" of random metal-insulator composites, in
the conduction of binary metallic mixtures, ' as well as in
the viscosity of a ge1.4

In two dimensions, the exponent s has been shown by an
exact duality' to be equal to the conductivity exponent t of a
mixture of conducting and insulating elements above p, .
On the contrary, in three dimensions, no exact relation
between s and t is known. The conductivity exponent t has
been numerically calculated by different methods, such as
series expansions, ' relaxation methods, ' diffusion, ' and
transfer matrices. ' ' Numerical calculations of s, however,
are difficult. We will describe, in this paper, a new method
based on a transfer-matrix algorithm which allows a very
precise determination of s, and we will present numerical
results for dimensions d=2 and d=3. In d=2, we can
compare our results to the existing numerical determina-
tions of t.

Let us first describe our method. We construct, in d = 2,
a n xL strip of a square lattice as shown in Fig. 1, and in

(8; —8;p)(8 J
—Bpi)

r + (8 +Bpp Bp —Bp )—(4)

if one adds a vertical bond between lines n and P. We note
that the generalization to the case of anisotropy is straight-
forward. The conductivity X (or resistivity R) of a strip de-
fined by X ' = R = 8,; /L is well defined and independent of
the end point i, in the limit L ~. Also in this limit, it is
not necessary to average over several samples. Thus, we
calculate up to a value of L as large as possible to diminish
the statistical error. These statistical errors were estimated
by dividing the strip into roughly 50 parts. The calculation
is performed for different widths n, at the percolation
threshold p„yielding conductivities X„, and one then ex-
tracts the critical exponents through finite-size scaling:

X„—n* "(1+bn "+ . )

Knowing the correlation length exponent v, one thus ob-
tains from the large-n behavior, the exponent s.

In two dimensions, we know p, = 2, v = ~, and s = t. For1 4

d =3, a n xn xL bar of a cubic lattice going to L ~ by
adding bond after bond with a resistance randomly chosen 0
with probability p„and r with probability 1 —p, . In the
d —1 vertical directions, we impose periodic boundary con-
ditions. This is possible in this case, because the current
flows along the strip. In the case of normal conductivity,
such a geometry is not possible because the current would
be zero and so one has to consider a current flowing across
the strip, i.e., the two boundaries having different poten-
tial. ' In the first vertical plane, we impose the voltage
V=O and look for the voltages V; which should be put on
each of the N = n ' end points in the Lth vertical plane in
order that they carry a current I; (see Fig. 1). They are
given through the resistivity matrix B& by

N

V; = X B,~Iq, i = 1 to N
j=1

For each bond that one adds, B,& has to be updated. The
updated matrix B;,' is

Blg = B]~+r 5Ia5ga

if one adds a horizontal bond at line o. , and is
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t, Alexander and Orbach" proposed the conjecture t =~2.
To directly test this conjecture we show, in Fig. 2, a log-log
plot of ns'~96/X„against n. L is taken up to 107. If the con-
jecture was correct, the curve should become horizontal for
large n, which in view of Fig. 2, seems very unlikely. A
careful analysis that takes into account the correction to
scaling of Eq. (5) and the statistical errors, similar to the
analysis that we ~ill describe for three dimensions, yields

—= 0.977 + 0.040,
V

clearly not including the value s/t = 0.948 predicted by the
conjecture. Our value is in good agreement with less precise
determinations of t' ' ' and confirms a recent, very accu-
rate calculation by Zabolitzky:" t/v=0. 973+0.005. The
work of Ref. 18 was based on a transfer-matrix algorithm
for the conductivity problem. Our result, Eq. (6), compar-
able in precision, was obtained with much less effort than
that of Ref. 18 (10 times smaller widths, 100 times less
computing time): we believe that one of the reasons is that
for the superconductivity problem we could use, contrary to
Ref. 18, periodic boundary conditions in the vertical direc-
tion. With these conditions, finite-size scaling already
works well with moderate widths (see, e.g. , Ref. 20). In the
calculations performed by Zabolitzky, ' the fixed-boundary
conditions mix finite-size effects with surface effects and
therefore it is necessary to use wider strips to compensate
for these surface effects. On the contrary, in our case, the

periodic boundary conditions generate only finite-size ef-
fects."

In three dimensions, since p, is not known exactly, we
use p, =0.2492. Kertesz has proposed for s the conjec-
ture s = t —P/2 for all d, agreeing for d = 2 with Alexander
and Orbach. For d = 3, the conjecture yields
s/v=0. 744+0.017." Thus, we plot in the same spirit as
above n 744/X„against n in Fig. 3, with L being of the order
of 10. Again the curve should become horizontal if the
conjecture is correct. As with Fig. 2, already an extrapola-
tion by eye does not seem to allo~ for an asymptotic slope
for large n within the two dashed lines shown in Fig. 3 that
correspond to the conjecture of Kertesz. Looking at Fig. 3,
one already sees that the points from n =5-10 lie on one
straight line of slope 0.89, but the curvature ensures that
this is an upper bound.

Let us briefly discuss our correction to scaling analysis for
the data of Fig. 3, the same analysis that in two dimensions
led to Eq. (6). For a given correction to scaling exponent
ra, we fit a curve of the form of Eq. (5) to the data, and the
best values of s/v so obtained are shown in Fig. 4. This is
not only done for the mean values of the data but, also for
the upper or lower limits of the error bars. The s/t ob-
tained in these different ways all lie within the dashed re-
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FIG. 2. Log-log plot of n /X„against the strip width n in two
dimensions. Error bars arise from the statistical errors (L =10 for
n =8, 10, 12, 15, 20 and L =10 for n =5, 7, 9, 11). If the Alex-
ander-Orbach conjecture were correct, the curve woold be horizon-
tal for large n.

FIG. 3. Log-log plot of no 744/X„against the bar width n in three
dimensions. The error bars correspond to L = 10 for n ~ 7,
L =7X105 for n =8, and L =3X105 for n =10. The conjecture of
Kertesz (Ref. 7) would be correct if the asymptotic slope for large n

lay between the two dashed slopes. The line drawn through the-
points is one of the possible fits through the points including correc-
tions to scaling and corresponds to X„=n .8 (0.626
+ 0.912n ). The total computer time required for obtaining this
data was of the order of 30 h on a CRAY 1.
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gion of Fig. 4. The X test limits the interval of co to be
between 2.2 & co & 2.8 as shown in Fig. 4. This leads to

S/v
0.9-

—= 0.85 + 0.04
v

(7)

where the error bars include, as explained above, not only
the uncertainty in m but also the statistical error. If one no-
ticeably deviates from the given co range, X quickly in-
creases and the amplitude of the correction term becomes
unreasonably large. We note that in two dimensions, the
range of m given by the X test is 1.8 & ~ & 2.7.

Using v=0.88, given in Ref. 23, we get s.=0.75+0.04.
This value excludes the conjecture of Kertesz but agrees,
rather well, with real-space renormalization calculations
s =0.77 (Ref. 3) and experimental measurements s =0.73
+0.07."

In conclusion, we found, with a new method based on the
transfer-matrix technique, very precise values for the super-
conductivity exponents s in two and three dimensions. Our
ranges of values clearly do not include the values conjec-
tured by Alexander and Orbach, and by Kertesz, but they
are in agreement with experiments" and with a recent cal-
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FIG. 4. Corrections to scaling analysis of the data shown in Fig.

3. The extrapolated values, as well as the conjecture by Kertesz,
are marked by black segments. The dashed lines limit the range of
values of cu obtained from the X test.

2.5

culation of Zabolitzky. ' Our results apply, in particular, to
a problem recently formulated in Ref. 24.

We acknowledge the Centre National de la Recherche
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