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Spectrum of a Schrodinger operator on a lattice with broken bonds
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The exact solution for the density of states of a Schrodinger operator on a d-dimensional lattice with bro-
ken bonds between two neighboring planes is found to be expressible in terms of the density of states of
the operator on a d- and (d —1)-dimensional perfect lattice. The influence of the introduction of some in-

finitesimal amount of off-diagonal disorder is thereby revealed.

Solving problems on lattices, is a natural approach in crys-
tal physics and offers a convenient discretization in the con-
tinuum. But even in the simple case of the Schrodinger
operator, when dealing with multidimensional disordered
systems, there is an obvious lack of analytical solutions,
Lloyd's model, ' with diagonal disorder only, being the only
exactly soluble model in three dimensions. Much informa-
tion is offered by the determination of the density of states,
and numerical studies of this function have been undertak-
en recently in the off-diagonal disorder case. But as an
analytical solution of such fully disordered d-dimensional
systems seems presently out of reach, it seems sensible to
treat analytically a simpler case, namely, an HSC (hyper
simple cubic) lattice with broken bonds between two neigh-
boring planes in order to enlighten the off-diagonal disorder
onset and to offer a new basis for further studies of more
disordered systems. The system under consideration offers
wide applications, such as tight-binding electron band, har-
monic elastic vibrations, discretized waves propagation equa-
tions, etc.

In the one-dimensional case, the system considered in
this Brief Report is described by the Hamiltonian operator
equivalent to a N x N real symmetric matrix, where N is the
number of lattice sites. By shifting the origin of the energy
to eliminate the constant diagonal matrix elements, the off-
diagonal matrix elements are left, and are assumed to be
nonzero for nearest neighbors, except for one broken bond

between sites 0 and 1. A periodic boundary condition is im-
posed: so that the matrix is defined as follows:

H1 = (I —Dp) m 1+m 1(I—Do)

where the entries of the N x N cyclic matrix mp, p «0, are
given by (m~)c =8 ~, other rows being obtained by cyclic
permutation and m p is the transpose and inverse of mp;
they satisfy the following identities:

mQ mb) IQ (2)

Dpm q
=IqDp+q or mqDp Dp —qm q (5)

Those matrices can also be used to represent the Hamil-
tonian, on a simple hypercubical lattice with one broken
bond (between sites 0 and 1) in each one-dimensional row
directed along the first space coordinate, in the form of a
sum of direct products of d N & N matrices:

m pal m qm p PPl p +q

(mp)'= m~

The diagonal N x N matrix D~ (p ~ 0) is defined by
(D~) S 8a8 ~ —w—ith 0~a ~N —1; also (D ~) 11

5 p8 N p from which it follows that D p
=D p and

D~D~=O (p &q). The matrices m~ and D~ do not corn
mute but obey the rule

Hg=I 8 I 8 SH1+I8 S (m1+m 1) SI
+I 8 8 (m1+m 1) 8 I 8 I+ . +(m1+m 1) 8 I 8 I (6)

C~(m1+ m 1) = m~+ m (7)

Similarly, to prove here that the trace of the matrices
C~(H1) have a constant value will enable us to calculate the
power moments of the density of states. First, considering

Chebysheff polynomials (of the second kind) C~ of cyclic
matrices proved to be useful in dealing with perfect periodic
lattices5 by virtue of the identity

TrC, (H1) =0 (q odd)

and clearly

TrCO(H1) = 2N (9)

Using Eqs. (2)-(5), we find for the first even order poly-
nomials

I

the nature of the matrices in (1), it is evident that the trace
of any odd power of 0 ~ is zero, so that

C2(H1) = (D 1+DO) (Do+D 1)m2 —m 2(DO+D 1) + m 2+ m

C4(H1) (D2+D —1) (D1+D —2)m2 m —2(D1+D —2)

(Do+D —1+D 2+D 2)m4 m4(DO+—D —1+D 2+D 2) + m4+ m 4
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so that we guess that the general term of the sequence is

C2~(Ht) = —(Dt, +D t, +&) —(Dp &+D —p)m2 —m 2(Dp )+D ~) —'
(p & 1) (10)

where in anticipation of the next step, we have considered the cyclic matrix components up to second order only. The
derivation by recurrence that the diagonal part of (10) is correct is obtained by using the recursion formula

C2t, +2(Ht) = C2(H))C2~(Ht) —C2~ 2(H))

which is satisfied by Chebysheff polynomials. We note that cyclic matrices of order ) 2 cannot contribute to the diagonal
term of

C2(Ht)C2 (H]) = [ —(D ]+Dp) —(Dp+D ~)m2 —m 2(Dp+D t) + m 2+ m 2]
f

[ —(Dt, +D t, +t) —(Dp )+D ~)m2 —m 2(D~ )+D —~) — 1

= —(m2+m 2)[(Dp )+D p)m2+m 2(Dp )+D ~) — ]

= —(Dtp g+D t, ) —m 2(D~ t+D ~)m2

= —(Dp+)+D p+2+D~ )+D p)—

so that obtaining C2~ 2(Kt) from (10), Eq. (11) yields

C2p+2(H1) = —(Dp+)+D ~)—

~ ~ ~

f

(12)

We conclude that

TrCp(Ht) = —2 (q even)

Now using the properties of the direct product of matrices, we have for large N (N » p)

(14)

Tr(Hd)~= X (TrKt') [Tr(m t+ m t) ] . [Tr(m ~+ m t) ]P1'' ' 'Pa'
(15)

which can be evaluated by expansion in the set of orthogo-
nal Chebysheff polynomials, and making use of (7) as

Tr(mt+m ~)t'= X (x~, cd(x))Tr(mp+m p)
q=0

Similarly, we have from (9) and (14)
P

Tr(H~)~=2N(x, Cp(x)) —2 X (xt', Cz(x)) (p even)

(18)
Making use of the identity

= 2N (x~, C,(x)),
where the inner product is

(f(x),C, (x))
p1

[2n'(1+ Sp) ] ~ (1 x ) f (2x) Cp(2x)dx

2~ '= X (xt', C, (x))

we have

Tr (H ~ )~= (2n + 2) (x,Cp(x) ) —2t' (p even)

Tr(H ~)t'= (2N + 2) (x~, Cp(x) ) = 0 (p odd)

(17) so that (15) can be rewritten as follows:
I

(19)

Tr(Hd)~= (2N+ 2)(2N)(x t '''xd, Cp(xi )'''Cp(xd)), +".+, =, I 1.

(2 +(—2) )(x2 ' ' ' xd Cp(x2) ' ' Cp(xd))
(2N) ' t, t, t, td

(2N)d —t d d d
= (2N+»(2N) — X, , g C.(,)— 2 +' x x; + —2 + x x; , rt C,(x;)) .

i =1 i= 1 2 i=2 I —2 I —2
(20)

We are now in a position to calculate the Fourier transform of the density of states, i.e., the moments generating func-
tion6

( —it)~
nd(t) = X, Tr(Hd)~,

pt
(21)

which, from (20), reads
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d d

iit(t) = (2N+ 2)(2N) ' exp —it X xe, rt co(x„))
k=1 k=1

(2N)d i d 'l
exe —it 2+ X xt +exe —it —2+ X xt, rt ce(xx)) .

2
~ ~

k=2 k=2 k=2

taking the inverse Fourier transform and dividing by N yields the density of states in the form

d d

et(E) = (1+N ')2 e E —X x, , rt Co(x,))i=1 i=1
d d d

2 ' e E —2 —X, + e E + 2 —X, , rt c,(,. ))2 i=2 i=2 i=2j t

using generalization of the inner product (17) to d dimensions we have

(22)

(23)

11 d d

nd(E)=(1+N ') „5E —2 Xx; g(1 —x;) ' dx;
i =1 i=1

2

—1 —d+1 p] d —1 d —1 d —1

SE—2 —2 g;+BE+2—2 X; /(1 —;)' dx; (24)
2 i=1 i=1 i=1

) 2 )

Noting that this formula involves classical expressions ' of the density of states for a perfect lattice; now we can formu-
late the fundamental theorem Let vd(E. ) be the density of states for the Schrodinger operator

Hd= (mi+m t) (I I (3) . . 8 I+I (e (m)+m i) (e I (I 8 I+ . +I (e . (g) (mi+m i) (25)

defined on a perfect SHC lattice with N" sites; then the den-
sity of states for the Schrodinger operator (6), defined on
the same lattice with one broken bond between sites 0 and 1

of each row, is given in the limit N ~ by

nq(E) = vd(E) + N '(vg(E) —~ [vd i(E —2)

+v, ,(E+2)]) . (26)

From this formula, the total number of states is easily
checked to be equal to Nd; and we notice that —2d
~ E ~ 2d, which is the bandwidth of the perfect crystal. In
fact, the broken bonds do not give rise to new eigenvalues

out of the band; but the main effect of the introduction of
this infinitesimal amount of off-diagonal disorder is to
reduce the Van Hove singularities: the singularities at the
band edges E = +2, in v)(E), are destroyed by Dirac func-
tions vo(E +2) =8(E +2); the logarithmic singularity of
v2(E) is reduced by the singularities of vt(E +2) at
E=O;. . . .

Finally, very simple and illuminating conclusions can be
drawn from this theorem, which reveal several features of
the spectrum in imperfect lattices.

I am grateful for useful discussions with Dr. J. Lacroix.
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