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Grain boundaries along a planar melt/solid interface significantly affect the onset and small-
amplitude development of morphological instabilities during the solidification of a binary alloy. A
singular perturbation analysis valid for small grain-boundary slopes is used with the one-sided model
for solidification to show that grain boundaries introduce imperfections into the symmetry of the
developing cellular interfaces which rupture the junction between the family of planar shapes
and the bifurcating cellular families. Undulating interfaces are shown to develop first near grain
boundaries, in agreement with experiments, and to evolve with decreasing temperature gradient ei-
ther by a smooth transition from the almost planar family or by a sudden jump to moderate-
amplitude cellular forms, depending on the growth rate. Finite-element calculations for the Pb-Sb
system give interface shapes for the large grain-boundary slopes which are typically observed.

I. INTRODUCTION

The microscopic transitions in spatial pattern of a so-
lidifying melt/solid have been the subject of intense
theoretical and experimental research because of the fun-
damental importance of these structures in the physical
and electrical properties of materials and because these in-
terface morphologies represent an excellent example of
pattern formation in nature. The linear theory of Mullins

and Sekerka!'? and subsequent nonlinear analyses>~® have

established the initial stages of the evolution between a
planar solidification front and large-amplitude cellular in-
terfaces. In a recent paper (Ref. 8; henceforth referred to
as I) we have used ideas from bifurcation theory to
describe this transition in terms of changes in the tem-
perature gradient. When the temperature gradient is ex-
actly constant away from the interface, a planar shape is a
steady-state form for all values of G. Cellular interfaces
evolve from bifurcations located at the neutral stability
points G=G, determined by Mullins and Sekerka; see
Ref. 8. Families of cellular interfaces develop from the
planar forms and evolve toward either increasing (subcrit-
ical bifurcation) or decreasing (supercritical bifurcation)
temperature gradient, depending on the growth rate and
thermophysical properties of the melt and solid. These
two cases are shown schematically in Fig. 2 as a plot of
the amplitude of the interface deflection measured by € as
a function of the temperature gradient G.

Much experimental research has been directed at con-
firming the predictions of these theories for the onset of
morphological instability. Several of these studies have
noted the pronounced tendency for the instability to form
first near the three-phase junctions where grain
boundaries intersect the solidification front,”~ 2 shown
schematically in Fig. 1. Large-amplitude undulations in
interface shape have been observed about these intersec-
tions at temperature gradients or growth rates just before
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the critical values predicted by the linear theory in Refs. 1
and 2. The purpose of this paper is to explain this obser-
vation theoretically and to put into perspective the role of
imperfections in interface shape caused by grain
boundaries.

We consider the solidification of a binary melt in an
imposed constant temperature gradient which is not dis-
turbed by deformation of the melt/solid interface. This is
precisely the case for a material with almost equal
thermal conductivities in melt and solid and negligible la-
tent heat of solidification. These assumptions lead to the
“one-sided” model for solidification described in I. The
conclusions described in this paper are qualitatively.
correct for the more complicated model treated by Mul-
lins and Sekerka which lifts these two restrictions by solv-
ing simultaneously for the temperature field; this point is
discussed further in Sec. V. ‘

Coriell and Sekerka'>'* extended the linear analysis of
Mullins and Sekerka to steadily solidifying interfaces with
a single grain boundary by constructing a regular pertur-
bation for small grain angles. They concluded that the in-
terface would deform more close to the grain boundary,
but failed to predict any change in the critical value of G
for the onset of the instability. We show that the regular
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FIG. 1. Schematic of melt/solid interface with a grain
boundary with slope s.
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FIG. 2. Families of small-amplitude cellular interfaces
characterized as either subcritical or supercritical bifurcation in
terms of —G. Curves for nonzero s represent imperfections
caused by grain angle.

(b) supercritical

perturbation in slope used in Refs. 13 and 14 fails close to
the marginal stability point and that a singular analysis is
necessary to explain the interaction between this limit and
the interface deformation caused by a grain boundary.

The singular perturbation analysis used here is based on
well-established methods in bifurcation theory*~!7 for
describing imperfections in solution structure near a bifur-
cation point caused by introducing a second parameter
which disrupts the symmetry of the bifurcating family.
Introducing a grain angle along the melt/solid interface
destroys the reflective symmetry between the two phases
that exists for a planar interface and acts as an imperfec-
tion to the bifurcations. The singular change in solution
structure about this point caused by small values of s is
portrayed in Fig. 2.

The effect of the grain boundary is different for sub-
critical and supercritical bifurcations. When the cellular

interfaces evolve supercritically, i.e., to lower values of G, -

the grain boundary ruptures the intersection of the planar
and cellular families into a curve of stable shapes, single
valued in G, and a separate arc of solutions. Undul{cions
will develop slowly in the interface and no value of G can
be identified as G,. When the bifurcation is subcritical
the grain boundary causes the family of originally planar
shapes to terminate abruptly at a limit point, where it
turns back to higher values of G. As is shown in Sec. III,
this point shifts according to s2/3.

The one-sided model used here was developed in I, and
only its mathematical statement is repeated in Sec. II
along with relevant results of the linear analysis. The
nonlinear perturbation analysis is contained in Sec. III.
Finally, the results of finite-element calculations, using
the methods presented in I, are presented in Sec. IV to
show the effect of the grain angle on moderate-amplitude
cellular interface shapes.

II. ONE-SIDED MODEL
AND LINEAR STABILITY ANALYSIS

The one-sided solidification_model presented in I for
the solute cgncer_x}ration ¢(X,y,t) and the melt/solid inter-
face shape h(X,t) is written in terms of the conservation
equation

3 _ a9 vE
dy

3 = 2.1)
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where & is the diffusion coefficient. This solute balance
is solved inside the melt region (0<X<A,
h(X,t)<y < o). Along the sides of the slice and far
away, the solute field has the boundary conditions

&(0,9)=8,(X,7)=0, 5=(0,00) (2.2)

C€(X,0)=c, , (2.3)

where ¢, is the bulk concentration of solute. The two
conditions written along the melt/solid interface are the
solute balance

i-Ve=i-g,Vek—1), (2.4)

where €, is the unit vector in the y direction and the tem-
perature condition constructed from an idealized phase di-
agram

T;=T,,+mc+2Tx . .5)

In these conditions, k is the segregation coefficient, 77 is
the slope of the liquidus curve, T is the capillary length,
T,, is the melting temperature of the pure material at a
planar interface, and 29 =h, (1+h 2)~3/% is the mean
curvature of the interface. We solve these equations with
the boundary conditions on the interface that prescribe a
symmetry plane at X =A and the grain angle s at X =0:

ok oh =
—— e — ~—_k, 0 i1 "
O O 0, x <y<w

These conditions describe a periodic array of grains along
the interface separated by a distance 2A. In the limit
s—0, the free boundary problem composed of Egs.
(2.1)—(2.6) reduces to the equation set used in I to describe
the development of cellular interfaces from a planar so-
lidification front.

For small values of s, the linear stability analysis of the
planar interface follows by expanding the equations about
the flat interface and collecting terms O(s). Following
the notation in Ref. 13, the response of the interface to a
perturbation of the form h(X,t)=~h(t)cos(@x), where
@ =21 /A is the spatial wave number, is given by

s, x=0, (2.6)

h(%,t)=cos(&X){exp(f (@)t)
+s[g@)/f @ ]lexp(f @) 1]} ,
2.7)

where f(@) and g (@) are defined as
—(G+T,Ta)2K(@*—V(1—k)/D)

(@)=
f@ e, (k—1)
+V(@*—V/D), (2.8)
. T TDk(@*—V(1—k)/D)
g(@)= -, (2.9)

mic , (k —1)

with 3*=V /29D +[(V/2D )*+&?*]'/2. The first term in
Eq. (2.7) is identical to Mullins and Sekerka’s result for a
perfectly periodic interface, whereas the second term
arises as a correction due to the presence of the grain
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boundary. The function f (@) dictates the stability of the
interface. The wave number @=a&, for which instability
starts at the largest value of G corresponds to the most
dangerous instability to the planar form. We focus on
this disturbance in most of our analysis.

Because f(@) is independent of s, it appears that the
marginal stability curve is independent of the small grain
angle. However, f (@) appears in the denominator of the
second term of Eq. (2.7). This term is infinite for any
nonzero value of s as the neutral stability point is ap-
proached and implies that the regular perturbation expan-
sion in s used here and in Refs. 13 and 14 is not valid
close to the onset of the instability. The correct scaling
for the first-order correction in the grain-boundary slope
is the subject of the next section.

III. ASYMPTOTIC ANALYSIS OF IMPERFECT
BIFURCATION

The behavior of the solution structure close to the bi-
furcation point is captured by rescaling the equation set to
remove the singularity in the parameter s. To do this in
terms of the amplitude expansion developed in I for the
problem with s =0, we redefine the interface shape func-
tion A (X,t) to remove the dependence on s from the boun-
dary condition (2.7) by the substitution

h(EX)=H(X)+sF(X), (3.1)

where F(X) satisfies the conditions

oF -1, oF —0, (3.2)
X =0 ox =X
but is otherwise arbitrary.
The equation set (2.1)—(2.9) with the modified

boundary condition Eq. (3.1) is made dimensionless by
scaling length w1th A*, concentration with Con and tem-
perature with TO. The dimensionless versions of these
variables are denoted by dropping the tilde from each
symbol. The steady-state version of these equations is

Vi +P—aﬁ =0, (3.3a)
o0z
GH +sF)——m(—k-—k_:2( 1—e PHAE) e
—T(Hye + F ) 1.+H3+Ff)‘3/2=0 (3.3b)
¢y —HFrex —(k —1)P(c +1—e~PH+sP) =0 (3.30)
with the boundary conditions
H,(0)=0, H,(A)=c,(0,9)=c,(A,y)=0. (3.3d)

In these equations, P=VA*/Z is the Peclet number,
T'=T'/A* is the capillary constant, G=GA* /T, 1s the di-
mensionless temperature gradient, m =ric, /TS is the
slope of the phase diagram, and A is the dlmenswnless
wavelength. In Egs. (3.3) the subscripts x and y denote
partial differentiation.

The proper dependence of the field variables and tem-
perature gradient on the grain slope as s approaches zero
is computed by expanding the variables (c,H) and the pa-
rameters ( G,s) about the neutral stability point in a power

GRAIN BOUNDARIES 3995

series written in terms of a scaling parameter 8:

c(x,,8) c™(x,)

H (x,8) © g [H™(x)

G@®) |~ & nt |G, : 34
s(8) Sn

The form of the equation sets recovered at each order of §
is practically identical to those in the perturbation
analysis for the planar interface (s =0) given in I. The
linear problem at each order of 8 has the form

Un=Pn+Pns > (3.5)

where u ,=(H(x),c(x,H))T and the operator and the
right-hand-side vector p, are given by Egs. (3.5)—(3.6) in
I. The only contribution of the grain angle to this se-
quence occurs in p ,; as

P s =5, (F(x),007+0(s,_,) , (3.6)

where O (s, _;) denotes unspecified terms proportional to
Sp—1-

Because the linear operator and boundary conditions
for each problem do not contain s, the inner product used
for the undisturbed interface [see Eq. (3.10) in I] is ap-
plied to determine the solvability of each nonhomogene-
ous problem. The operator .Z is singular for G =G, so
that the nonhomogeneous problems are solvable only if

<Bn +an)<_bt)=0 ’ (3.7)

where {®},} are the adjoint eigenfunctions for the undis-
turbed problem given in Eq. (3.11) of I. At first order in
8, Eq. (3.7) requires that s, =0, verifying that a regular
expansion of G, in s is not appropriate. With s, =0, the
first-order solution becomes U ;=A®, where the {®,}
are eigenfunctions of the eigenvalue problem describing
stability of the planar interface and are given in Eq. (3.8)
of I. These eigenfunctions mark the branch points for
families of cellular interfaces with spatial wave number
w,=2nm/A. The constant A4 in the solution U ; is deter-
mined along with the solutions to the higher-order prob-
lems.

The spacing of the grain boundaries relative to the

- wavelength of the cellular instability for a planar 1nterface

depends on the value of n for the highest value of G\™
When n is large, the grain boundaries are widely spaced
with respect to this wavelength and, in some sense, our
analysis approaches that of Ref. 14 for a single grain
boundary. )

The solvability condition requires that at O(82%), both
G, and s2) be zero, The solution of Egs. (3.3) is
U,= , where u {" is given in Eq. (3.14b) of I. The
solvablhty condmon for the third-order problem dictates
that s; be nonzero. Without loss of generality, we pick
this constant to be unity and set all higher values in the
expansion {s,}, n >3, to zero. Then the proper scaling
between 6 and s is

s=8%/3!. (3.8)
The form of the solvability constraint at O (&%) is
CIA3+62G2A+C3=0 , (3.9)
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where the constants ¢; and c, are the same as those that
appeared in the third-order solvability condition for the
undisturbed system ‘and c3=(p3;, @) =—0"

Each of the possible three roots to the amplitude equa-
tion (3.9) correspond to a family of interfaces displayed in
Fig. 2(b). The limit point where the solution is lost due to
an imperfection of a subcritical bifurcation occurs when
two roots of Eq. (3.9) coincide for a particular value of
G,. The substitution of this value of G, into the expan-
sion for G and the use of Eq. (3.8) gives the value of G for
the limit point as

G =G, +3(I'2G, /20 3s2/3 (3.10)

where G$'™ is listed in I as Eq. (3.15). For small values
the grain angle, Eq. (3.10) predicts a very rapid increase in
the value of G for marginal stability with changes in s;
this is precisely what has been observed experimentally.

Our singular analysis has been constructed only to
model the behavior of each family of interface shapes in
the small region |G —G"| <« 1. Uniformly valid rep-
resentations for each interface family over the entire range
of G, but for small grain angles, can be constructed by the
matching procedure outlined in Ref. 16. Here the expan-
sions valid near the critical points for the unperturbed
problem are matched to expansions in s for each family
valid away from G!™. As implied in Fig. 2, the expan-
sions away from the bifurcation points are regular in s.
The results of Coriell and Sekerka!* are the O (s) approxi-
mations of this type written about the family of originally
(s =0) planar forms. The linear stability of the interface
shapes in their calculations are indicative of those shown
in Fig. 2. ‘

The analysis in this section is valid for grain boundaries
spaced at any integer multiple of the wavelength of the
cellular shapes for s=0. To approach Coriell and
Sekerka’s analysis of a single grain boundary along an
otherwise planar interface, we consider the case when
A>>1 for s small, but fixed. For the analysis to remain
valid, each term in the third-order solvability condition
Eq. (3.9) must be the same size. This constraint applied to
the term with the grain angle forces s <<A~!. A similar
criterion was developed by Hall and Walton!® in an
analysis of imperfect bifurcation of natural convection in
a long, thin cavity heated from below. This limit is severe
because it forces the region of validity in s to be infini-
tesimal as the distance between grain boundaries becomes
large.

IV. FINITE-ELEMENT CALCULATIONS

The asymptotic results of the last section are extended
to large-amplitude interface deflections and large grain
angles by finite-element analysis of Egs. (3.3). The
finite-element—Newton algorithm used for the calcula-
tions, as well as the computer-implemented perturbation
methods used to trace families of solutions to the discre-
tized set, are described in I and in the references contained
therein. We again focus on the thermophysical properties
for the Pb-Sb system which are listed in Table I of Ref. 8;
these parameters are similar to those used by Coriell and
Sekerka,'* except for the assumption of equal conductivi-

LYLE H. UNGAR AND ROBERT A. BROWN 30

ties in melt and solid and zero latent heat release. The
reference length is taken as A*=0.01 cm and the Peclet
number is P=0.8, indicative of crystal growth at approxi-
mately 16 um/sec. The capillary constant is
I'=8.2X10~". Calculations are presented for both small
and large values of the grain angle s to clarify the connec-
tions between the perfect and the imperfect solution struc-
tures.

The change in the family of originally planar shapes
with increasing grain angle is shown in Fig. 3 for grains
spaced periodically at intervals of A=2, which is simul-
taneously close to the most-dangerous wavelength for in-
stability of a planar form and to the transition between
subcritical and supercritical bifurcation (see I). Each in-
terface shape is represented by the maximum deflection A

A= max {h(x)}— min {h(x)}, 4.1)
A 0<x<A

0<x<

computed as a function of the dimensionless temperature
gradient G. The bifurcation between the planar and cellu-
lar shapes for s =0 is shown for reference.

For the small grain angle s =0.1 (~6°) the family of
shapes evolving from high values of G was easily recog-
nized as the result of rupturing the bifurcation point for
the planar family. The interface deflection developed
smoothly until, for a temperature gradient less than the
value predicted by the linear analysis, the solutions re-
versed direction in G and lost stability. The family re-
gained stability at a second limit point at higher interface
deflection, just as did the family of cellular forms bifur-
cating from the planar shape; compare to Fig. 4 in I. In
this sense, the presence of the grain boundary had little in-
fluence on the nonlinear structure of the cellular families.

The solution curves shifted significantly towards higher
values of G when the angle was increased to either s =1.0
(45°) or s =5.0 (~89°). The limit point had shifted to
G =1.86x10"* for s=1.0 from the value G =G,
=1.75Xx10"*for s =0.1.

A portion of the interface family was still unstable for
s =1.0; however, all the shapes were stable for s=5.0

0.6 © —
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F——
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2.2 2.0 1.8 1.6
Temperature Gradient G (10°%)

FIG. 3. Families of cellular interfaces for P=0.8 and A=2.0
as a function of the grain angle s.
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FIG. 4. Sample interface shapes for s =1.0. Letters refer to
points in Fig. 3.

where the interface deflection increased monotonically
with decreasing temperature gradient. Interface shapes
corresponding to the points designated along the curve for
s =1.0 are given as Fig. 4; only one-half wavelength of
the interface is shown for each case. The interface
developed only a single undulation in the interval
0 <x <A because the primary mode of instability had the
same wavelength as the grain-boundary spacing. The
deep grooves separating almost planar plateaus were simi-
lar to the large-amplitude shapes computed in I without
the grains.

The interface shapes seen experimentally show large-
amplitude undulations near the grain boundary that de-
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FIG. 5. Families of cellular interfaces for P=0.8 and A=4
for the grain angle s =0.1. The curves for s << 1 are displayed
to imply the rupturing of the bifurcating families.

s =0.l

interface Shape

0.0 | ] |
o] 0.5 1.0 1.5 2.0

x=X/\*
FIG. 6. Sample interface shapes for s=0.1 and 2A=4.
Letters correspond to points in Fig. 5.

crease in intensity with distance away from the imperfec-
tion. The spacing between the grains was increased to al-
low for multiple cells to form along each grain in an at-
tempt to see this effect. Increasing the spacing between
grain boundaries led to much more complicated solution
structures. This was expected from the results in I for bi-
furcation from the planar interface with A=4, where fam-
ilies with shapes of longer wavelength evolved by secon-
dary bifurcation from the families of interfaces with the
fundamental wavelengths. The loss in symmetry caused
by the presence-of the grain angle ruptures these secon-
dary bifurcations as well.

The perfect (s =0) and imperfect (s540) interface fam-
ilies computed for grains spaced 2A =4 apart are shown in
Fig. 5, as calculated with a crude finite-element mesh.
The families for a very small value of s are given to show
the rupturing of each of the bifurcation points caused by
the grain angle and the creation of the closed loop of solu-
tions from the branch of interface shapes with wave-
lengths 2A. When a grain angle of only 6° was introduced
the solution families were shifted substantially from the
perfect results, but still exhibited the same sequence of
shapes seen for s =0. Past the limiting value of G, the in-

P=0.8
A =8.0
0.8
(=4
o
© 0.6
3
@
o
0 0.4'_‘
§ t/ * o “
H ®@ 1
€ 0.2 4
1
|
|
0.0 | | | | 1
22 2.1 2.0 1.9 .8 .7

G (10™%)

FIG. 7. Interface family evolving from high values of G for
A=8and s=5.0 (89°). Co
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FIG. 8. Sample interface shapes for s =5.0 and 2A=38.

terfaces in the primary shape family were unstable as the
family evolved with increasing temperature gradient;
shapes in this region had deep grooves adjacent to the
grain, but were almost flat by a distance 2A away. Past a
second limit point the shapes existed at lower values of G
and regained stability. Shapes on this branch were almost
identical for 0<x <A to those calculated for grains
spaced only A apart, as shown by the representative inter-
face shapes in Fig. 6.

The family of interface shapes computed with grains of
angle with s =5.0 and space 2A. =8 apart are represented
in Fig. 7, and sample interface shapes are shown in Fig. 8.
For G=1.718%X10~% just above the critical value
G =G,, the interface undulated with a wavelength of
about A/2. The peak next to the grain boundary was only
slightly more pronounced than ones farther away. Calcu-
lations at lower temperature gradients were stopped by the
limit point created by the rupturing of the secondary bi-
furcation to shapes with wavelength 2A; see the resulis for
s =0.1 in Fig. 5. Attempts to compute around this limit
failed for s =5.0.

V. DISCUSSION

Grain boundaries along a melt/solid interface disrupt
the symmetry of the cellular forms created by morpholog-
ical instability and cause imperfections in the connectivity
of the families of interfaces originating at bifurcation
points. These imperfections have been demonstrated both
in the asymptotic analysis, valid for small interface de-
flections and for small grain angles, and in finite-element
calculations of moderate-amplitude cellular shapes. The
interpretation of the role of grain boundaries in the onset
of morphological instability depends on whether the
branching from the planar interface (s =0) is subcritical
or supercritical with respect to the control parameter, tak-
en here as the temperature gradient G.

For supercritical bifurcation, introducing grain
boundaries reduces the structure to a continuous family
that evolves initially toward lower values of Gj; the sharp
transition to cellular interfaces for s =0 is replaced by a
smooth evolution of undulation along the interface. The
bifurcation point for subcritical bifurcation is replaced by
a limit point in G at which a discontinuous change in the

stable interface must occur. The value of temperature
gradient for the location of this limit point is extremely
sensitive, O(s?/3) for s <<1. This last scaling explains
the preferential development of undulations near grain
boundaries observed in experiments. '

Introducing grain boundaries also destroys secondary
bifurcation points located for the perfect case (s =0) and
creates secondary limit points at moderate-amplitude in-
terface shapes. The presence of these limits severely com-
plicates the tracing of interface families; without the cal-
culations of interfaces containing no grain boundaries, the
interpretation of the results in Sec. IV would be almost
impossible.

Grain boundaries are imperfections in any model for
solidification which yield steady bifurcations from a pla-
nar interface. The O(s?/3) dependence of the displace-
ment of the limit point created from a subcritical bifurca-
tion holds for the model used by Mullins and Sekerka that
includes variations in the temperature field and for the
analysis of Coriell et al.!® that includes the onset of ther-
mosolutal convection in the vicinity of the interface. Cel-
lular forced convection against the interface can be an in-
dependent mechanism for rupturing the bifurcating fami-
lies. Fluid motion adjacent to the interface will cause
lateral solute segregation which deforms the interface and
breaks the symmetry just as the grain angle does. The
combination of grain boundaries and nonuniform convec-
tion which always exist in experimental systems make it
extremely doubtful that the sudden changes in interface
shape predicted by theories which neglect these imperfec-
tions can ever be strictly observed.

Although the finite-element calculations have demon-
strated the onset of undulations in the interface near the
grain angle, the large-amplitude undulations depicted in
Ref. 10 were not found along the family of stable shapes.
This difference may be explained either by differences in
the physics of solidification for the pure succinonitrile
used in Ref. 10 and the dilute binary system studied here,
or in the narrow range of | G —G, | computed here. The
undulations in interface shape shown in Fig. 8 do result in
large variations in the solute concentration along the so-
lidifying front which are easily computed from Eq. (2.5).
For the most deformed interface shown in Fig. 8, the con-
centration calculated at the grain boundary was 30%
above that far from the grain boundary, while the concen-
tration at the first peak was 4% below the far field value.
These undulations in composition are observed experimen-
tally as solute bands by etching slices of the crystal, as
demonstrated in Ref. 9.
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