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Thermodynamic calculations for bec sodium at high pressures
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Molecular-dynamic calculations for bee pseudopotential sodium are compared to experiment for
the 300-K pressure-volume curve to 300 kbar, and for the adiabatic pressure derivative of tempera-
ture, and the Griineisen parameter, to 32 kbar. This comparison supports both the pseudopotential
model of sodium, and the use of molecular dynamics to calculate anharmonic contributions to ther-
modynamic functions for crystals at high temperatures.

I. INTRODUCTION

This paper is a continuation of our work in testing
molecular dynamics and pseudopotential theory for calcu-
lating thermodynamic properties of metallic sodium. Our
model pseudopotential contains parameters that were pre-
viously determined by requiring agreement between theory
and experiment for the crystal binding energy and its first
two volume derivatives, at zero temperature and pressure.
This potential was successful in calculating thermo-
dynamic properties for the solid phase,>* for the fluid
phase,* and also the melting behavior of metallic sodi-
um.>S In the present paper, our calculations are com-
pared with experiment for bee sodium at high pressures.
The experiments are those of Fritz and Olinger’ for the
300-K isotherm to 90 kbar, Aleksandrov et al.® for the
300-K isotherm to 300 kbar, and Boehler® for the adiabat-
ic pressure derivative of temperature, and the Griineisen
parameter, to a pressure of 32 kbar.

II. CALCULATIONAL METHOD

Our system consists of N ions and Nz electrons in a
volume V¥, and is described by an adiabatic potential &
evaluated in the pseudopotential perturbation formulation.
The principal characteristic of @ is that it consists of two
parts: a volume-dependent term ((¥), and a sum over all
distinct pairs of ions of the effective ion-ion potential
&é(r; V). Specifically,

O—NL=QUWN+ 3 ¢(r; V), 1

where the zero of ® corresponds to a system of neutral
atoms at infinite separation, and I, is the ionization ener-
gy. Expressions for (V) and ¢(r;¥V) are given by Egs.
(2) and (3) of Ref. 2.

The volume per atom is V=V /N, and the value at
zero temperature and pressure is Vo=256a3, where a, is

the Bohr radius. Figure 1 shows a plot of the ion-ion po-

tential ¢(r;¥) at some of the different volumes used in the
present study. The different curves are the potentials for
compressions ranging from V,/V,=0.78 at V,=200a},
to V,/Vp=0.39 at V,=100a3. As the volume de-
creases, the attractive well in ¢(r; V) decreases, continuing

the trend previously reported for volumes greater than V-
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(see Fig. 1 of Ref. 4). The corresponding nearest-neighbor
distances are listed in Table I.

We use the technique of molecular-dynamics simulation
to solve the coupled classical equations of motion for the
sodium ions, in the central finite-difference approxima-
tion. The calculational cell consists of 686 particles in a
cubic volume, with periodic boundary conditions in all
directions. The energy, volume, and translational momen-
tum of the cell are constants of the motion, and the
center-of-mass translational momentum is zero. We take
the body-centered-cubic crystal structure for solid sodium.
The thermodynamic internal energy is

the temperature T is given by
FNKT =(Eyin) , (3)

and the pressure P is

-2

FIG. 1. Total effective pair potential for Na calculated from
the modified-point-ion pseudopotential.
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TABLE 1. Theoretical quantities for pseudopotential sodium
in the compressed bec structure. r, is the nearest-neighbor dis-
tance.

dQ NkT

Va r Ony T 5

(ad /atom) (ag) (K) (kbar) (kbar)
256 6.93 168 —22.7 1.1
232 6.70 188 —245 1.2
200 6.38 222 —27.3 1.4
175 6.10 254 —30.0 1.6
150 5.80 294 —334 1.9
125 5.46 348 —374 2.2
100 5.06 423 —41.7 2.8

dQ | NKT
P=—ar+7y _<2

9% _r__ajl>
avtwar | @

Here k is Boltzmann’s constant, and the sum in (4) is
again over all distinct pairs of ions. The angular brackets
denote a time average for the equilibrium molecular-
dynamics system; the time average is presumed equal to
the molecular-dynamics ensemble average, according to
the quasiergodic hypothesis.

Corrections of relative order N ! in Egs. (3) and (4),
which account for the difference between the molecular-
dynamics and the generalized-canonical ensembles,'® are
neglected in the present work. In comparing our calcula-
tions with experiment, we also neglect thermodynamic
contributions from thermal excitation of conduction elec-
trons; these contributions are important at higher tem-
peratures, where they have been included.* Finally, while
quantum effects of the motion of the ions are neglected,
the classical nonlinear dynamical motion is calculated ac-
curately in molecular dynamics, and this gives us accurate
results for the thermodynamic functions in the classical
(high-temperature) region. The classical region corre-
sponds to T>®g,, where @y, is the infinite-
temperature harmonic Debye temperature, given by!!

k®p =+ (#0")pz , (5)

where the brackets ( )pz denote a Brillouin-zone average.
Our values of @y, for sodium are listed in Table I.

III. COMPARISON WITH EXPERIMENT

The pressure as a function of volume is plotted in Fig. 2
for an isotherm at 300 K. The solid circles are the data of
" Fritz and Olinger from diamond cell work to about 90
kbar.” The pluses are from the analytic fit of Aleksan-
drov et al. to their experimental data, which extends to
about 300 kbar.® The agreement between theory and ex-
periment for the pressure isotherm is quite good; note
there is a systematic deviation between the two sets of ex-
perimental data between 40 and 90 kbar. Contributions to
the pressure from the first two terms of Eq. (4) are listed
separately in Table I. In Fig. 3 we have plotted the iso-
thermal bulk modulus By as a function of volume. The
pluses are again taken from the fit to experimental data of
Aleksandrov et al.,® and they cover the same range of
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FIG. 2. Pressure as a function of volume at T=300 K. The
solid circles are the data of Fritz and Olinger (Ref. 7), and the
crosses are from the data of Aleksandrov et al. (Ref. 8).

pressure as Fig. 2. The theoretical curve for the bulk
modulus is also in good agreement with experiment, par-
ticularly considering that the bulk modulus increases
more than an order of magnitude, while the maximum
theoretical-experimental deviation is about 10%.

Since T/®p,, becomes less than 1 on the isotherm at
300 K (see Table I), we need to check quantum correc-
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FIG. 3. Isothermal bulk modulus Br as a function of

volume, and compared with the experimental results of Aleksan-
drov et al: (Ref. 8).
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tions to our molecular-dynamics results. The leading
high-temperature quantum correction to the harmonic
free energy is!?

This gives a small correction to the vibrational parts of P
and By; in the total calculated P and By at 300 kbar, the
corrections are 0.2% and 0.1%, respectively.

Using a pressure pulse method, Boehler’ measured the
adiabatic pressure derivative of temperature, (37 /9P)g, to
a pressure of 32 kbar. We can calculate this quantity
from the expression

ar

xT
ap (6)

- ’
s Bs

where y is the Griineisen parameter, and By is the adia-
batic bulk modulus. Results for (37 /dP)g versus pres-
sure are shown in Fig. 4, and the thermodynamic
Griineisen parameter y is shown in Fig. 5. The experi-
mental points for both figures are taken from Boehler.’
Comparison between theory and experiment for (37 /0P)g
is perhaps more interesting than for the Griineisen param-
eter. First, (07 /dP)g is the quantity that was directly
measured, while ¥ was obtained by including additional
information, namely the adiabatic bulk modulus, accord-
ing to Eq. (6). Second, (8T /dP)g changes by a factor of
three on the isotherm at 298 K, while y changes by only
25% over the same compression range. This difference is
due to the large increase in Bg under compression, which
effectively cancels the decrease in (37 /0P)g, as may be
seen from Eq. (6). Our theoretical curves of (37 /0P)g
and of y are in reasonably good agreement with experi-
ment, and exhibit the correct pressure and temperature
dependences. It should be noted that these quantities, in
contrast to the pressure and bulk modulus, are essentially
anharmonic vibrational quantities.
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FIG. 4. (3T /9P)s vs pressure for the solid phase of sodium
for isotherms at 7=298 and 473 K. The experimental points
are from Boehler (Ref. 9). The dashed vertical line represents
the approximate solid-fluid phase boundary for the T=473-K
isotherm. '
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FIG. 5. Thermodynamic Griineisen parameter at 7=298 K
as a function of (a) pressure and (b) volume. The experimental
points are from Boehler (Ref. 9).

IV. DISCUSSION AND CONCLUSIONS

First we should comment on the status of pseudopoten-
tial theory. Compared to current standards of band-
structure  calculations,  pseudopotential-perturbation
theory represents a crude approximation for the electronic
structure of the simple metals. Within this approxima-
tion, there are many variations the theory can take. Our
pseudopotential is a parametrized model, our wave-
function basis is plane wave, and we include a Born-
Mayer repulsion to account for the direct interaction be-
tween ion cores. In comparison, the pseudopotential of
McMahan and Moriarty!? is based on “first principles,”
includes d states in the wave function basis, and does not
include Born-Mayer repulsion. Both theories go to second
order in the pseudopotential, but in fitting our parameters
to experimental data, we presumably include some repre-
sentation of higher-order terms. The point is that
pseudopotential-perturbation theory is approximate and
can be expected to account for the properties of simple
metals only to an approximate degree. On the other hand,
the great value of this theory is that it allows us to calcu-
late the electronic structure, and hence the total adiabatic
potential, for arbitrary positions of the ions, so that we
can study the motion of the ions in the solid and fluid
phases of a real metal.

We should comment also on the question of the ex-
istence of ion core-core repulsion. In pseudopotential
theory, or in any theory in which the core electrons are
taken as rigid, the core-core repulsion is present in princi-
ple. This follows from the observation that compression
of the material will cause electrons to transfer from the
cores to the bands, and the energy which drives this “ioni-
zation” is the core-core repulsion. The magnitude and
form of core-core repulsion in compressed matter is an
unsolved problem. We note that Harrison’s'* procedure
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for estimating overlap interaction from tight-binding
theory gives an estimate for sodium which is roughly the
same as our empirical Born-Mayer term. We also note
that the Born-Mayer term increases strongly with
compression, and in the present calculations it becomes
approximately 20% of the total for P and By at 300 kbar
and 300 K.

The main results of the present calculations are summa-
rized by the following conclusions.

(1) When the atomic interaction potentials are known,
the problem of calculating the anharmonic contributions

to thermodynamic functions for a crystal in the high-
temperature region (T >0y, ) is solved easily and accu-
rately by molecular dynamics.

(2) Within the expected accuracy of pseudopotential-
perturbation theory, our calculations for bcc sodium agree
with experiment for the room-temperature isotherm to
300 kbar, and for the anharmonic quantities ¥ and
(dT /0P)s to 32 kbar at temperatures of 298 and 473 K.
From this agreement we infer that our theoretical poten-
tials Q(¥) and ¢(r;V) are accurate representations of the
potentials which operate in metallic sodium.
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