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Andrews, Baxter, and Forrester have recently solved two infinite sequences of models that are
generalizations of the Ising and hard-square models and exhibit multicriticality. The nature of these
new two-dimensional multicritical points is examined in order to determine what universality classes
they may represent. Appropriate order parameters are defined and their critical exponents reported.
One infinite sequence of multicritical points are continuous melting transitions of p X 1 commensu-
rate ordered phases for all integers p >2. The other sequence appears to consist of “generic” mul-
ticritical points terminating lines of n-phase coexistence, again for all integers n >2. The multicriti-
cal exponents in this latter sequence coincide with those found by Friedan, Qiu, and Shenker on the
basis of assuming conformal invariance and unitarity.

I. INTRODUCTION

Only a small number of statistical mechanical models
exhibiting critical phenomena have been exactly solved.
They are the two-dimensional Ising model,"? the six-
vertex model,’ the eight-vertex model,*> and, more recent-
ly, Baxter’s hard-square lattice gas (which includes the
hard-hexagon model as a special case).”™® The Ising
model has the simplest critical point, at which fwo coex-
isting phases become indistinguishable; the order parame-
ter is simply the difference between the two coexisting
phases and vanishes with a critical exponent = % Three
coexisting phases become simultaneously indistinguishable
at either of the critical points exhibited by Baxter’s hard-
square model,’® thus let us call them threefold multicriti-
cal or tricritical points. The order parameters are differ-
ences between the coexisting phases: when there are n
coexisting phases then (n —1) different order parameters
can be constructed. Therefore, two different order param-
eters vanish at a tricritical point.

The three coexisting V'3 X V'3 commensurate phases in
the hard-hexagon model are simply spatial translations of
one another.>® This special symmetry under cyclic per-
mutation of the phases (Z; symmetry) dictates that the
two order parameters differ only by a multiplicative fac-
tor and vanish with the same exponent, = %, at the criti-
cal point. Thus the hard-hexagon—model critical point is
a special tricritical point that terminates a line of three-
phase coexistence with the three phases being related by a
Z; symmetry. The other tricritical point exhibited by
Baxter’s exactly solved hard-square model terminates a
line of three-phase coexistence where the three phases are
not related by any special symmetry.”~® The three phases
involved here are a fluid phase and two V2X V2 com-
mensurate solid phases.”® The leading order parameter
is the difference between the two solid ghases and van-
ishes with a tricritical exponent of 8;=-.% The second
order parameter is the density difference between the fluid
and solid phases and has exponent B,=+.% The lack of
any special symmetry relating the two order parameters
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suggests that this latter tricritical point represents the
universality class of ‘“generic” tricriticality, unlike the
hard-hexagon model with its special symmetry.

Andrews, Baxter, and Forrester'® have recently general-
ized the Ising model with its two-phase coexistence, and
the hard-square model, with its three-phase coexistence, to
an infinite sequence of exactly solved models, with n-
phase coexistence for all integers n. These models are de-
fined on a square lattice with the degree of freedom at
each site of the lattice being a spin or “height” variable
that may take on only a finite number of discrete states.
A more detailed description of these “restricted solid-on-
solid” (RSOS) models is given in Sec. II of this paper (see
also Ref. 10). Andrews et al. number the models in their
sequence by the integers r >4; r=4 is simply the spin--
Ising model, »=35 is the hard-square lattice gas, and the
models with > 35 are new.!® As r increases, so does the
number of different states allowed to each local spin or
height variable and, consequently, the number of parame-
ters necessary to fully specify the interactions in the
model also increases. The full phase diagram of the gen-
eral RSOS model is thus a multidimensional parameter
space. Andrews et al.!® have succeeded in solving each
model only on two-dimensional manifolds within this
larger space. For each model, r=4,5 ..., they have
found two distinct manifolds of exact solution.!® Each
such manifold is divided into two phases by a line of criti-
cal points and may be parametrized by the variables ¢ and
v, with the critical line being ¢t =0. [The parameter ¢ used
here to measure deviation from criticality is defined as
t = —p, where p is the parameter used in Ref. 10 in, for
example, their Eq. (1.5.4).] The order parameters and
critical behavior are independent of the parameter v,'°
which, roughly speaking, measures the spatial anisotropy
of the interactions in the model. For simplicity, this pa-
rameter v will be ignored for the remainder of this paper;
it may be assumed to be fixed at some value for each
manifold of exact solution.

Ignoring v, the manifolds of exact solution are simply
lines parametrized by ¢, which runs on the interval

3908 ©1984 The American Physical Society



30 EXACT EXPONENTS FOR INFINITELY MANY NEW . .. 3909

(r-2)x 1 COMMENSURATE  C DISORDERED
- REGIME II o REGIME 1 1 t

(r-2)-PHASE COEXISTENCE C (r-3)-PHASE COEXISTENCE
4 REGIME III o REGIME IV H '

FIG. 1. Exact solution manifolds of the RSOS models. Each
of the lines is divided into two regimes by a critical point C at
t =0.

—1<«t<]1, and are shown in Fig. 1. In this representa-
tion the phase diagrams are essentially identical for each
RSOS model in the infinite sequence r=4,5,... . Each
exact solution line is divided into two “regimes” by its
critical point (C in Fig: 1) at ¢ =0. One line consists of
regime I for 0 <¢ < 1, which is simply a disordered phase,
and regime II for —1<?<O, which is a line of
p=(r —2)-phase coexistence.!® The critical point here is
therefore an order-disorder transition, with increasing ¢
acting much like increasing temperature. The other line
of exact solution consists of regime III for —1<t¢ <O,
which is a line of (7 —2)-phase coexistence, and regime IV
for 0 <t < 1, which is a line of (» —3)-phase coexistence.!®
Thus for r >4 the critical point here separates two or-
dered phases and is of a very different nature than that
separating regimes I and II.

The purpose of this paper is to examine these critical
points in some more detail, in order to determine what
universality classes they may represent. The coexisting
phases in regime II all have ordering that is spatially
modulated along one diagonal of the square lattice, with a
period of precisely p =(r —2) next-nearest-neighbor spac-
ings; the ordering is spatially uniform along the other di-
agonal.!® The p phases differ only in how this nonuni-
form ordering is placed on the lattice; they are simply
translations of one another. The ordering present in each
phase of regime II therefore breaks the translational in-
variance of the underlying lattice such that the unit cell of
each ordered phase is p=(r —2) times as long as that of
the disordered phase in one direction, but of the same
width. Such commensurate ordered phases are denoted
pX 1.1 It has been argued!! that the continuous melting
of a pX1 commensurate phase, such as we have at the
critical point separating regimes I and II, should be in the
same universality class as a multicritical point of the p-
state clock model, whose Hamiltonian is invariant under
cyclic permutations of the p states allowed to the local
“spin” variables.!! The critical exponents exhibited by the
exact solution!® are consistent with this expectation for
those cases, namely p=2, 3, and 4, in which the ex-
ponents of the clock model are known, as shown in Sec.
III of this paper. For p >4, however, the clock models
are generally expected to disorder either via a first-order
transition or via a pair of transitions with an intermediate
phase.!? The exact multicritical points found'® do not ex-
hibit either of these expected behaviors and so must corre-
spond to special points in the space of general p-state
clock models, presumably to points at which the order-
disorder transition crosses over from a single first-order

transition to a pair of continuous transitions with an in-
termediate “massless” or “floating” phase with algebrai-
cally decaying spin-spin correlations.!? This is discussed
in more detail in Sec. III below.

The n=(r —2) phases that coexist in regime III of the
exact solution line!® are not all simply related to one
another as in regime II. In general, at a point of n-phase
coexistence, as in regimes II and III, (n —1)-independent
order parameters may be constructed; they are simply
differences between the n phases. In regime III these or-
der parameters may be defined (see Sec. IV below) such
that each has its own distinct critical exponent at the mul-
ticritical point separating regimes III and IV. In regime
II, on the other hand, the translational symmetry that re-
lates the coexisting phases dictates that the order-
parameter exponents are pairwise degenerate, leaving
fewer distinct critical exponents. The existence of a dis-
tinct exponent for each order parameter at the regime III
to IV critical point indicates that this is a generic n-fold
multicritical point, with no special symmetry present re-
lating the n coexisting phases, even in the scaling limit.
Thus it appears that Andrews et al.!° have found exam-
ples of generic n-fold multicritical points for all integers
n=(r —2)>2. They have solved each model only on a
line approaching the multicritical point, so their exact
solution does not necessarily exhibit all of the multicriti-
cal exponents. The exponents they do report'® are

2—a=r/2 (1.1)

for the free energy on both sides (regimes III and IV) of
the multicritical point and

3

:m (1.2)

B

for the leading order parameter in regime III. Other order
parameters can be constructed for r >4, as is shown in
Sec. IV below, and the corresponding exponents in regime
III are

(k+1)2—1

8(r—1) °’ (1.3)

Bi=
for integers k =2, ..., (r —3).

Friedan, Qiu, and Shenker have recently found that as-
suming conformal invariance and unitarity severely limits
the possible values of multicritical exponents in two-
dimensional systems.!> They find an infinite sequence of
possible multicritical points under these assumptions, each
one with only a finite set of rational critical exponents.!®
For each such multicritical point, which they label in se-
quence by the integers m >3, 13 there is a critical exponent
that is consistent with the free-energy singularity (1.1) in
regimes III and IV of the exact solution of Andrews
et al.'® for r=m +1. Furthermore, the corresponding
(m —2)=(r —3) leading order-parameter exponents al-
lowed by the assumptions of Friedan et al.'* also coincide
precisely with the exponents (1.2) and (1.3) found in re-
gime III of the exact solution. Thus Andrews et al.'°
have found an exact multicritical point for each set of
critical exponents of Friedan et al.!'* The infinite se-
quence of possible multicritical points of Friedan et al.!3
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therefore appears to represent the universality class of
generic (m — 1)-fold multicritical points.

II. THE MODELS

The models solved by Andrews et al. are presented as
restricted solid-on-solid (RSOS) models on a square lat-
tice.l® At each site, i, of the lattice is an integer “height,”
I;, which is restricted to the interval

1<l<(r-1), 2.1)

with the integer r >4. The heights at nearest-neighbor
sites of the lattice, /; and /;, must differ by unity:

| =1 |=1. (2.2)

The Boltzmann weight of a given configuration is simply
the product of weights assigned to each 4-site square pla-
quette of the lattice.'® These plaquette weights W are
determined by the heights at the four sites, /y,/5,/3,l4,
counting clockwise from the northwest (NW) corner [see
Fig. 2(a)], and have the symmetries

W l,12,03,18)=Wl3,15,11,14)
=W(l,14,03,13)
=W(r—ll,r—12,r—l3,r—l4) . (2.3)

The restriction (2.2) imposes a sublattice structure on the
system:!* the full square lattice may be divided into two
interpenetrating sublattices of next-nearest-neighbor sites,
let us call them odd and even. If we demand, as a further
restriction on the model, that the height /; at one site on
the odd sublattice be an odd integer, then all the other
heights on the odd sublattice must also be odd and all the
heights on the even sublattice must be even.!?

The general RSOS model as specified in the preceding
paragraph still has many free parameters, namely the
weights W (ly,1,,15,l4). Some of this freedom has no
physical significance; thus changing the weights via

W (7))

[ [
| !
| |
| |
I Wy, e0, 23,00 1
[ |
[ |
| [

w(/3)

(a) (b)

FIG. 2. Interactions in each four-site square plaquette of the
RSOS model. (a) Andrews et al. presented the model using gen-
eral four-site interactions W, coupling the four sites, 1, 2, 3, and
4. (b) The model may also be-presented as one with only one-
site interactions, represented by the w(/), nearest-neighbor in-
teraction of a very restrictive nature, given by (2.2) and
represented by the thick lines, and diagonal interactions
represented by y and z.
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W (ly,15,13,10) > W'(l,15,13,14)
_ CW(I],12,13,I4)X(11 )X(l3)
- X)X (1y)

where X (I)=X(r —I) and C and the { X(])} are otherwise
arbitrary positive real numbers, does not alter relative
weights of configurations with periodic boundary condi-
tions. The remaining number of physically relevant pa-
rameters in the model is (37 —8)/2 for even r and
(3r —9)/2 for odd r. Andrews et al.'® have solved the
model only on two-dimensional manifolds within the full
[(3r —8)/2]- or [(3r —9)/2]-dimensional space of physi-
cally distinct models with weights satisfying (2.3). They
parametrize the weights on their exact solution manifold
using elliptic 0 functions. The precise formulas are given
in Ref. 10, but do not appear to be very illuminating. The
weights are all analytic functions of ¢ for —1<# < 1.

The presence of plaquette or four-site interactions in
this model appears to inhibit understanding, but by utiliz-
ing the freedom of (2.4) the plaquette weights can be
transformed and factorized as

W’(ll,lz,l3,l‘;)=W(11 )w(12)w(13)w(l4)y(ll,l3)z(12,l4) N
2.5)

,  (2.4)

where the one-site weights satisfy
w(l)=w(r-1), (2.6)

and the weights for the next-nearest-neighbor interactions
satisfy

y (1N =z(L,I")=1 for Il
2.7)
y(L)=y=y, 1, z(L)=z=2z,_,;,

for all /. Thus the model may be presented in, perhaps,
more familiar terms as one with single-site “interactions,”
represented by the weights {w(l)}, nearest-neighbor in-
teractions of a very restrictive nature (2.2), represented by
the thick lines in Fig. 2(b), and next-nearest-neighbor in-
teractions, represented by the weights {y(ly,13),z(l,,14)},
see Fig. 2(b). ’ ,

For r even, the model may also be translated into an Is-
ing model by changing to spin variables

si=(r—=20;)/4 . (2.8)

This produces spin-[(r —2) /4] Ising spins on the odd sub-
lattice and spin-[(» —4)/4] spins on the even sublattice.
For r =4 the spin-0 spins on the even sublattice have only
one possible state (s =0, / =2) and may be ignored. The
spin-4 spins on the odd sublattice then interact only with
their closest neighbors on that sublattice. These diagonal
interactions are specified by the two parameters y,=y;
and z,=z;. Thus in this, the simplest case, r=4, the
RSOS model is equivalent to an anisotropic spin- Ising
model in zero field with only nearest-neighbor interactions
on a square lattice, as solved by Onsager.! For r =6 we
have spin- spins on the even sublattice and spin-1 spins
on the odd sublattice. The nearest-neighbor restriction
(2.2) is |s;—s;| =7 in terms of these spins; for r =6 the
only configurations forbidden are those with antiparallel



nearest-neighbor spins. This restriction is the only in-
teraction between sublattices. Thus we have an anisotro-
pic spin-3 Ising model on the even sublattice, with two
coupling parameters, one for each diagonal. On the odd
sublattice we have a spin-1 Ising or Blume-Capel'* model,
with again a coupling parameter for each diagonal and
also a one-site coupling to the magnitude of the spin.
This gives a fairly physical representation of the five pa-
rameters in the r =6 model. For larger r the model be-
comes more and more complicated and this representation
as an Ising model probably becomes less useful.

For r odd, Andrews et al.'° propose a lattice-gas repre-
sentation of the model, changing to the occupation vari-
ables

(I;—2)/2 for I; even ,

9i=(p—1,—2)/2 for l; odd . 2.9

This produces a lattice gas with maximum occupation
(r —3)/2. The generalized hard-hexagon (or hard-square)
model as solved by Baxter® is the case =5 and is normal-
ly presented in this lattice-gas representation.’™® Again,
the model becomes rapidly more complicated as 7 in-
creases and it is not clear if this lattice-gas representation
is useful for » > 5.

III. REGIMES I AND II;
p X1 COMMENSURATE MELTING

In regime I the restricted SOS model is disordered for
all 7.!° This means that the probability

P()=(8,,) , 3.1

of finding the height /;=a at a given site i in the interior
of the system is independent of the boundary conditions
in the thermodynamic limit.!® In regime II, on the other
hand, there are p=(r —2) distinct ground states and as
many corresponding ordered phases, so the local ordering
can be affected by far boundary conditions. The ground
states in regime II have a spatially nonuniform structure;
they are invariant under global translations along the SW
to NE diagonal of one next-nearest-neighbor spacing, but
along the other (NW to SE) diagonal they are invariant
only under translations by an integer multiple of
p=(r —2) next-nearest-neighbor spacings.!® A ground
state for r =6 is illustrated in Fig. 3. As one moves along
a row of the square lattice the height variables, [;, in each
ground state move up and down within the allowed limits,
first increasing in unit steps to (» — 1), then decreasing to
1, then increasing to (r —1), etc.!® A unit cell of this
ground state can be chosen to be (2r —4) adjacent sites in
a row, numbered n =0,1,2, ..., (2r —5) (west to east, see
Fig. 3), with the odd sites on the odd sublattice. The
(r —2) ground states and their corresponding phases may
then be numbered by the odd integer 1<j<(2r —35) so
that in each ground state /;=1. The pattern of order in
each phase is the same; they differ from each other only
in how ‘that order is placed on the underlying lattice.
Thus the probabilities { P”(n)} in the different phases j
are related via!®

PP(n)=PY(n') if j—n=j'—n' [mod(2r —4)] . (3.2)
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FIG. 3. Ground state in regime II of the » =6 RSOS model.
The height variable /; is given at each site of the square lattice.
The long horizontal boxes denote unit cells of this 4X 1 com-
mensurate ordered phase. The unit cell of the disordered phase
in regime I contains two sites, one on each sublattice.

The modulated ordering in these phases is commensurate
with the lattice, with the unit cell of the ordered phases
being p times as long as the unit cell of the disordered
phase (which consists of two sites) in one direction, but of
the same width. Such commensurate ordered phases are
denoted p X 1.1

The multicritical transition from regime II to regime I
of the exact solution surface is the melting of a p X 1 com-
mensurate phase, with p=r —2. It is a continuous phase
transition; the free energy is singular with exponent!°

2—a=(p+2)/p (3.3)

in both regimes. The {P,ij Y(n)} in regime II are given by
Eq. (3.3.18b) of Ref. 10 and their expansions about the
critical point (¢ =0) are

ma

PY(n)= %sin

X’i? [ | ¢ |k(r-z_k)/2(r_2)25in(k +r1)n-a

X °°S——"——kwr('__2"’ [1+o(] e [2=2] | .

(3.4)

The spatial Fourier transforms of these local probabilities,

) (2r—5) )

P, (k)=(r—-2)"' 3 P/(n)expliknm/(r—2)], (3.5
n=0

vanish, for integer 1<k <(r —3), in each phase j for

t—0 as

)

Bk~ % It | Prsin | T2

ikjm
r—2

sin (k +r1 yra

) (3.6)

with critical exponent
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_k(r—2—k)
Bi= 2r —2)2

These ﬁ‘ij)(k) take on different values in each of the dif-
ferent ordered phases and therefore represent order pa-
rameters for regime II. Note that the symmetry of the or-
dered phases dictates that the order-parameter exponents
satisfy By =B, _»_x- ‘

The continuous melting transition of a p X 1 commens-
urate phase, such as is present in this exact solution, is ex-
pected to be in the same universality class as the disorder-
ing transition of a p-state chiral clock model.!! Such a
clock model consists of p-state local-spin variables, n;,
that may take on the values n;=0,1,...,(p —1). The
clock-model Hamiltonian, with, for example, just
nearest-neighbor interactions, reflects the Z, spin symme-
try by being invariant under the global transformation

(3.7

n;—n; =n;+1(modp) (3.8)

that cyclically permutes the spin states. This Z, symme-
try corresponds to the invariance of the restricted SOS
'model under translations along the NW to SE diagonal by
one next-nearest-neighbor spacing. In the ordered phase
this Z, symmetry is broken; in the restricted SOS model a
spatial modulation of the local order breaks this symme-
try, while in the clock model one of the p spin states is
selected out in a “ferromagnetically” ordered phase. The
order parameters of the clock models are

M = (exp(2mikn; /p)) (3.9)
and correspond directly to those of the restricted SOS

model (3.5).
For p=2, r=4, the RSOS model reduces to a spin-5

Ising model on the odd sublattice, as discussed in the

preceding section. In regimes I and II the couplings are
ferromagnetic along the SW to NE diagonal and antifer-
romagnetic along the other diagonal. This produces a
2X 1 antiferromagnetically ordered phase in regime II.
The two-state clock model is also precisely an Ising model
so both it and the » =4 RSOS model have the same criti-
cal behavior with =0, 8= %

For p >3 a p-state clock-model Hamiltonian may or
may not be invariant under the transformation

n;—n; =p—n; (3.10)

which reverses the ordering of the spin states (thus inter-
changing clockwise and counterclockwise). If this (3.10)
is a symmetry of the system, then it is a symmetric clock
model, while couplings that break this symmetry are
dubbed “chiral.”!! For p =3 the symmetric clock model
is the three-state Potts model, at whose critical point
chiral symmetry breaking is known to be relevant.!!
Thus the continuous melting of a 3X1 commensurate
phase, such as we have in regime II of the r =5 RSOS
model, will be in the three-state Potts-model universality
class only if the effective chiral symmetry breaking van-
ishes at the critical point. Otherwise the transition will be
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in a universality class governed by a fixed point with
chiral symmetry breaking.!! In the disordered phase the
spatial correlation function will decay in an oscillatory
fashion at long distances, with the period of the oscilla-
tions incommensurate with the lattice, if chiral symmetry
breaking is present.!! In regime I of the r=5 RSOS
model (the generalized hard-hexagon model) such incom-
mensurate oscillations are indeed seen.!® However, in the
scaling limit, t—0, these oscillations vanish, so they are
not present in the critical scaling function for the correla-
tion function. Thus the leading chiral symmetry-breaking
operator, which is relevant, must vanish at the regime I to
II critical point for r =5, a feature of the model which is
not at all apparent from the symmetries and nature of the
basic interactions (see Ref. 9 for more discussion of this).
This vanishing of chiral symmetry breaking allows the
critical point to be in the three-state Potts-model univer-
sality class, with exponents & =4 and B=1+.

The correlation functions in the r>6 RSOS models
have not been calculated, so no direct evidence on the
presence or lack of chiral symmetry breaking in regime I
or at the critical point is available yet. For r=6 the re-
gime I to II multicritical point is the melting of a 4X'1
commensurate phase, so it should be in the same univer-
sality class as a four-state clock model. The symmetric
four-state clock is the Ashkin-Teller model, which has
continuously varying critical exponents and is in the same
universality class as the eight-vertex model.!” The critical
exponents of the r=6 RSOS model, namely a=17,
Bi==, and B,=+ are precisely equal to those of a point
on the critical line of Ashkin-Teller model,'” so it appears
that these two critical points are in the same universality
class. Since chiral symmetry breaking is also relevant at
this Ashkin-Teller—model critical point,'>!® it must van-
ish at the RSOS-model critical point for it to remain in
the Ashkin-Teller universality class. Of course, the tran-
sition might be in a chiral universality class'! that hap-
pens to have the same exponents as the Ashkin-Teller
model; this cannot be ruled out until the correlation func-
tion is calculated.

For p >4 the melting of a p X 1 commensurate phase or
a p-state clock-model ordered phase is expected to gen-
erally be either a first-order transition or a double transi-
tion with an intermediate massless or floating
phase.”’lz’18 However, there must also be multicritical
points where the crossover between these two types of
behavior occurs; precisely at such crossover points the
melting may occur in a single continuous phase transition.
Since the transitions found in the r >6 RSOS model by
Andrews et al.'° are unique and continuous, it appears
that they have found such special cases of p X1 melting.
Exactly how special the exact solution manifold is for
p >4 is unclear. A better understanding of the situation
might be obtained by exploring (presumably by Monte
Carlo simulation) the RSOS model in the vicinity of the
exact multicritical point, but off of the manifold of exact
solution, to see how it fits in the phase diagram in a larger
parameter space. Independent of the precise nature of
these p X1 melting transitions, the exact critical ex-
ponents for p >4 are certainly new and represent new
universality classes of multicritical point.
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IV. REGIMES III AND IV;
GENERIC n-FOLD MULTICRITICALITY

For r >4 the restricted SOS model is ordered in both
regimes III and IV. The only part of this portion of the
exact solution manifold that is disordered is the multicrit-
ical point separating regimes III and IV. (For r=4 the
model reduces to the Ising model and regime IV is the
disordered or paramagnetic phase.) The n =r —2 phases
that coexist in regime III each correspond to a uniformly
ordered ground state.!° Here and in the subsequent dis-
cussion of regime IV the term “ground state” is used
somewhat loosely; the n ground states are not precisely
degenerate, but the free energies of the corresponding
phases are. Each ground state in regime III has all
heights on the odd sublattice equal to /,, while all heights
on the even sublattice are equal to I, with |/, —I,| =1.
The (r —2) such ground states and their corresponding
phases are labeled by the integer d, which is simply the
lesser of /; and 1,.1° The three ground states for the case
r =5 are illustrated in Fig. 4. In regime IV there are only
(r —3) coexisting phases, as is discussed briefly at the end
of this section.

The transition from regime III to regime IV is continu-
ous; all the coexisting phases become identical at the mul-
ticritical point. ‘The free energy is singular with ex-
ponent!?

2—a=r/2. 4.1)

For r even there is also a logarithmic factor present so the
singular part of the free energy behaves as'”

fo~t"nt 4.2)

for t—0. For r =4 this is the familiar Ising-model re-
sult. For r odd the singular part of the free energy actual-
ly vanishes in regime III, but not in regime IV.!° Since
the phases here are spatially uniform the probabilities
{ P,(i)} are the same for all sites on a given sublattice.
Thus the average of P, over all sites for the d phase is
simply

PO=5[PPi)+PP()), 4.3)
where the sites i and j are arbitrary sites on the odd and
even sublattices, respectively. The exact expression for

P.? in regime III, as obtained from Eq. (3.3.18c) of Ref.
10, can be expanded about the multicritical point as

12 1 2 4 323 2 3 3 43 43

2 1 2 1 2 2 32 3 2 4 3 4 3 4

12 1 2 ¢ 323 2 3 3 43 4 3

2121 2 2 3 2 32 4 3 4 3 4

12 4 2 14 32 3 2 3 34 3 4 3

2 1 21 2 2 32 3 2 4 3 4 3 4
d=1 d=2 d=3

FIG. 4. Ground states corresponding to the three ordered
phases, d =1,2,3, in regime III of the r =5 RSOS model.

=(d)_ 2sin(ma /r)
¢ 7 psin[wd /(r —1)]

& (n2=1)/8(r—1)
XY |t

n=1

nwd

r—1

nmwa

X sin [1+0(@®)]. (4.4)

The order parameters in regime III are differences be-
tween the various phases d =1,...,(r —2) and may be
chosen to be

wd
r—1

R¥P=(r ——2)“12F,£d)sin
p r—1

n[(k—i—l)vrd

(4.5)

for integers 1 <k <(r —3). In regime II the order param-
eters (3.5) are simple spatial Fourier transforms of the lo-
cal ordering. Unfortunately, the order parameters here in
regimes III and IV do not appear to generally have such
familiar interpretations. As ¢t—0 in regime III the order
parameters vanish as

By ,
R;k)z —ILrL—sin 72 lsin lm , (4.6)
where the critical exponents are
_ (k+17—1
Be="%,_1 4.7)

Note that in regime III we have n =(r —2) coexisting
phases and consequently (n —1) order parameters. Each
order parameter has its own distinct critical exponent at
the multicritical point. Thus this appears to be a generic
n-fold multicritical point, with no special symmetry
present that relates the different order parameters and
demands that they have the same exponent. By contrast,
at the regime II multicritical point the order-parameter
exponents are degenerate pairwise due to the special Z,
symmetry relating the ordered phases.

It is certainly of interest to compare the multicritical
exponents found in the exact solution of Andrews, Baxter,
and Forrester'® to those found by Friedan, Qiu, and
Shenker!® based on assuming conformal invariance and
unitarity. Friedan et al.!* find an infinite sequence of
possible realizations of conformal invariance, which they
label with the integers m =3,4, ..., each representing a
possible multicritical point. (Note this sequence does not
contain all possible realizations satisfying their assump-
tions.) For each such realization they find a finite set of
rational numbers that must contain all possible critical ex-
ponents.!3 In order to compare their exponents to those
of the regime III to IV multicritical point we must calcu-
late the critical indices or scaling dimensions for the order
parameters (4.6), namely,

_ 2Bk (k+1)*—1
T 2—a 2r(r—1)

The “thermal” critical index is

X (48)
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The sequence of (r —3) order-parameter critical indices
(4.8) in the RSOS model coincide precisely with those in-
dices in the range 0<x < % allowed by the analysis of
Friedan et al.'® for the realization m=(r—1). The
thermal index (4.9) is also allowed in the same realization.
Thus the restricted SOS model of Andrews et al.!® ap-
pears to provide an explicit realization, namely the regime
III to IV transition, of each hypothetical multicritical
point in the infinite sequence, m =3,4, ..., proposed by
Friedan et al.'> The regime I to II multicritical ex-
ponents (3.3) and (3.6), on the other hand, do not coincide
with the exponents of Friedan et al.!® in any simple way.
It may be that the regime I to II multicritical points are
not generally conformally invariant, or that they represent
realizations of conformal invariance that are not in the se-
quence discussed by Friedan et al.!* Hopefully further
investigation will address this question.

In regime IV of the exact solution manifold of the
RSOS models, there are (r —3) coexisting spatially uni-
form phases. For odd r these are simply all the phases
present in re§ime IIT except the “middle” one with
d =(r —1)/2.1° For even r the two middle phases with
d=(r—2)/2 and d =r/2 are replaced by a new phase
which does not correspond to a unique ground state.'
. Order parameters can be constructed for regime IV that
correspond directly to the first (» —4) order parameters in
regime III. These order parameters, defined in a fashion

(4.9)

analogous to (4.5), vanish precisely as given by (4.6), but

with different exponents,

v (k+1)—1
B = ar—2) (4.10)
A plausible explanation for the presence of different “ob-
served” exponents in regime IV of the r=5 RSOS or
hard-square model is given in Ref. 9. The same situation
appears to be occurring in all the r>5 RSOS models.
Briefly, if a line of generic (n — 1)-fold multicritical points
is- very near regime IV, then the singularities due to this
line can modify the exponents observed on regime IV.
This will occur if the separation of the multicritical line
and regime IV is only due to an irrelevant scaling field
with; for example, correction exponent 6. Then the ob-
served exponents in regime IV will be

B =B +o6mBE Y (4.11)
where 8" are the “true” order-parameter exponents (4.7)
at the generic n-fold multicritical point, as observed in the

corresponding regime III (see Ref. 9 for more details).
Solving for 6, we find
gm=nt2 4.12)
n+1’

which is a correction-to-scaling exponent seen in some of
the exact results for regime IIL,!? and also present in the
list of exponents allowed by the assumptions of Friedan
et al.B3
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V. CONCLUSIONS AND QUESTIONS

The recent exact solution of the restricted solid-on-solid
(RSOS) models of Andrews, Baxter, and Forrester'® ex-
hibits two infinite sequences of multicritical points. The
regime I to II multicritical point in each model,
r=4,5,..., is the continuous melting transition of a
p X1 commensurate phase, where p =r —2. Appropriate
order parameters for these commensurate phases are de-
fined by Eq. (3.5) above. The exact critical exponents
(3.7) for each of the (p —1) different order parameters
have been extracted from the exact solution. These mul-
ticritical points should be in the universality class of the
p-state chiral clock models.!! For r =4, p =2 this is cer-
tainly the case, since the RSOS model is exactly
equivalent to the two-state clock or Ising model. For
r=5, p =3 the exact expression for the correlation func-
tion'® shows that chiral symmetry breaking'! vanishes in
the scaling limit at the critical point. Thus the r=5
RSOS model critical point is in the universality class of
the symmetric (nonchiral) three-state clock or Potts
model. It will be interesting to see correlation functions
for r>6, in order to learn whether these multicritical
point are in symmetric or chiral universality classes. For
r=6, p =4 the critical exponents coincide precisely with
those of the symmetric four-state clock or Ashkin-Teller
model, so it appears that chiral symmetry breaking again
vanishes at the critical point. This may be a general prop-
erty of the RSOS models.

The clock models for p >4 exhibit a variety of phase
transition behavior, including first-order melting, two-
stage melting with an intermediate power-law phase, and,
presumably, various special multicritical points at which
crossover between different types of melting occurs.!?
The RSOS models all exhibit a single continuous melting
transition; therefore they must be some special or mul-
ticritical case of p X1 melting for p >4. Precisely how
these exact solutions fit into the general clock-model
phase diagram is not obvious; this question might be
answered by simulations of the RSOS models away from
the manifold of exact solution.

In regime III of each RSOS model there are (r —2)
coexisting phases and consequently (» —3) order parame-
ters; they are given by (4.5) above. At the regime III to IV
critical point all of these order parameters vanish, each
with its own unique critical exponent. The existence of a
distinct critical exponent for each order parameter sug-
gests that the regime III to IV critical point represents a
generic (r —2)-fold multicritical point, with no special
symmetries present to relate the various order parameters.
In regime IV the order-parameter exponents are different
from regime III, presumably due to a nearby line of mul-
ticritical points. Again it might be interesting to under-
stand how the exact solution manifolds and their mul-
ticritical points fit into the phase diagram of the general
RSOS model; this question could be explored by Monte
Carlo simulation. However, even for the simplest new
case, the generic tetracritical point, there are six relevant
scaling fields, so an understanding of the full phase dia-
gram will not be easily attained.

Friedan, Qiu, and Shenker'? have recently found an in-
finite sequence of hypothetical multicritical points by as-
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suming conformal invariance and unitarity. For each
such multicritical point they have obtained the full set of
critical exponents. The exact exponents of the regime III
to IV multicritical points in the RSOS models coincide
with a subset of the exponents proposed by Friedan
et al.'* Thus the RSOS models appear to provide an ex-
plicit realization of each multicritical point in the infinite
sequence proposed by Friedan et al.!* Therefore, this in-
finite sequence of conformally invariant multicritical
points should represent generic n-fold multicriticality for
all integers n. The regime I to II multicritical points do
not appear to fit into this conformal scheme in any simple
fashion. This raises the question of whether these mul-
ticritical points are conformally invariant and, if so, how
can they be fit into a classification scheme like that of
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Friedan et al.!3

As a final question, the above suggestion implies that
the critical exponents of the three-state Potts critical and
tricritical points coincide with subsets of the generic tetra-
critical and pentacritical exponents, respectively (see Ref.
13). What could be the significance of this?
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