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Following previous work in which a variational method for the many-body problem was proposed

wherein an effective potential V was introduced as a variational parameter to construct a trial wave

function, we apply the method to the two-dimensional electron gas. In the method, every physical

quantity is expanded in powers of V instead of the bare potential as in the usual perturbation-

theoretic approach. Because of this choice of expansion parameter, the expansion series converges

rapidly even in the strong-coupling region. The result for the correlation energy in the two-

dimensional electron gas agrees very well with that given by the variational Monte Carlo method

even in the lowest-order calculation (i.e., to second order in V). 'The difference is within several per-

cent for 1 & r, & 100.

I. INTRODUCTION

Thanks to the rapid progress of computational tech-
niques -in the last decade, we can perform an exact sto-
chastic simulation of the Schrodinger equation for a large
(but finite) number of particles. The result extrapolated to
an infinite number of particles is considered to give exact
data on the ground-state properties of a many-body sys-
tem. This numerical method, usually called the Green's-
function Monte Carlo (GFMC), ' has been applied success-
fully to several systems including the electron gas.

The appearance of GFMC seems to have modified the
role of analytic approaches to the many-body problem.
%'e expect an analytic method to reproduce the ground-
state properties obtained by the GFMC preferably without
introducing any adjustable parameters. What is more im-
portant is that the method should be as simple as possible
so that we cannot only clarify the essential physics unam-
biguously but also extend it without much difficulty to
the study of excited states in connection with the response
theory to external fields and finite-temperature problems.

Since the homogeneous electron gas embedded in a neu-
tralizing positive background provides an excellent testing
ground, all the many-body techniques thus far proposed
have treated this problem. Among them, the
perturbation-theoretic approach succeeded in deriving the
exact result in the high-density limit for the first time by
taking a partial infinite sum of divergent terms in the per-
turbation series. There have been many attempts to treat
the metallic density region along this line. Because the
expansion parameter is the bare potential V(q) in this ap-
proach, a main problem is that the expansion itself is
meaningless in the strong-coupling region unless an infin-
ite sum is made very carefully and all the remaining terms
are found to be small.

The variational approach of a Bijl-Dingle-Jastrow trial
function has produced fruitful results in the strong-
coupling region, though it cannot reproduce the rigorous
result in the high-density limit. In this approach, a clus-

ter expansion is obtained with the expansion parameter

f (r) 1, wher—e f (r) is the so-called correlation function
in the definition of Jastrow-type trial functions. As usual-

ly performed by the Fermi hypernetted-chain (FHNC)
method, ' it is necessary to make a partial infinite sum of
this expansion series, partly because the convergence is
slow (particularly when there is a long-range correlation
in the system), and partly because the Pauli principle does
not hold order by order in the expansion.

In other approaches such as the equation-of-motion"'2
and the coupled-cluster' ' methods, an infinite sum is
also performed by solving some integral equation. Gen-
erally speaking, if such an infinite sum is always necessary
in order to obtain physically meaningful results, terms
which do not fit well in the sum should be either neglect-
ed, or estimated roughly, even if they should be treated
more seriously. In a sense, the perturbation-theoretic
method is composed of a series of such approximations.
We can also find an example in the coupled-cluster
theory. The "mean spherical approximation" was intro-
duced to ignore dependence other than the momentum
transfer in the evaluation of the energy denominator. '

The same treatment was discussed in the recent develop-
ment of the correlated-basis-function (CBF) method. '

Since there is an infinite number of degrees of freedom
in a many-body system, one might think it inevitable to
perform an infinite sum. But if we examine actual calcu-
lations more carefully, we find that none of those methods
allow us to sum all terms. Only some partial part is con-
sidered to infinite order and so an infinite number of
terms is neglected. This observation suggests that if we
can expand with an expansion parameter which includes
all the important physical processes that are taken into ac-
count by some infinite sum in other methods, we may ob-
tain an excellent result with only a finite number of terms.
If we can find such an expansion parameter, we moderate
the complications associated with some infinite summa-
tion.

Motivated by the above consideration, the present au-
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thor has proposed a new cluster-expansion theory in a pre-
vious paper'6 hereafter referred to as I. The first essential
idea is to expand with respect to an effective potential V
in order to include physically important processes without
making any explicit infinite sum. Owing to the choice of
V, no divergence appears in any term of the expansion. In
addition, even in the strong-coupling region, V is expected
to remain small to bring about a rapid convergence. The
second essential idea is to determine V by a variational
procedure. This is very important in order to make the
theory not phenomenological but rather a first-principle
and self-contained calculation. Another idea is to treat
the direct and exchange terms in a manifestly antisym-
metric way so as to make the Pauli principle hold order
by order.

Although the expansion was formulated for the first
time in I, the idea to employ the effective potential as an
expansion parameter is not new. Macke' was probably
the first to introduce the idea. Its usefulness has been em-
phasized in the CBF. Furthermore, there is some concep-
tual relation with the local-field correction and the polar-
ization potential of Pines, ' though the effective potential
in these approaches is a little different from ours and may
be regarded as the sum of our V and an approximate ex-
change contribution. There were also a few discussions on
finite-order calculations. Talman' showed that if lnf(r)
instead off ( r) 1 was chosen—as an expansion parameter
in the Jastrow-type approach, lowest-order calculations
were not unsatisfactory. A similar discussion was given
by Horsch and Fulde. They started from a Gutzwiller-
type trial function ' and argued the usefulness of calcula-
tions up to second order of an expansion parameter which
was essentially the same as that of Talman. The present
author believes, however, that the choice of V for an ex-
pansion parameter is more fruitful and informative than
any other choice.

In this paper we neglect all terms higher than second
order in V. As suggested in I, the physical picture of this
treatment is very clear. The many-body problem is re-
duced to a two-body one. The effective interaction be-
tween the two particles, V, takes account of the effect of
other particles and is determined variationally. Every
process in the two-body problem will be evaluated
rigorously term by term. Thus, the relative importance of
each process can be seen unambiguously. Hereafter, we
will denote as the two-body approximation the cutoff of
our cluster expansion at this level. In the high-density
three-dimensional (3D) electron gas, the lnr, term, the
leading term in the r, expansion of the correlation energy
e„ is correctly derived in this approximation, as shown in
I. At finite but small r„ the result for e, gives a very
good upper bound to the rigorous value. For example,
the error is about 6% at r, =0.1. Thus, the purpose of
this paper is to examine to what extent the two-body ap-
proximation is useful in the strong-coupling region.

The actual calculation is done for the two-dimensional
(2D) electron gas, rather than 3D one, in order to make
numerical computations a little easier. Electrons trapped
on the surface of liquid helium or those in the inversion
layer of a metal-oxide-semiconductor (MOS) interface are
considered to be 2D. Qualitatively, there is no differ-

ence between 2D and 3D systems. Therefore, once our
method is confirmed to work well in a 2D system, the
same will hopefully be true in a 3D one. Concerning the
quantitative difference, Ceperley's work is quite infor-
mative. He estimated the r, value for the ferromagnetic
transition in both 2D and 30 electron-gas systems by em-
ploying the variational Monte Carlo (VMC) method.
The result was that r, —13 for a 2D system, while it was
about 26 in a 3D one. He also made a similar calculation
for the Wigner-lattice transition to find that r, —33 and
67 for 2D and 3D systems, respectively. Therefore, we
may conclude that the situation of r, =3, for example, in
a 2D system corresponds to that of r, =6 in a 3D one.

A disadvantage in the choice of the 2D electron gas is
that the GFMC result is not available now. However, this
is not so serious, because, in addition to several results ob-
tained by various methods, there is a result of
VMC. This is known to give an e, only a few percent
higher than that of GFMC over a very wide range of r, in
the 3D electron gas. Thus, we can check our result by
comparing with that of VMC.

In Sec. II we review our method and give equations to
evaluate physical quantities such as e, and the pair distri-
bution function in the two-body approximation. These
equations hold as well in any spin- —,

'
system and dimen-

sion. We present the calculated results for the 2D elec-
tron gas in Sec. III. After describing how to evaluate each
term numerically, we treat the high-density limit first.
The two leading terms (constant and r, lnr, terms) are
reproduced rigorously in the present approximation.
Then, we find that e, in the Singwi-Tosi-Land-Sjolander
(STLS) method" calculated by Jonson is reproduced by
the use of the spin-independent effective potential. We
can improve our result by introducing the spin-dependent
effective interaction V~~ (q) in such a way as
V„(q) & V»(q) for q (2k+, while V»(q) & V»(q) for
q & 2k~, where k~ is the Fermi wave vector. The final re-
sult for e, is in good agreement with that of the VMC.
The difference is within 4%%uo for 2 & r, & 50. As for the
spin-dependent pair distribution function g (r), g„(r)
always behaves reasonably. In accordance with the Pauli
principle, g»(r) is zero at r=0 and always positive else-
where. However, g» (r) becomes slightly negative near
r=0 for r, &2.5. In Sec. IV we summarize our results
and discuss problems, particularly that of the negative
g„(r).

II. EFFECTIVE-POTENTIAL EXPANSION

A. Cluster expansion for the ground-state energy

We consider the normal ground state of a quantum Fer-
mi liquid by employing the variational method developed
in I. Since the description in I was a little too general, we
give here a rather detailed account of the formulation.
We restrict ourselves to the system in which only two-
particle correlations are important.

The Hamiltonian of an N-particle system is written as

H =Hp+ V.
In second quantization, the noninteracting part Hp is
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given by

Ho= g e C C
k ko ko

k, o

(2)

and the two-body potential part V is described with the
use of Fourier transform of the bare potential V(q) as

V=—, g g g V(q)C C, C C, (3)
q k, o k'o'

where C is the destruction operator of a particle speci-ko
fied by wave vector k and spin cr, and e is the kinetic

k
energy of the particle. For the ground-state wave func-
tion, we consider the following trial function:

ICo = IO + , +( —1)'
l
l, &&I,

I
V

I
0& ( —1)i

2t (~0) &2 (~0)

lli, l2&(li
I
VIO&(l

(E/Ep)(EjEQ) (4)

The first term of Eq. (4),
I
0&, is the ground state of Hp

(i.e., the state described by a plane-wave Slater deter-
minant). The second term is constructed by a (2p-2h)
state in which two particles below the Fermi surface are
excited above it and leave two holes. Thus,

I
Ii & is de-

fined by

XC-, , C-
k ', o' k, o

(7)

I pi+q I
&k~

I p i
—q I

&kF
I pl I «F

I p 'i
I

& kF. The spin indices satisfy the relation of either
o.

j
——~~ and 0.

~
——~~, or cr~ ——~~ and o.

~
——~&. The energy

denominator EI —Ep is given by
1

EI —Ep =E'~ ~+6'~ g ~ —E'~ —6~ pv~+q I ~
—q v~ v~

In general, the nth-order term in Eq. (4) is composed of n

such (2p —2h) states, denoted by
I
1„12,. . . , l„&. These

n (2p —2h) states are taken to be uncorrelated to each
other. Thus, only two-particle correlations are included in

I
C'o&

The effective potential V in the definition of Eq. (4) is a
variational parameter. In the present paper we assume
that V depends only on the magnitude of momentum
transfer and the relative spin orientation. Therefore, we
may write Vas

v=-,' g g g v..(q)c' „c',
q (+0) ko k 'o'

( H & = (@p
I
H

I
4p &/(4p

I
Np &

= g E'"',
n=0

(8)

E'"=Co,o(Ho)+ Co,o« (9a)

and for n &1,
E'"'=C„„ i(V)+C„ i „(V)+C„„(Ko)+C„„(V). (9b)

The correlation function C„„(A)is defined by

We have excluded the case of q =0 in Eq. (7), because the
state created by the q =0 excitation is nothing but

I
0&.

Physically, V determines the scattering amplitude of
two particles. Let us consider the scattering event to
create the state

I
li & in Eq. (5) from the Fermi sphere

I
0&. For particles with antiparallel spins, the scattering

amplitude is proportional to V„(q), while for those with
parallel spins, it is proportional to V» (q)
—V„(

I

p'i —pi —q I
). In our expansion, therefore, the

direct and exchange terms are incorporated in a manifest-
ly antisymmetric way which guarantees that the Pauli ex-
clusion principle is satisfied order by order.

The expectation value of the Harniltonian with respect
to the trial function (4) has been derived in I. The result
is a cluster expansion of the ground-state energy with the
expansion parameter V and is given by

&Ol vllm& ~ &lm
I VIo& &li ln l~ lli 4 &c

1 l~ I' I'„. m =1 1m 0 m'=1 l' n, n '.I
't

1
n' m m'

(10)

where A is either Hp or V, and the subscript C denotes
the instruction to take only connected diagrams. This
function can be calculated with the use of Feynman dia-
grams, as prescribed in I. But when V does not depend on
the frequency co as in the present case, C«(A) can also
be obtained by Goldstone diagrams.

B. Correlation functions in two-body approximation

The zeroth-order term E' ' in Eq. (8) is the energy in
the Hartree-Fock approximation. Namely, we obtain

E"'=&OIH IO& .
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(a) Cpp(Hp): (a) c (v}1,1
(a) C(1')(V)

1,1

(b) cpp(v ):

(b-1) Har tree (b-2) Fock

(c) C1P(V): (( ( )(+ I

(I3) C (Y)1,1
(b'} c '(v)

1,1

(c-1)Qirect (c-2)Exchange

(d) Cl ) (Ho):
J

+II 'l(( &&+I( &&+/( (c) C( )(V)
1,1

(') c ' (v)1,1

(d-1) Direc t (d-2) Exchange

FIG. 1. Goldstone diagrams for Cp p(Hp) Cp p( V) C) p( V),
and C) )(Ho).

The diagrammatic expression for this term is given in
Figs. 1(a) and 1(b). The first-order term E"' can be
rewritten as

E(1) (q)( )
(
H

(

(P( ) ) E(0) (12)

where
(
NI)") is defined by the first two terms in Eq. (4).

Since only two particles are involved in
(
4I)"), as can be

seen in Eq. (5), E"' is composed of all the processes that
the two-body problem can produce. In this sense, the N-
body problem is reduced to a two-body one at this level.

There are four correlation functions in E"': C( o(V),
Co i( V), Ci i(Hp), and Ci i( V). The first and the second
give just the same result. There are two contributions to
Ci o(V). One is the direct one Ci"p, and the other is the
exchange one C'('I). These two are shown in Fig. 1(c) in
terms of Goldstone diagrams. They are expressed, respec-
tively, as

C',",'(V)= ——,
' & & g V(q)V..(q)

q(~O) P ~ P

&& W) (q; po", p 'o'), (13a)

(d) c '(v)
1,1

(e) C(5d)( y)
1,1

(~) c""( )
1,1

(d') c '(v)
1,1

( ) C (5e)(V)

($') C (v)
1,1

and FIG. 2. Goldstone diagrams for C) )( V).

where

g ~~ ~ ~g g

t) V(q) V (
( p

' —p —q (
)W)(q; p, o; p ',o'), (13b)

(14)
n (1 n—)n, (1 n, ,)—p, cr p + q, cr p, n' p —q, p'

~—G~ +6'~, ~ —E'~,p+q p p —q p

with the Fermi distribution function n at T=O and the Kronecker's 5 function 5 ~.P, O

The diagrammatic expression for C) i(Hp) is given in Fig. 1(d). Combining two contributions for the direct term
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Ci i(HO), we obtain

Ci, i(HO)= —, g g g V (q) Wi(q;p, (r;p', o') .
q(~Q) P~p

Similarly, the exchange contribution is given by

C'i', i(HO)= —
2 X X X &..V..(q)V..(IP' —p —q 1)Wi(q'p o p'o').

(~~ p ~)

(15a)

(15b)

Calculation of Ci i(V) is rather difficult. There are six sets for Ci i(V), each of which is composed of direct and ex-
change terms. Thus, we may write

6

Ci, i(V)= g [Ci i'(V)+Ci"i (V)] . (16)
n=1

The expression in the Goldstone diagrams for these terms is given in Fig. 2. , The first term is the contribution of the ring
diagram, obtained as

C'i'di'( V) = g g g g V(q) V (q) V -(q) Wi, ( q;p, o;p', .o';p",o"),
q (~ Q ) p, cr p, o' p, cr

and the exchange partner is given by

(17a)

C(Ie)( V)

where

5 ~ ~ V(
I p

' —p
"

I
) V (q) V (q) W2, (q;p, o;p;o';p", o"),

(+Q) P ~ P', ~' P

(17b)

W2a( q«p«(TI p «o «p (E~ ~ —E~+6~, —E~,)(E~ ~ —E~+E~„~—e~ „)p+q p p 9 p p+q p p q p

(18)

Another exchange contribution to C1'1' is given by C11' which is written as

C'i i'(V)= —2
q(~Q) P~ P ~ P

~~~ g

P —P

5 V(q)V (
I

p' —p —q I
)V -(q)W2, (q;,p, o;p', o';p", (7"), (19a)

while its exchange partner is obtained as

C'i i'(V)=2 2 X 2 ~ '5 ' "V(
I
p' p"

I
)V "(q)V (

I

p' p q I )Wz(qp crp', (T'p",o ) .
q(~Q) P~ P ~ P

P P

(19b)

Terms C'i i
' and Ci i' are the contribution of the self-energy correction and are given, respectively, by

C'i i'(V)= y y y y 5 ~ V(
I

p' —p"
I
)[V (q)] W2b(q;p, o;p', 0';p",lJ"),

q(~Q) P ~ P'~' P' ~

(20a)

C(3e)( V) X 2 X & & -v(l p —p l)v '(q)v (Ip p q l)w2b(q p o P'o'p" o"»
q(+Q) P' P ~ P

+

(20b)

with

n (1—
W2b( q«p«o«p «o «p 2(E~ ~—E~+E~, ~—E~, )p+q p p —q p

(21)

Next is the particle-particle ladder term C1 1 and its exchange partner C1 1' given by

and

X X X X
q (+Q) q '(+Q) p, a p ', cr'

V(
I q

' —q I
) V (q) V (q') W&, ( q, q '; p, o; p ', (7'), (22a)
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where

g 5«V(
I P P q —q I

)V..(q)V«(q')IV2e(q, q', p, o;p'o'),
q (+0) q'(+0) P a P n

n (1 n— )(1 n— , )n, , (1 —n, , )(1 —n . . .)
q, q';p, o",p', cr' =

(e~ ~—e~+E~, ~—e~, )(e~ ~,—E~+e~, ~,—e~, )p+q p p'-q p' p+q' p p'-q' p

(22b)

(23)

Similarly, the hole-hole ladder terms are obtained as

and

C(5d)( V)

q (+0) q '(+0) P,o P ', a'
V(

I
q' —q I

)V (q)V (q')W2d(q, q', p, o;p', o'), (24a)

with

X 2 5..V( Ip' —p —q —q'I )V..(q)V..(q')IV2d(q, q';p, o;P',o'),
q (~O) q'(~O) P ~ P

(1 n)n — n, (1 n, —, )n, ,n
p ~ p+q ~ p+q 0' p & p —q 0' p

(E~—e~ ~+e~,—e~, ~)(e~ —e~ ~,+6~,—e~, ~, )
p p+q p p q p p+q p p

(24b)

(25)

Finally, the particle-hole ladder terms are written by

and

C',",'(V) =—
q(~p) q '(~0) p a p ', u'

V(
I

q' —q I)V '(q)V (q')IV2 (q q p o p o) (26a)

C(, ) (V)= g g g g 5 V(
I

p' —p I
)V (q)V (q')W2, (q, q';p, o;p', o'),

q(+0) q '(~0) p ~ p ', ~'

where

(26b)

IV2e(q q ip~oip ~o )=
(e~ —e~ ~+e~, ~—e~, )(e~ —e~ ~,+E~, ~,—e~.)

p p+q p +q p p p+0 p +q p

(27)

In the two-body approximation, we neglect all terms in
E'"' for n &2. The best effective potential in this approx-
imation may be given by the functional derivative of
E())( V).

5E"'(V)
5V (q)

(28)

C. Pair distribution function

Since the energy will not provide a good measure to es-
timate the error of our treatment, we also calculate the

When we set Eqs. (13)—(26) in E'" and take the deriva-
tive, we obtain a linear integral equation to determine
V (q). In this paper, however, we will not try to solve
Eq. (28) explicitly. We will use it only to obtain the
asymptotic behavior of V (q). One reason is that the in-
tegral equation is rather complicated to solve numerically.
But the real reason is that it is more instructive to show
that, even if we do not know the precise V (q), we can
obtain a very good value for the ground-state energy. In
fact, calculated energies are rather insensitive to the
choice of V. This may be related to the general statement
that in a variational approach the error of calculated ener-

gy is of order 5 for a trial function having an error of or-
der 5.

pair distribution function to evaluate the method. This
function itself is also interesting and informative for the
study of the system.

The spin-dependent pair distribution function is defined
by

1

(&/2)(&/2 —5 )

Xg g e'q'
P P

(29)

When we compare this definition with that of ( V), we
can see easily that g (r) is obtained by changing —,V(q)
into e'~'' in, for example, Eq. (13a). Thus, we will not
give here explicit equations for g»(r) equivalent to those
for (H ). However, it will be an easily task to see that at
r=0, each direct term is just cancelled by its exchange
partner. Thus, g»(0) is always zero, as it should be from
the Pauli principle.

In the two-body approximation, g„(r) has seven terms
and can be rewritten as
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g„(r)= 2 (1 —n, )(1 n— , , )n, n, , 1 —g e'q'' V»(q) ~—6'~ +6'~, ~—E'~;
P+q P P —q P

+g
( r)

( r )+g
( II )

( g+) (30)

The first term is composed of the Hartree term [Fig. 1(b-
1)], the direct one in Fig. 1(c-l), and the particle-particle
ladder term [Fig. 2(d)]. This contribution is manifestly
positive. The second term g',",'(r) is the contribution of
the ring-type diagrams [Figs. 2(a) and 2(b)]. Since these
two terms almost cancel each other, gt", is always very
small. Unlike other terms, g', ",'( r) is always negative and
is not always small, because the negative contribution of
the particle-hole ladder [Fig. 2(f)] is larger than the posi-
tive one of the hole-hole ladder [Fig. 2(e)] by about a fac-
tor of 2. This can be explained simply as follows: In Fig.
2(f) there are two channels, i.e., one in which a hole line is
constructed by an up-spin particle, while a particle line is
that of a down-spin one, and for the other channel the op-
posite is the case. In Fig. 2(e), however, there is only one
channel. Thus, if g«(r) happens to become negative in
our approximation, it is entirely due to the particle-hole
ladder diagram.

III. TWO-DIMENSIONAL ELECTRON GAS

Ci'0(V)=
3 g f d q f d q' f d p P—(q')

Sm

where P~~ (q) is defined by

kp
(q) = V (kFq),

2KB

X —q q'
(34)

(35)

and the integral should be done under the condition

I p I
&1 IP+q+q'1&1

I p+ql » and Ip+q'I ». (36)

When we introduce polar coordinates and take account of
the fact that only the relative spin orientation is important
in the paramagnetic state, Eq. (34) can be transformed
further as

A. Preliminaries

We consider an idealized 2D system in which electrons
are confined in an infinitely thin layer with a uniform
neutralizing background and interact with each other
through a Coulomb potential. This system is character-
ized by

Ci'o(V)= f" dq f dq' P„(q')wi—(q, q'),

with the "weight function" wi(q, q') defined by

wi(q, q')= f d8 f d p

(37)

(38)

and

e„=fPk /2m,

2' /q for q&0,y'/ ~ x

0 for q=0,

(31)

(32)
Iq —q'I &2, (39)

where 8 is the angle between q and q '. We can calculate
wi (q, q') by the Gauss quadrature procedure, although the
condition (36) makes the three-dimensional integral in Eq.
(38) a little complicated. This function is non-negative
(which is the reason why it is called the weight function)
and vanishes unless

where k.and q are 2D wave vectors. In the following, we
measure momenta and energies in units of Ak~ and
Nme /2A, respectively. Then this system can be
described by one parameter r, defined by r, =me /akFfi
with a=1/v 2. For example, the Hartree-Fock energy
(0

I
H

I
0) is obtained as

I

because of the Fermi statistics, or the condition (36).
Once we obtain wi(q, q') in the form of a numerical

table, we cannot only evaluate C'i'0(V) by Eq. (37) but
also Ci 0(V), C'i i(HO), and C'i'i(HO). For example,
Ci 0(V) is given by

Ci 0(V)= —f dq f dq'wi(q, q') [P»(q)+P„(q))—.
(0IH Io)=, —

S

1.2004
(33) (40)

and the correlation energy e, is given by E'" in the two-
body approximation.

B. Weight function

In order to show how to evaluate each term in E'" nu-
merically, let us consider Ci'0(V) first. We can rewrite
Eq. (13b) as

In order to check the accuracy of our procedure, let us
set 1/q' for P»(q') in Eq. (37). Then Ci'0(V) is just the
second-order exchange term in the usual perturbation
theory. This has been evaluated analytically to ' be
0.228 714. In our numerical calculation, it is found to be
0.228 742.

We can evaluate other terms in E"' by introducing ap-
propriate weight functions. For example, the particle-
particle ladder terms are given by
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CI~'(V) =ar, f dq f dq'w', f(q, q')

+P„(q)P„(q')], (41a)

and

C'i i'(V)= ar, —f dq f dq'wq", (q, q')P„(q)P«(q'),

Hartree-Pock approximations, given by
2

g'„"'(r)=1— Ji(kyar)
kyar

(HF)( ) 1

where Ji(z) is the Bessel function of first order.

(46)

(47)

C. High-density limit

In the high-density limit (r, «1), only a long-range
part of the effective interaction is important. Diagram-
matically, the ring diagrams, given by CI p( V), C ~"i(Hp),
and Ci'i'( V), are responsible for such parts of the interac-
tion. When we set these terms into E"'(V) in Eq. (28)
and take derivatives, we obtain the following solution in
the small-q limit:

1

+AqTF

where qTF is the Thomas-Fermi screening length in the
2D electron gas, given by 2ar, in units of kz. The factor
A, is 0.447, which should be compared with 0.434 in the
3D electron gas. '

Substituting Eq. (42) into E"' and leaving terms up to
order r, lnr„we obtain the correlation energy e, as

e, = —A Br, 1nr, +0 (r, ), —
with

A= q
—' q2 qq q

(43)

(41b)

with the suitable definition of wz, '(q, q') and w2", (q, q'),
each of which has a five-dimensional integral. All the
weight functions except w2,

' and w2", satisfy the condi-
tion (39). Unlike other terms, both C~i i'( V) and C'i i'( V)
have four electron lines and only two hole lines. Thus, the
restriction coming from the Fermi statistics is not so
severe that wz,

' and w2", are not zero over the entire
(q, q') plane. Because of this property, the particle-
particle ladder terms become predominantly important in
the high-q processes.

Terms in g (r) are also evaluated by the introduction
of weight functions. In fact, the same weight functions
can be applied to the study of any 2D fermion system. In
3D systems, we have to obtain weight functions having a
multiple integral up to seven dimensions, compared to
five in 2D ones. This is the main reason why the 2D, in-
stead of the 3D, electron gas is studied first.

D. Numerical results I: spin-independent effective
interaction

0»(q) =4»(q) = p
q +AqTF.

(48)

The spin-dependence is neglected altogether here.
Substituting Eq. (48) into E"' and using a variational

procedure to determine A, and p, we obtain e, as a func-
tion of r, The re. sult is shown by the solid curve in Fig.
3, in which those of STLS (Ref. 26) and VMC (Ref. 23)

0

-0.1

CL

-0.2O
I@I

-03

The effective electron-electron interaction is usually
described by the use of the dielectric function. When such
a dielectric-function formalism is employed, the problem
is how to incorporate the so-called local-field correction.
Quite a number of papers have treated this problem, but
we will include this correction in an average way by mak-
ing the parameter A, in Eq. (42) a variational one.

Although the local-field correction takes account of the
electron-hole scattering processes in the calculation of the
dielectric function, it cannot treat the effect of electron-
electron ladder processes properly. Since the main role of
this ladder term is to keep each electron away from the
other ones, the effective interaction with this term will be
weaker than without it. This is particularly true for large
q. We will treat this reduction of the effective interaction
by introducing another variational parameter p in the
numerator of Eq. (42), that is,

and

—w &(q,q')/q'] =0.385, (44)

B=a (10—3m. ) =0.173 .4
3' (45)

-04
0

I i i i i I »
10 15

This reproduces the exact result which has been obtained
by the perturbation-theoretic approach.

When we neglect terms of order r, and higher, the pair
distribution functions are reduced to those in the

"s

FIG. 3. Correlation energy per particle in Ry. A spin-
independent form (48) for the effective potential is used. The re-
sults of STLS method, given by Jonson, and VMC by Ceperley
are also shown.
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methods are also shown for comparison. The present re-
sult is essentially the same as that of STLS. Compared to
VMC,

~
ec

~

is smaller by about 10% in this range of r, .
As r, becomes larger, the difference increases (up to 25%
at r, = 100). Optimized values of A, and p decrease mono-
tonically with the increase of r„as shown in Fig. 4.
Thanks to this rapid decrease of p, the series (8) converges
very rapidly even in the strong-coupling region.

In Fig. 5, g„(r) and g»(r) are given for r, =0.5, 4, and
16. The average of these two, defined by

0.6

g (r) = ,' [g«(r—)+g„(r)], (49)

=2ar, g (0),dg (r)
F r=0dkr (50)

in the 2D electron gas. Thus, the negative g'(0) is just

is also shown by a dashed curve in order to compare our
result with that of the STLS method. The result of g»(r)
is always reasonable. It starts from zero at r=0 and in-
creases graduall . At small r (i.e., kFr(2 5), g«. (r) is
smaller than g'»"'(r) by a very small amount. This indi-
cates that, although the correlation effect between two
parallel-spin electrons exists, it is very small compared to
the exchange effect. For r, less than 2.2, there appears to
be no problem in g„(r). However, when r, exceeds this
value, g„(r) becomes negative near r =0. With a further
increase of r„g„(0)becomes positive, but g'»(0) is nega-
tive and brings about a negative region, as shown in Fig.
5(c).

The adequacy of an approximation in the electron-gas
problem is usually checked by investigating whether g (0)
is positive or not, but g (0) is seldom discussed. This is
probably due to Kimball's general statement that g'(0)
is related to g (0) through

0.4

0.2

I I I I I i I I I I I I I I I I

5 10 15
S

FIG. 4. Variationally determined A, and p, which are defined
in Eq. (48).

as unphysical as that of g(0). However, the problem of
negative g'(0) seems to be more serious than that of nega-
tive g (0), when we try to obtain physical information for
the behavior of two electrons at small r from the calculat-
ed curve of g(r). Once g'(0) is negative, it implies that
two electrons are attracted rather than repelled at a very
short distance.

E. Asymptotic behavior of the effective interaction

As far as the energy is concerned, our simplest choice [Eq. (48)] was not unsatisfactory. But when r, is larger than 4,
g»(0) in addition to g»(0) becomes negative. In order to correct this unphysical behavior, let us consider the large-q
limit of the effective interaction more seriously. The electron-electron ladder diagrams, given by C', o(V), C'I'0(V),
CI"I(Ho), C'I'I(Ho), O'I I'( V), and CI I'( V), are important in this limit. When we include only these terms in E"' and
take derivatives as indicated by Eq. (28), we obtain the following equations for P~ (q):

oo oo oo 1
P»(q) f dq'w, (q, q')= —f dq'wI(q, q') f dq'w((q, q—') —, (t)„(q')—

0 q 0 0 q'

—cled q w2 q q —w2 q q (51)

and

oo j oo

P»(q) dq'w, (q, q') =—f dq'wI(q, q')
and

oo 1

0
dq'w I(q, q')—

2q
(53)

ar, f dq'w2—,'(q, q')P„(q') .

(52)
(d)( i) (e)( i) 1~2q q

w2c Sq -w2c Sqq q (54)

When q and q' are large, the weight functions in these
equations have the following form:

Substituting Eq. (54) into Eq. (51), we find easily that
for large q, P„(q) approaches the bare potential, i.e.,
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FIG. 5. Pair distribution functions, g (r), g»(r), and g»(r), calculated with the effective potential (48). Open circles are the result
for g(r) in STLS method, given by Jonson. The Hartree-Pock values, g'„"' and g'„"', are also shown by dotted curves. (a), (b), and
(c) treat, respectively, the case of r, =0.5, 4, and 16.

(55) and the result is

On the other hand, Eq. (52) is just the Bethe-Salpeter
equation for the electron-electron ladder vertex in the usu-
al perturbation theoretic approach. This equation has
been treated by several workers in the 3D electron gas. '

The method of Yasuhara provides the simplest way to
obtain the solution of Eq. (52) in the large-q limit. Let us
make an approximation for w q",

' as

6(q —qo)6(q' —qo)
tore(Sq )=

2qq'

X 6(q —q') 6(q' —q)+
q q'

where 6(x) is the Heaviside function and qo is introduced
to cutoff the low-q region. With the use of the modified
Bessel functions Io(z) and II(z), Eq. (52) can be solved

011(q)= q
Io[2(«, /qo)

1/2

I&[2(ar, /q)'~ ]/q,

(57)

which has the following form in the large-q limit:

4i~(q) =c /q

with

p = 1/Io[2(ar, /qo)'~ ]

(58)

Because 1u, in Eq. (59) depends on the cutoff qo, the ac-
tual value of p is not determined until we know P»(q) for
q & 1. However, it is clear that

~ p ~

becomes exponential-
ly small for large r, Thus the b. ehavior of P„,(q) is very
different from that of P, „(q). Physically, this can be ex-
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plained as follows. At very short distance, two electrons
avoid each other and thus the actual potential between the
two is reduced in effectiveness. However, the nature of
the repulsion is different for parallel- and antiparallel-spin
pairs. In the former case, the Pauli principle is the major
source and the bare potential V(q) works in each elemen-

tary process. Thus, the actual potential for the scattering
process (pt, p't) —+(p+qt, p' —qt) is given by V(q)
—V(

~ p
' —p —q ~

), which is very small for large q. For
the antiparallel-spin case, the Coulomb correlation is the
only effect which moderates the actual potential. Thus
the effective potential V„(q) becomes small for large q,
as shown in Eq. (58).

F. Numerical results II: spin-dependent effective
interaction

According to Eqs. (55) and (58), the effective interac-
tion should be spin dependent. The siinplest choice for

(q) which satisfies these equations as well as the
small-q behavior [Eq. (42)) is given by

stronger than V» in this region. In momentum space, we
have the following conclusion:

P»(q) & P»(q) for q —1 . (62)

P»(q) = + F(q),
9 + QTF 9TF

(63)

Kukkonen and Overhauser have obtained the same result
by using a different approach. '

Combining this result with Eqs. (55) and (58), we find
that there is a crossover effect between P»(q) and P»(q).
They are the same at q=0, but the -latter becomes larger
near q —1. With a further increase of q, the former be-
comes much larger. The choice of Eqs. (60) and (61) can
not produce this behavior.

There are several possibilities for including this cross-
over effect in a choice of P~~ (q). For example, we can ex-
tend the local-field-correction formalism to the spin-
dependent form. ' ' ' After several trials, however, we
found that we could obtain a substantial improveinent
simply by choosing P»(q) as in Eq. (60) and P»(q) as

and

1

9'+ CTF
(60) where F(0) is taken to be unity in order to satisfy the re-

lation P„(0)=P„(0). The final result for the energy is
very insensitive to the choice of F(q), provided that I" (q)
decreases quite rapidly for q & 2. A possible guess is

(61) F(q)=exp( —q /g ), (64)

with two variational parameters A, and p. However, we
have found that this choice gives almost the same results
for both energy and pair distribution function as the pre-
vious choice of Eq. (48). The reason is simple. The corre-
lation energy in the paramagnetic state is mostly due to
antiparallel-spin pairs. Thus P»(q) is much more impor-
tant than P»(q). The choice of Eq. (61) gives essentially
the same P„(q) as that of Eq. (48).

In order to gain more insight into P (q), let us consid-
er the effective interaction between an up-spin electron at
the origin and another electron at a distance r. When r is
very large, it does not matter how the second electron's
spin is oriented. However, when r becomes as small as
I/kF, there appears a difference. According to Fig. 5,
g»(r) is much larger than g»(r) in this region. This
means that the screening cloud for the first electron is
mainly composed of down-spin electrons. Thus, if the
second electron has an up-spin, the screening cloud is dis-
turbed only by the Coulomb repulsion. However, if it has
a down-spin, they ar'e disturbed by both the Coulomb
repulsion and Pauli principle. Therefore, the down-spin
electron has a weaker screening effect. Namely, V„ is

with another variational parameter g. This parameter is
found to increase inonotonically from 1.50 at r, =l to
2.81 at r, =100.

The resulting correlation energy is given in the row II
of Table I for several values of r, . (Units are in Ry. ) Re-
sults of VMC and those in Sec. III D are also shown in the
rows indicated by VMC and I, respectively. The differ-
ence between II and VMC is always less than 4% for
2(r, &40.

Figure 6 gives the radial distribution function of the
antiparallel-spin pair g»(r) for several values of r, Al-.
though g'„(0) is improved and positive for r, (20, g„(0)
is still negative for r, & 2.5. Unlike the ground-state ener-

gy, the value g„(0) depends rather strongly on the choice
of F(q) in Eq. (63). For example, g»(0) varies from
—0.05 to —0.1 at r, =4.

The variationally determined effective potential is
shown in Fig. 7. Instead of P~~(q), we have shown
ar, P (q), because this is just the expansion parameter of
the series (8). Even if r, becomes larger by 20 times, the
change of ar, P~~.(q) is very moderate. The interesting
point in Fig. 7 is that p, and thus P„(q), becomes negative

TABLE I. Correlation energy of the 2D electron gas in Ry units. Row I represents the results with the effective potential given by

Eq. (4S). Row II gives the result with the choice of Eq. (60) for V„and Eq. (63) for V». Row III is obtained with the use of Eqs.
(65) and (66). The row indicated by VMC is the result obtained by Ceperley (Ref. 23).

I
II
III

VMC

—0.215
—0.217
—0.218
—0.242

—0.158
—0.165
—0.165
—0.172

—0.0903
—0.0998
—0.0998
—0.0957

10

—0.0528
—0.0617
—0.0618
—0.05915

15

—0.0374
—0.0449
—0.0450
—0.04323

20

—0.0289
—0.0353
—0.0354
—0.03429

30

—0.0199
—0.0245
—0.0245
—'0.02441

40

—0.0152
—0.0186
—0.0187
—0.01909

50

—0.0123
—0.0149
—0.0151
—0.01571

100

—0.0063
—0.0073
—0.0078
—0.00838
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FIG. 6. Radial distribution function for the antiparallel-spin
pair g»(r) for r, =0.5, 2, 4, 10, and 30 with the effective poten-
tials P«{q}in Eq. (60) and P,„{q}in Eq. (63).

for r, )5. The value 5 depends on the choice of F(q), but
whatever choice we may make, P»(q) becomes negative
for q) 2 when r, becomes sufficiently large. The discus-
sion in Sec. IIIE has already predicted the smallness of

~
p,

~

for large r, . However, it could not tell the possibili-
ty of negative p. This is due to the insufficient treatment
of the correlation effects for q & l. If we do not introduce
the cutoff qo but treat P«(q) more accurately for q & 1 in
Eq. (52), it is not difficult to see that Eq. (52) can produce
a solution of P„(q) which becomes negative for large q.
The negative P„(q) is probably related to the spin-
density-wave instability.

Physically, F(q) was included in Eq. (63) in order to
take a better account of the correlation effect between
antiparallel-spin electrons. The same procedure will be

kFr
FIG. 8. Radial distribution function g»(r) for r, =4, 10, and

30 with the choice of P„{q}in Eq. (65) and P»{q}in Eq. (66).

appropriate for the parallel-spin pair to improve the re-
sults for r, )20, because in such low densities parallel-
spin pairs will also need a better treatment of their corre-
lation. Thus we try another choice for P~~ (q) as

and

1
P„(q)=

&
+

&
F(q),

q +AqTF A,qTF

y„(q)= " + ' "+"F(q),
q+A, qTF A,qTF

(65)

(66)

with a further variational parameter g. F(q) is chosen to
have the form (64). The result for e, is shown in the row
III of Table I. Figure 8 shows the result for g„(r). The
value g'„(0) remains positive for r, &50. In this way,
g'„(0) is seen to be a good criterion in the search for a
better effective interaction. Compared to P»(q) in Fig. 7,
the main effect of F(q) in Eq. (65) is found to decrease
P„(q) near q- 1, which leads to the larger difference be-
tween P„(q) and P»(q) in this region of q.

IV. SUMMARY AND DISCUSSION

I I I

I

4
q (kF)

6

FIQ. 7. Effective potential p«{q}and p»{q}««rtnin«»~-
ationally. The forms of Eqs. (60) and (63) with the function
I'(q) in Eq. (64) are assumed.

In this paper we have applied the method of effective-
potential expansion proposed in I to the strongly-coupled
many-body problem and have investigated how the
lowest-order calculation works in the paramagnetic phase
of the 2D electron gas. The result for the correlation en-
ergy e, agrees very well with that of the VMC for
1 & r, & 100. It is not known rigorously whether the value
obtained for e, is an upper bound to the true value. How-
ever, when we combine the results in Table I with the fact
that in the 3D electron gas, the VMC gives a higher value
for e, than the GFMC by a few percent for 2 & r, & 20, we
may conclude that our e, is very close to the true value, if
not an upper bound. In addition to providing a very good
result, the present method is simple from both the physi-
cal and computational points of view, because only a fi-
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{a) (a')

(b)

FIG. 9. Goldstone diagrams for an example of the ring dia-

grams in the third order and its exchange partners.

nite number of terins is considered. Thus, we think it
highly promising for finding quantitative as well as quali-
tative information on such systems which are too compli-
cated to be studied by the GFMC and other sophisticated
many-body techniques.

Although we can reproduce the rigorous value of e, in
the high-density limit, e, near r, = 1 has a rather large
discrepancy when compared to that of VMC. We ascribe
this to both VMC and our method. Since the VMC pro-
duces so large an error as to have e, even lower than that
of the GFMC at r, =1 in the 3D electron gas, e, obtained

by the VMC is not as reliable in this density region as in
the low-density region. In our treatment, the two-body
approximation is not supposed to work well in the high-

density region where the screening length is much longer
than the interparticle spacing. When the long-range part
of the effective interaction becomes really important, we

also have to include higher-order terms such as the pro-
cess of Fig. 9(a) and its exchange partners Fig. 9(a'), 9(b),
and 9(b') in the third order of V. This can be understood

by the fact that V in the small-q region is relatively large
and makes the convergence of our cluster expansion slow.
This is also exemplified by the observation that any choice
of V (q) does not give a substantial improvement at
r, =1 in the two-body approximation, as shown in Table
I.

When r, becomes large, g»(r) becomes negative near
r=O in the two-body approximation. As explained in

Sec. II C this is caused by the electron-hole ladder process.
If we rieglect both electron-hole and hole-hole ladder pro-
cesses, as has been done in several works ' in which it is
claimed that the radial distribution function is shown

analytically to be always positive, we can also obtain a
positive definite g„(r). However, there seems to be no
reason why such ladder processes can be neglected. It is

true that these processes produce much smaller values

than the electron-electron ladder term, as has been ex-

plained, ' but the point is that when the electron-electron
ladder term [Fig. 2(d)] is combined with both the Hartree

(a) (b) (c)

(d) (e)

FIG. 10. Goldstone diagrams for the ladder-type terms in the
third and fourth orders of the effective potential.

one [Fig. 1(b-1)] and the second-order direct one [Fig.
1(c-1)], the resulting contribution is just the same order of
magnitude as the electron-hole or hole-hole ladder contri-
bution.

In order to obtain a positive g»(r), therefore, we have
to consider higher-order terms. In third order, there is a
contribution for g»(r) from the ring-type diagrams [Figs.
9(a) and 9(b)], but these two are cancelled by each other.
There are ladder-type terms as shown in Figs. 10(a)—10(c),
but the sum of these terms are also negligibly small, be-
cause each of these terms has just the same number of
particle lines as that of hole ones. The same argument
can be applied to all (2n + 1)th-order terms. In fourth or-
der, however, the ladder terms, shown in Figs.
10(d)—10(fl, give a positive contribution to g„(r) This.
can be seen easily that the positive contribution of the dia-
gram [10(d)] dominates the other two diagrams because it
has the largest nuinber of particle lines. The same is true
for all Znth-order terms. Thus, the negative g«(r) in the
two-body approximation will be cured gradually as we in-
crease the order of approximation in the cluster expan-
sion. From this consideration, the magnitude of

~
g»(0)

~

in the two-body approximation is seen to give a measure
of the error of the cutoff procedure in the cluster expan-
sion. If we compare

~
g„(0)

~

with the largest term in

g«(0), i.e., the contribution described by Fig. 2(d), the es-
timated errors are 6 and 19% at r, =4 and 20, respective-
ly.
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