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The majority-rule, block-spin, renormalization-group transformation for the d =3 Ising model is
studied, with the use of a recently developed technique for calculating renormalized coupling param-
eters from a single Monte Carlo simulation. Renormalization-group trajectories and the approxi-

mate fixed point are calculated.

Improvements in the convergence of the Monte Carlo

renormalization-group calculations of critical exponents are discussed.

I. INTRODUCTION

In a previous paper' a new technique for calculating re-
normalized coupling constants from a single Monte Carlo

(MC) computer simulation’ was applied to various -

renormalization-group (RG) transformations of the d=2
Ising model. The purpose was to establish the validity of
the method and investigate the differences in the effects
of different RG transformations on a model with known
properties.

In this paper I apply the method to the three-
dimensional Ising model. The discussion will deal with
the 2 X 2 X 2 majority-rule block-spin transformation, with
the goal of justifying the assumptions of the RG formal-
ism concerning short-range interactions and the existence
of a fixed point,>* as well as improving methods for the
numerical calculation of critical properties.’

Since the original paper by Ma,° Monte Carlo
renormalization-group (MCRG) methods for the calcula-
tion of critical properties have been developed®—2! and ap-
plied to a variety of models in both statistical mechan-
ics’~16 and lattice gauge theories.'”"!® Just as the two-
dimensional Ising model has always been essential for
testing any new improvement, the three-dimensional
model has played a central role as the most important ap-
plication. Since the d=3 Ising model is physically impor-
tant, conceptually simple, and unsolved, it has traditional-
ly been the object of the most strenuous efforts.

Although early work!>? served primarily to demon-
strate the feasibility of MCRG for the study of three-
dimensional models, improvements in both method and
computer hardware have been such that the most recent
efforts have attained an accuracy comparable to that of
the best competing calculations.”! Further improvement
of the MCRG results will come from both the continuing
development of fast computational facilities and the
development of new methods of calculation. A major ob-
ject of the current study is to provide information on the
effects of the RG transformation used in the most accu-
rate MCRG calculations to lay the groundwork for future
developments, such as the use of optimized transforma-
tions.?

A brief introduction to real-space RG formalism and
calculational methods is given in Sec. II, along with a
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description of the numerical extrapolation to the fixed
point. The calculations using the majority-rule RG
transformation with b=2 is discussed in Sec. IIl, and re-
sults are summarized in Sec. IV.

II. CALCULATION OF EFFECTIVE
RENORMALIZED COUPLING CONSTANTS

The following discussion is included for completeness.
Details are found in Refs. 1—3, 14, and 15.
The Ising Hamiltonian is written in the form

H=3 K,S,, | (1)

where the S,’s are the various combinations of the
“spins” o;, which take on the values + 1 or —1. The
nearest-neighbor (NN) coupling for the Ising model is
written as

Snn= 2 0:0;, (2)
(ij)
where the sum is taken over nearest-neighbor pairs. Fac-
tors of the inverse temperature times the Boltzmann con-
stant are included implicitly in the definition of the set of
coupling constants { K, }.

The RG transformation we shall consider consists of
dividing the system into 2X2X2 blocks and assigning a
block spin of + 1 or —1 depending on whether the sum
of the spins in the block is positive or negative (ties being
awarded equally). The probability distribution for the
new spin configurations can then be interpreted in terms
of an effective renormalized Hamiltonian, parametrized in
terms of a new set of coupling constants { K, }.

The renormalized Hamiltonian is generally quite com-
plicated and requires an infinite number of coupling con-
stants to describe it completely. Fortunately, only a small
number of renormalized coupling constants is generally
important.

The new calculational method is based on a comparison
of two different expressions for the correlation functions,
one of which depends explicitly on knowledge of the ef-
fective renormalized coupling constants."> The first ex-
pression is the usual direct summation, using Eq. (2). The
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TABLE 1. Coupling constants used for the MCRG calcula-
tion of renormalized Hamiltonians for the d=3 Ising model in
the order used for presentation of data for trajectories and fixed
points.

a ~ Description

1 (100) neighbor

2 (110) neighbor

3 (111) neighbor

4 (200) neighbor

5 (210) neighbor

6 (211) neighbor

7 (220) neighbor

8 (221). neighbor

9 (222) neighbor

10 (300) neighbor

11 4-spin:  (000), (100), (010), (110)
12 4-spin:  (000), (100), (011), (111)
13 4-spin:  (000), (100), (010), (001)
14 4-spin:  (000), (020), (100), (120)
15 4-spin:  (000), (110), (101), (011)
16 6-spin:  (000), (010), (020), (100), (110), (120)
17 8-spin: All corners of a cube

other expression was first suggested by Callen,?® and re-
cently applied to lattice gauge theories by Parisi, Petron-
zio, and Rapuano®* in another context. Differences in the
results of using the two expressions indicate differences
between the assumed values of the renormalized coupling
constants and the true values. A minimization of these
differences then leads to the true values.!?

The second expression for the correlation functions re-
quires definition of operators S, ; as the sum of all terms
in S, that include 0;. Then S, is given by

—ma 2 Sa,l ’ (3)
where m, is 2 for two-spin operators, 4 for four-spin
operators, etc. If we also define the operators S, j,

01§a,I:Sa,I ’ (4)

Callen’s representation of the correlation functions can be
written as
) (5)

(S)=mg 2( o,1tanh
where I have introduced a second set of coupling con-
stants, {K,}, for convenience."? The brackets still indi-
cate averages with respect to the “true” coupling con-
stants, {K,}.

The equality (S,)=(S,) is valid if and only if
K,=K, for all a. If the two sets of coupling constants
differ, this equality will not hold.

The derivative matrix can also. be easily calculated from
the MC configurations:

> .®

2 KgSp,

a(s)
3K

> E8§8,I

my! 2 < .15 p,1 sech?
5

TABLE II. Estimates of effective renormalized coupling con-
stants from an MC simulation of a 323232 lattice at the
critical point (K=0.22166) (Ref. 21) with a 2X2 X2 majority-
rule RG transformation. The MC simulation used 2.1710°
MC steps per site (MCS/S), starting from the last configuration
of an old simulation, with data taken every 10 MCS/S. Relaxa-
tion times for the energy on the unrenormalized lattice were typ-
ically 120 MC steps per site (MCS/S). The first column gives
the number of iterations of the RG transformation, while the
second column gives the number of the coupling constant in ac-
cordance with Table I.

Rough First Second
estimate approximation . approximation
n a Kizn) Kgl) K(an)
1 1 0.167 0.168 60(8) 0.168 53(6)
2 0.027 0.026 13(3) 0.026 10(5)
3 0.006 0.005 77(6) 0.005 83(5)
4 —0.005 —0.00590(1) —0.005 88(3)
5 —0.002 —0.00199(4) —0.00195(1)
6 —0.001 —0.00077(1) —0.000 84(2)
‘ 7 0.000 —0.00051(2) —0.00044(2)
8 0.000 —0.00010(2) —0.00017(1)
9 0.000 ~—0.000 12(5) 0.00000(1)
10 0.000 0.00046(13) 0.00044(1)
11 —0.001 —0.00161(14) —0.00149(1)
12 0.000 —0.00000(1) 0.00009(5)
13 0.002 0.001 86(2) 0.001 82(3)
14 0.000 0.00020(4) 0.00024(4)
15 0.000 0.00007(6) —0.00006(4)
16 0.000 0.00075(5) 0.00077(3)
17 0.000 0.00013(14) 0.00006(4)
2 1 0.164 0.1616(6) 0.1624(4)
2 0.030 0.0306(2) 0.0305(1)
3 0.005 0.0075(2) 0.0076(2)
4 0.000 —0.0081(2) —0.0080(2)
5 0.000 —0.0031(1) —0.0028(1)
6 0.000 —0.0011(2) —0.0013(1)
7 0.000 —0.0002(1) —0.0003(1)
8 0.000 —0.0003(2) —0.0001(1)
9 0.000 0.0003(4) 0.0000(1)
10 0.000 0.0006(1) 0.0008(1)
11 —0.001 —0.0019(3) —0.0015(4)
12 0.000 0.0004(1) 0.0004(2)
13 0.000 0.0030(1) 0.0026(1)
14 0.000 0.0004(3) 0.0004(1)
15 0.000 0.0003(2) 0.0002(2)
16 0.000 0.0013(2) 0.0010(1)
17 0.000 0.0004(1) 0.0004(3)
3 1 0.164 0.1603(12) 0.1610(5)
2 0.030 0.0297(6) 0.0324(2)
3 0.005 0.0091(13) 0.0081(2)
4 0.000 —0.0099(7) —0.0085(3)
5 0.000 —0.0032(3) —0.0035(1)
6 0.000 —0.0011(4) —0.0015(2)
7 0.000 —0.0004(3) —0.0006(2)
8 0.000 '—0.0004(2) —0.0001(3)
9 0.000 0.0006(6) 0.0000(3)
10
11 —0.001 —0.0022(5) —0.0001(6)
12 0.000 0.0017(3) 0.0013(3)
13 0.000 0.0041(1) 0.0029(2)
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TABLE II. (Continued).

Rough First Second
estimate approximation approximation
n a Ky Ky Ky
3 14 0.000 0.0017(3) 0.0005(2)
15
16 0.000 0.0013(3) 0.0015(1)
17 0.000 —0.0017(3) 0.0002(5)

By choosing the set {K "} to make (§,—S,)=0,
these equations allow calculation of the effective renor-
malized coupling constants {K."} after » iterations of
the RG transformation. To locate the fixed point by ex-
trapolating the RG trajectories, the matrix of derivatives

Tp=3Ky*" /3Ky @)

is first calculated by standard MCRG methods.”!*15 In
an obvious notation, the fixed point is given by

IS*=K(n)+(l_I)—l(K(n+l)_K(n)) (8)

and [ is the identity matrix. This equation can be rewrit-
ten to involve only a single matrix inversion and simplify-
ing computer programming. The statistical errors in-
volved in extrapolating to the fixed point are naturally
larger than those for the renormalized coupling constants.

For technical reasons, it is often useful to be able to
come close to the fixed point, within a limitation to cer-
tain operators that can be included in an MC simulation
on a special purpose computer. Since the behavior of the
RG transformation is known, deviations from the fixed
point in the most relevant (least irrelevant) directions
could be projected out using eigenvalues and eigenvectors
of the matrix T."!415

III. MAJORITY-RULE RG TRANSFORMATION
WITH b=2

The majority-rule RG transformation consists of divid-
ing the system into blocks and assigning a block spin of
+ 1 or —1 depending on whether the sum of the spins in
the block is positive or negative. I shall consider the most
convenient choice of 2X2X2 blocks, with ties being
awarded equally.

The calculations presented here are much more detailed
than the studies of the two-dimensional model.” Instead
of seven renormalized coupling constants, I have included
17 in the present analysis, to enable systematic changes to
be considered more carefully. Table I contains a list of
the interactions used in the analysis of the trajectories.

As in the previous study of the two-dimensional Ising
model,? preliminary calculations were carried out to check
the computer program and the method by calculating cou-
pling constants of the original nearest-neighbor model.
After these checks had been completed satisfactorily, cal-
culation of the effective coupling constants for the un-
renormalized model was turned off to save computer time
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TABLE III. Correlation functions for the original and renor-
malized lattices from the same MCRG simulations as in Table

II.
First Second
simulation simulation
n a (s (s
1 1 0.99(1) 0.996(3)
2 1.44(2) 1.445(7)
3 0.80(2) 0.805(5)
4 0.54(1) 0.545(4)
5 1.96(5) 1.978(16)
6 1.82(5) 1.838(17)
7 0.82(3) 0.828(9)
8 1.57(5) 1.588(18)
9 0.48(2) 0.481(6)
10 0.40(1) 0.400(5)
11 0.51(1) 0.514(2)
12 0.81(1) 0.815(4)
13 1.09(2) 1.091(6)
14 0.73(1) 0.730(4)
15 0.21(1) 0.206(2)
16 0.49(1) 0.493(4)
17 0.06(1) 0.057(1)
2 1 1.09(2) 1.10(1)
2 1.17(5) 1.72(2)
3 0.99(4) 1.00(2)
4 0.69(3) 0.69(1)
5 2.58(11) 2.61(4)
6 2.46(12) 2.50(4)
7 1.16(6) 1.18(2)
8 2.26(12) 2.30(5)
9 0.72(5) 0.73(2)
10 0.57(3) 0.58(1)
11 0.60(2) 0.60(1)
12 0.99(3) 1.00(2)
13 1.35(5) 1.37(2)
14 0.89(3) 0.90(2)
15 0.27(1) 0.27(1)
16 0.63(3) 0.63(1)
17 0.08(1) 0.08(1)
3 1 1.34(5) 1.36(2)
2 2.31(11) 2.35(4)
3 1.43(8) 1.46(3)
4 1.09(6) 1.11(2)
5 4.19(24) 4.27(8)
6 4.07(25) 4.16(8)
7 2.02(13) 2.06(4)
8 3.97(26) 4.05(8)
9 1.30(9) 1.33(3)
10
11 0.83(4) 0.85(2)
12 1.47(8) 1.49(3)
13 2.02(11) 2.06(4)
14 1.42(9) 1.43(3)
15
16 1.05(7) 1.07(3)
17 0.13(1) 0.13(1)
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TABLE IV. Differences in correlation functions calculated by direct summation (shown in Table III) and using Callen’s represen-
tation, for the same MCRG simulations as in Tables II and III. The calculations of correlation functions with Callen’s representation
used the estimates. for the renormalized coupling constants given in the first two columns of Table II.  Values given below are the de-
viations from the correlation functions shown in Table III. The differences listed for the first simulation used the “rough estimates”
for the coupling constants, and the differences listed for the second simulation used the values for the second approximation in Table
II. The errors in the differences for the second approximation were smaller than those for the correlation functions themselves by the

ratio given in the last column.

First Second First Second
approximation approximation Error approximation approximation’ Error
n a (ASP) (AS®) ratio n a (AS™) (ASP) ratio
1 0.0011(2) 0.0003(1) 0.03 10 —0.0302(5) 0.0007(1) 0.03
2 —0.0058(5) —0.0001(3) 0.04 11 —0.0036(5) 0.0006(1) 0.11
3 —0.0033(3) 0.0000(1) 0.01 12 —0.0097(2) 0.0008(2) 0.07
4 —0.0026(2) 0.0000(1) 0.03 13 —0.0019(6) —0.0014(2) 0.03
5 —0.0082(4) 0.0001(2) 0.01 14 —0.0139(13) 0.0011(2) 0.05
6 —0.0070(4) —0.0006(3) 0.02 15 —0.0033(2) 0.0002(1) 0.05
7 —0.0054(3) 0.0001(2) . 0.02 16 —0.0002(7) 0.0004(2) 0.02
8 —0.0083(5) —0.0006(2) 0.01 17 0.0006(1) 0.0001(1) 0.11
9 —0.0026(1) 0.0001(1) 0.01
10 —0.0011(3) —0.0001(1) 0.01 3 1 —0.016(5) - 0.001(3) 0.15
11 0.0013(3) 0.0003(1) 0.03 2 —0.047(6) 0.003(4) 0.10
12 0.0002(2) 0.0005(2) 0.04 3 —0.036(6) —0.002(3) 0.09
13 —0.0021(4) —0.0001(2) 0.03 4 —0.050(6) 0.001(2) 0.12
14 0.0018(2) 0.0004(2) 0.05 5 —0.157(14) —0.005(8) 0.10
15 —0.0006(1) —0.0001(1) 0.05 6 —0.144(18) —0.007(8) 0.10
16 0.0039(2) 0.0003(2) 0.05 7 —0.076(8) —0.003(3) 0.08
17 0.0002(1) —0.0000(1) 0.06 8 —0.142(16) —0.004(9) 0.12
: 9 —0.008(5) —0.005(2) 0.06
2 1 —0.0161(7) 0.0015(1) 0.09 10
2 —0.0402(8) 0.0004(3) 0.05 11 —0.041(10) —0.009(4) 0.13
3 —0.0308(6) 0.0006(1) 0.06 12 —0.000(3) 0.003(2) 0.11
4 —0.0393(3) 0.0009(1) 0.07 13 —0.003(4) —0.000(2) 0.07
5 —0.1334(13) 0.0028(2) 0.05 14 0.007(4) —0.002(3) 0.06
6 —0.1228(14) 0.0006(3) 0.03 15
7 —0.0592(14) 0.0005(2) 0.03 16 0.007(3) 0.002(2) 0.07
8 —0.1156(31) 0.0013(2) 0.04 17 0.001(3) - 0.001(1) 0.08
9 —0.0368(3) 0.0004(1) 0.03

and make the calculation of the RG trajectories more effi-
cient.

In using Egs. (5) and (6) to calculate the effective renor-
malized coupling constants, it is necessary to perform at
least one or two preliminary iterations of the equations to
find values of the parameters close enough to the true
values, for a linear approximation to be valid. Particular
care was taken to check this sequence of approximations
to the true values, to make sure that all assumptions were
satisfied.

Table II gives data for three successive approximations
to the RG trajectory from the nearest-neighbor critical
point towards the fixed point. The “rough estimate” was
the result of a very short simulation, starting with the
nearest-neighbor parameters. A calculation using these
rough estimates in Eq. (6) then produced the values listed
as the “first approximation.” The statistical errors were
determined in the usual manner, by breaking up the MC
simulation into a series of separate runs, carrying out the
full calculation with data from each of these runs, and
calculating the spread in results. As can be seen from
Table II, the statistical errors were quite small. To check

on possible systematic errors, the entire calculation was
then repeated with the new values for the renormalized
coupling constants, with the results shown in the last
column under “second approximation.” Comparison of
the first and second approximations show that the non-
linear effects were extremely small, and the differences are
generally within the small statistical errors.

It is helpful in understanding the process (and the diffi-
culties encountered by any method using a comparison of
two separate MC simulations to calculate effective cou-
pling constants®~!"16 to consider the renormalized corre-
lation functions. These are shown in Table III for both
simulations used in Table II. As can be seen, the values
for the coupling constants change substantially under re-
normalization, primarily due to the change in size of the .
lattice (the linear dimensions of the renormalized system
are reduced by the factor b=2).

Table IV contains the differences between the values
shown in the previous table and the correlation functions
calculated from Callen’s representation, using the parame-
ters in Table II. For both simulations, the statistical er-
rors in calculating the differences are substantially smaller
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TABLE V. Estimates for the fixed point for the b=2
majority-rule RG transformation in the nearest-neighbor d=3
Ising model from the simulations used in Tables II-1IV.

RG iterations

1to?2 2t03

a K% K%

1 0.1666(15) 0.1659(41)
2 0.0311(3) 0.0322(4)
3 0.0075(4) - 0.0081(1)
4 —0.0099(3) —0.0105(4)
5 —0.0036(3) —0.0043(5)
6 —0.0018(3) —0.0018(1)
7 —0.0001(1) —0.0007(2)
8 0.0000(2) 0.0000(2)
9 —0.0001(2) —0.0001(3)
10 0.0011(2)

11 —0.0021(4) 0.0001(5)
12 0.0005(2) 0.0020(6)
13 0.0032(2) 0.0038(3)
14 0.0005(3) 0.0004(1)
15 0.0012(2)

16 0.0015(1) 0.0019(1)
17 0.0006(4) 0.0000(6)

than the error in calculating the correlation functions
themselves. The last column in Table IV gives the ratio
of the errors in the differences to that in the correlation
functions themselves. The fact that the statistical error is

generally reduced by a factor of 10 or better is the pri- .

mary advantage of this method of calculating the effective

3879

renormalized coupling parameters.' A corresponding ac-

“curacy could be achieved by a two-lattice simulation only

with the use of at least 2 orders of magnitude more com-
puter time.

Table IV also demonstrates the dramatic improvement
in agreement of the two methods of computing correlation
functions from an improved set of coupling constants.
Returning to the last column of Table II, which gives the
best estimates for the renormalization-group trajectory, it
can be seen that the renormalized coupling constants con-
firm a number of the assumptions of the real-space
renormalization-group formalism. The first ten values
demonstrate the rapid decay of coupling strength with
distance. A comparison of the (100) with the (200) in-
teraction shows a reduction in magnitude by a factor of
20. Comparing the (110) with the (220) interaction gives a
change by a factor of 100. :

An oscillation of the sign of the interaction as a func-
tion of distance is also apparent. After three positive (fer-
romagnetic) interactions, the fourth- through eighth-
nearest-neighbor interaction parameters are negative (anti-
ferromagnetic). The ninth interaction (222) is zero within
statistical error, and the tenth neighbor returns to positive
values. ' ‘

Differences in the significance of various multispin
operators are visible, enabling improved choices of param-
eters for future work. Some four-spin operators are clear-
ly more important than others. The eight-spin operator is
completely unimportant.

Looking at successive iterations of the RG transforma-
tion, the changes are consistent with the approach to a
fixed point, but differences still exist between the effective

TABLE VI. Confirmation of approximation to the fixed point. Estimates of effective renormalized
coupling constants from an MC simulation of a 17-parameter model on a 16X 16X 16 lattice using a
2X2X2 majority-rule RG transformation. The MC simulation used 1.32X10° MC steps per site
(MCS/S), after discarding 1.8X10* MCS/S to equilibriate from the last configuration of an old
nearest-neighbor model simulation, with data taken every 10 MCS/S. Relaxation times for the energy

on the unrenormalized lattice were typically 25 MC steps per site.

KD
a MC values K9 K® K2
1 0.161737 0.16163(14) 0.1688(1) 0.1706(19)
2 " 0.030586 0.03072(2) 0.0317(3) 0.0323(3)
3 0.007 500 0.00753(10) 0.0088(2) 0.0096(3)
4 —0.008 166 - —0.00823(2) —0.0096(7) —0.0100(3)
5 —0.003 125 —0.00322(2) —0.0040(3) —0.0039(5)
6 —0.001087 —0.00106(6) —0.0013(3) —0.0016(6)
7 —0.000279 —0.00016(13) —0.0004(1) —0.0004(5)
8 —0.000238 —0.00029(7) —0.0003(1) —0.0004(2)
9 0.000 342 0.00033(18) 0.0003(3) 0.0005(6)
10 0.000703 0.00078(15) 0.0011(2)
11 —0.001951 —0.001 87(13) —0.0026(2) —0.0043(4)
12 0.000495 0.00047(5) 0.0004(2) 0.0005(8)
13 0.002 920 0.00297(8) 0.0029(1) 0.0037(2)
14 0.000 330 0.00026(7) 0.0005(1) 0.0002(1)
15 0.000430 0.00038(5) —0.0002(3) .
16 0.001216 0.00129(7) | 0.0012(2) 0.0028(4)
17 0.000297 0.00009(11) 0.0000(1) 0.0004(13)
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TABLE VIL - Estimates for the fixed point for the b=2
majority-rule RG transformation in a d=3 Ising model with 17
coupling constants from the simulations used in Table VI. The
first column used the true values used in performing the MC
simulation for the extrapolation to the fixed point. The results
should be compared with those of Table V.

RG iterations

Otol 1to?2

a K% K%

1 0.1792(12) 0.171(25)
2 0.0320(15) 0.030(4)
3 0.0094(2) 0.006(1)
4 —0.0129(19) —0.008(7)
5 —0.0058(2) —0.004(3)
6 —0.0017(2) 0.001(1)
7 —0.0008(6) 0.001(1)
8 0.0002(5) —0.000(1)
9 0.0009(8) 0.000(1)
10 0.0018(6)
11 —0.0041(11) —0.004(2)
12 —0.0000(3) —0.001(2)
13 0.0031(5) —0.003(1)
14 0.0003(2) 0.000(1)
15 —0.0011(8)
16 0.0017(3) 0.002(1)
17 0.0008(2) 0.002(1) .

renormalized coupling constants at the second and third
iterations. The slow approach to the fixed point (in com-
parison with two-dimensional trajectories?) is consistent
with the results of extensive MCRG calculations of the
critical exponents using this transformation. Even after
three iterations, the estimates for the critical exponents
had not converged to their final values and the results had
to be extrapolated to the fixed point.?!

One of the reasons for undertaking the current study
was to try to avoid this problem by simulating an approxi-
mation to the fixed point instead of simply using the
nearest-neighbor model. An attempt to calculate the loca-
tion of the fixed point direct from the data in Table II and
Egs. (7) and (8) is shown in Table V. Aside from the fact
that the statistical errors are larger for the extrapolated
fixed-point values, there appears to be a discrepancy in the
results that might point to a systematic error due to the
finite number of coupling constants used in the analysis.
Although the nearest-neighbor coupling went steadily
down under renormalization (see Table II), the extrapolat-
ed fixed-point value is higher than for either the second or
third RG iterations. Such behavior is, of course, possible,
but seems unlikely.

Since the values on the second RG iteration are rather
accurately calculated, I used them in a new MC simula-
tion to improve the convergence to the fixed point. The
results are shown in Table V1. (The actual values used
differed slightly from those shown in Table II because this
simulation was begun before the simulations reported in
Table II had been completed.)

The first column in Table VI gives the number of cou-
pling constants used in the MC simulation, and the
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second column gives the actual values. The third column
gives the estimates for these values using Egs. (5) and (6),
which acts as a check on the method for a rather compli-
cated Hamiltonian.

If the MC simulation had reproduced the effective
Hamiltonian perfectly after two RG iterations from the
nearest-neighbor critical point, the values in Table VI list-
ed under K should have agreed with the third RG itera-
tion in Table II. Differences are due to the truncation of
the renormalized Hamiltonian and statistical errors.
However, the shift in coupling constants is not very large,
certainly not in comparison with the initial change from
the nearest-neighbor model after one RG transformation.
In addition, perhaps accidently, they also tend towards the
fixed-point estimates in Table V.

Under the assumption that the Hamiltonians in Table
VI are reasonably close to the fixed point, I have used
them for extrapolations, with the results shown in Table
VII. Again, the nearest-neighbor coupling appears to be
too strong, but a rough agreement with Table V is found.

Although there are still considerable uncertainties in-
volved, the best estimate for the fixed point is probably
given by the first column in Table V. Performing an MC
simulation of this model on a relatively small
(16X16X16) lattice led to the MCRG estimates for the
critical exponents shown in Table VIII. The first iteration
is somewhat disappointing, since it shows that the model
is still “far” from the fixed point, in the sense that the
eigenvalues of the derivative matrix do not give the
correct critical exponents. However, they are considerably
better than the values of Yr=1.43 and Yy =2.46 given
by the nearest-neighbor model.'*! The second iteration
is far better; the thermal eigenvalue is in agreement with

TABLE VIII. Leading thermal and magnetic critical ex-
ponent estimates for a 17-parameter d=3 Ising model from a
simulation on a 16X 16X 16 lattice. The MC simulation used
the first estimates in Table V for the coupling constants at the
fixed point. The simulation used 1.8 10° MCS/S, after dis-
carding 1.1x10* MCS/S, with data recorded every MCS/S. n
is the number of RG steps and a the number of couplings in-
cluded in the analysis.

n a yr Yu

1 1 1.483(2) 2.4853(4)
2 1.518(2) 2.4814(3)
3 1.516(2) 2.4807(3)
4 1.507(2) 2.4804(3)
5 1.506(2)
6 1.505(2)
7 1.491(3)

2 1 1.56(1) 2.507(3)
2 1.61(1) 2.496(3)
3 1.61(1) 2.494(3)
4 1.60(1) 2.493(3)
5 1.59(1)
6 1.58(1)
7 1.58(1)




TABLE IX. Estimates for the fixed point of the d=3 Ising
model for the b=2 majority-rule RG transformation from a
two-lattice comparison on 6X 6X 6 and 12X 12X 12 lattices, us-
ing a six-parameter MC simulation. The small lattice averaged
over 1.1X10° MCS/S and the larger lattice over 2.2X10°
MCS/S. The statistical errors were in the third digit, but were
not determined accurately, since the systematic errors, owing to
the small number of couplings, clearly dominated.

K

0.1965
0.0374
0.0069
—0.0194
Not included
0.0088
0.0002
0.0001
Not included
Not included
0.0049

Q

— O VWOV PE WN =

—

the best estimates (within fairly large statistical errors)
and the magnetic eigenvalue is only about 0.3% too high,
probably because of a small error in the simulated cou-
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pling constants, corresponding to being slightly off the .
critical hypersurface.!* 13

IV. SUMMARY AND CONCLUSIONS

The advantages of the new method for calculating re-
normalized coupling constants can be seen even more
clearly by comparison with the results from a two-lattice
comparison given in Table IX. The older method shows
large systematic errors owing to the small number of cou-
pling constants that could be conveniently handled, as
well as the intrinsically larger statistical errors, as dis-
cussed above.

In this paper, a new method of calculated renormalized
coupling parameters was applied to the three-dimensional
Ising model.! A partially successful attempt was made to
improve the convergence of the MCRG calculation of
critical exponents by simulating an approximate fixed
point. The basic validity of the approach was confirmed,
but a fully satisfactory determination of the fixed point
was not achieved, probably owing to the finite number of
coupling constants, as well as statistical errors. Both of
these difficulties can be reduced in future work through
the improved availability of high-speed computers and the
inclusion of more parameters in the analysis, based on the
present study.

*Present address: Department of Physics, Carnegie-Mellon
University, Pittsburgh, PA 15213..
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