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Monte Carlo calculation of renormalized coupling parameters. I. d =2 Ising model

Robert H. Swendsen*
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Renormalization-group trajectories produced by various real-space, block-spin transformations of
the d =2 Ising model are studied, using a recently developed technique for calculating renormalized
coupling parameters from a Monte Carlo simulation of a single system.

I. INTRODUCTION

The real-space renormalization-group (RG) approach'
to the study of critical behavior in thermodynamic sys-
tems has contributed much to our understanding of such
phenomena. However, many assumptions of this ap-
proach still need to be justified more fully, and the validi-
ty of various approximations must be tested.

The combination of Monte Carlo (MC) computer simu-
lations with the RG formalism has already made pro-
gress in this direction by allowing some of the approxima-
tions to be investigated systematically. ' For example,
the effect of including more renormalized coupling con-
stants in the calculation of critical exponents can be stud-
ied with controlled statistical errors.

On the other hand, there was no generally applicable,
practical way of investigating the renormalization-group
trajectories themselves, until the recent development of a
method of calculating renormalized coupling constants
from a single MC computer simulation. ' This problem is
important for practical computational reasons, since the
determination of the RG trajectory, and especially the
fixed point„should enable a substantial improvement in
the convergence of the calculation of critical exponents.
Fewer iterations of the RG transformation would be
necessary, meaning that smaller lattices could be used,
reducing computational effort, and improving both accu-
racy and reliability.

Renormalized coupling constants are also important for
lattice gauge theories. " This would enable RG trajec-
tories to be obtained from a series of MC simulations on
small lattices, instead of requiring large linear dimensions
for four-dimensional systems. "'

The fundamental difficulty in calculating renormalized
coupling constants from an MC simulation arises from
the reduction in size of the system used for the MC simu-
lation after the RG transformation. Since correlation
functions in the renormalized system are affected by both
the change in effective renormalized coupling constants
and the change in size, it is necessary to separate the two
effects in order to extract RG trajectories from MC simu-
lations.

In principle, a two-lattice comparison of the type intro-
duced by Wilson' is capable of calculating renormalized
couplings, ' but the statistical errors involved in finding
differences between correlation functions from two in-
dependent MC simulations limit its practical application

to certain special cases. ' '
The single-lattice approach has smaller statistical errors

than any two-lattice comparison (as demonstrated below)
and enables practical calculations of renormalized cou-
pling constants to be carried out for any real-space RG
transformation of interest. '

In this paper I use the two-dimensional Ising model to
test this method on a system with well-known properties.
To investigate the effect of different RG transformations,
I have performed calculations on several different, com-
monly used RG transformations. The work can be re-
garded as a continuation of a previous investigation of the
calculation of critical exponents for the two-dimensional
Ising model using various RG transformations.

After a brief introduction to the real-space RG formal-
ism to establish notation in Sec. II, the single-lattice cal-
culation of renormalized coupling constants is presented
in Sec. III. Numerical extrapolation to the fixed point is
discussed in Sec. IV. Applications to various RG
transformations are discussed in Secs. V—VII, and results
are summarized in Sec. VIII.

II. REAL-SPACE RCx FORMALISM

Consider a' general model in statistical mechanics, for
which the Hamiltonian is written in the form

H = gee.S. ,

where the S~'s are various possible combinations of the
"spins" o s that occur in models of interest or are gen-
erated by renormalization-group transformations. An im-
portant example for the Ising model is the operator
describing the nearest-neighbor (NN) coupling

0gO J

where cr; =+1 or —I and the sum is taken over nearest-
neighbor pairs. Factors of the inverse temperature times
the Boltzmann constant are included implicitly in the def-
inition of the set of coupling constants IX~I. Seven
operators of this general form were used in the present
work, and are listed in Table I.

The equilibrium probability distribution is then

P(o) =exp[H(o)]/Z,
where Z is the partition function
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1

2
3

5
6

Nearest neighbors (10)
Next nearest neighbor (11)
Third neighbor (20)
Fourth neighbor (21)
Fifth neighbor (22)
Four-spin coupling around a plaquette
Four-spin coupling on a sublattice plaquette

Z =Trexp(H) . (4)

The renormalization-group formalism integrates out
some fraction of the variables associated with short-
wavelength fluctuations, transforming the original system
into a new one with few degrees of freedom. Transforma-
tions are generally characterized by a local grouping of
spin variables on neighboring sites into "blocks, " and as-
signing a value to each "block spin" on the basis of the
values assumed by the spins in each block.

For example, for the d =2 Ising model, a common RG
transformation (considered in detail below) is to divide the
system up into 2&(2 blocks and assign a block spin on the
basis of whether the sum of the spins in the block is posi-
tive or negative (ties being awarded equally). This re-
places four spins in the original system by a single spin in
the new, renormalized-system. The linear dimensions of
the system has been reduced by the scale factor b =2.

Formally, the RG transformation can be written in
terms of the equilibrium probabilities as

P'(o') = Tr [T(o',cr)P(o)] . .

The new probability distribution can then be interpreted
in terms of an effective Hamiltonian for the renormalized
block spins

P'(o') =exp[H'(cr') ]/Z'

and this renormalized Hamiltonian can be parametrized
in terms of a new set of coupling constants IE' j. It is
the calculation of these renormalized coupling constants,
[IC' j, which is the main subject of this paper.

Even for models with nearest-neighbor interactions and
simple RG transformations, the renormalized Hamiltoni-
an requires an infinite number of coupling constants to
describe it completely. The effect of the renormalization-
group transformation therefore involves a mapping of an
infinite-dimensional space of coupling constants onto it-
self. Fortunately, only a small number of renormalized
coupling constants is generally important, and the method
discussed below can be used to systematically investigate
the effect of additional parameters

III. CALCULATION OF EFFECTIVE COUPLING
CONSTANTS

The difficulty involved in the calculation of effective
renormalized coupling constants from configurations of

TABLE I. Coupling constants used for the MCRG analysis
of the d =2 Ising model.

Even couplings
Description

an MC simulation arises primarily from the unknown
dependence of all correlation functions on the size of the
system. A change in the correlation functions after an
RG transformation is due partly to a change in coupling
constants and partly to the change in the size of the sys-
tem upon integrating out some fraction of the degrees of
freedom.

The only method previously available for separating
these two effects is based on an idea introduced by Wil-
son. ' He suggested comparing renormalized correlation
functions with those of a second, independent MC simula-
tion on a lattice of the same size as the renormalized sys-
tem. Even though the finite-size effects might have been
large, they would be the same for both MC simulations, so
that any differences in the correlation functions had to be
attributed to differences in the effective renormalized cou-
pling constants. Methods using matrices of derivatives to
systematically investigate the effects of many renormal-
ized coupling constants were than developed and applied
to a variety of problems. ' ' '

In principle, the two-lattice comparison solved the
problem. In practice, severe numerical difficulties arose,
because the statistical errors from two independent MC
simulations were too large in comparison with the rather
small differences in correlation functions. 7'

Although rough approximations to the RG trajectories
could be calculated, the information obtained was meager,
except for the determination of the location of critical (or
multicritical) points. In these cases, the RG transforma-
tion amplified small devia, tions from criticality (relevant
directions) and this effect overcame the statistical errors.
Two-lattice comparisons have, indeed, become a standard
method for highly accurate determinations of critical tem-
peratures from MC siinulations. ' ' ' ' ' '

To overcome the problem of statistical errors encoun-
tered in two-lattice comparisons, it was essential to
develop a method that only required a single MC simula-
tion. To do that, a second, independent expression for re-
normalized correlation functions, which depends explicit-
ly on the renormalized coupling constants, is needed.

A representation of the correlation functions satisfying
this requirement was suggested in 1963 by Callen ' and
recently applied to lattice gauge theories by Parisi, Petron-
zio, and Rapuano. This alternative calculation of corre-
lation functions can then be compared with the usual ex-
pression, using the same configurations from an MC
simulation. Differences in the values of the correlation
functions from the two expressions indicate differences
between the assumed values of the renormalized coupling
constants and the true values. A minimization of these
differences then leads to the true values. '

To explain the details of this approach, I shall first in-
troduce the usual expressions for the calculation of corre-
lation functions, then alternative expressions, using the
same notation. Finally, I shall show how derivative ma-
trices can be constructed to give a sequence of approxima-
tions that converges rapidly to the set of values for the re-
normalized coupling constants.

The standard expression for correlation functions is

( S ) =Z ' Tr [S exp(H)] .
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For comparison with Eq. (7), we construct a second ex-
pression for the correlation functions, based on an idea
due to Callen. ' The operators S l are defined as the sum
of all terms in Sa that include ol. For example, with the derivatives

(18)

SNN, i= g a o (&,i+&;i) .
(~j&

Sa is then given by

(8) B(S )

dlt: p

=m 'g S iSliisech2 QEsSsi . (19)
1 5

Hi ——+It: S (10)

the new correlation functions can be written in Callen's
representation as

(S i)=Z ' Tr [exp(H Hi)zi($—i)i] (11)
In; (~aI)I

where

(S i)i=zi 'Tr [S iexp(Hi) j (12)

and

Sa =ma QSa, i t

1

where ma is 2 for two-spin operators, 4 for four-spin
operators, etc.

Defining

By choosing the set Ilt ) to inake (S —S ) =0, these
equations allow the calculation of the effective renormal-
ized coupling constants lit'"'I after n iterations of the
RG transformation. A convenient consistency check is

TABLE II. Correlation functions for the original and renor-
malized lattices from an MC simulation of a 32)&32 lattice with
a 2&(2 majority-rule RG transformation. The MC simulation
ran for 2.5X10 MC steps per site (MCS/S), starting from an
old, well-equilibrated configuration from a previous simulation.
Characteristic relaxation times for the energy of the unrenor-
malized system were about 100 MCS/S and data were taken
every 20 MCS/S. The correlation functions calculated using
Callen's representation differed from those shown by the
amount in the second to last column, and had very nearly the
same accuracy as given below for the correlation functions cal-
culated in the usual manner. The errors in the differences were
smaller than those for the correlation functions themselves by
the ratio given in the last column.

zi= Trexp(Hi)
O'I

(13)

1Sa 1=Sa

so that, for example,

SNN l= g ai
(1,1)

ai1d

Hl =al g +aSa l

(14)

(15)

(16)

Introducing a second set of coupling constants, [It a I, for
future convenience, we define

(S )=I 'g S ttanh QnttSttt ),
1 P

(17)

where the large angular brackets still indicate averages
with respect to the "true" coupling constants, IK L The
equality (S ) =($ ) is valid if and only if X =X for
all a. If the two sets of coupling constants differ, this
equality will not hold. To first order, the differences will

be given by

depend on the neighbors of ol. Since Eqs. (12) and (13)
only involve traces over a single operator, they can be
evaluated explicitly from configurations generated by the
MC simulation, when the Hamiltonian is known. De-
pending on the model under consideration, the integration
might be done analytically, numerically, or even with MC
methods. For the present case of the Ising model, the
trace can be carried out analytically. Separating out 0.1,
we define

1

2
3
4
5
6
7

1

2
3
4
5
6
7

(s'"))

1.4348(8)
1.3023(11)
1.2264(-14)
2.3749(31)
1.1300(19)
0.6053(5)
0.4877(7)

1.432(2)
1,.331(2)
1.247(3)
2.440(6)
1.171(4)
0.590(1)
0.508(1)

1.470(3)
1.387(4)
1.319(5)
2.599(11)
1.265(7)
0.610(2)
0.539(2)

1.555(6)
1.497(8)
1.477(8)
2.922(18)
1 AA.A.(10)
0.661(4)
0.610(5)

(~(n) )

0.00004(4)
—0.00001(8)
—0.00002(5)

0.00003(10)
—0.00006(9)

0.00003(3)
—0.000 03(6)

0.000 17(9)
0.000 04(22)

—0.000 34(20)
0.00035(23)

—0.000 22(12)
0.000 07(9)

—0.000 08(9)

0.000 1(3)
0,000 6(3)
0.000 8(3)
0.001 4(5)
o.ooo 7(3)
0.000 1{3)
o.ooo 1(2)

o.ooo 9(9)
0.000 8{10)
o.ooo 9(14)
0.002 0(29)

—0.000 4(11)
0.000 1(5)
0.000 3(5)

Error
ratio

0.05
0.07
0.03
0.03
0.05
0.06
0.08

0.06
0.10
0.08
0.04
0.03
0.10
0.08

0.10
0.07
0.06
0.04
0.05
0.14
0.08

0.15
0.13

.0.17
0.16
0.12
0.15
0.11
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I( (n)+(I T)—l(~(n+1) lt(n)) (21)

and I is the identity matrix. This equation can be rewrit-

the reproduction of the known unrenormalized coupling
constants I

E' '
I used in the original MC simulation.

The values of tX ~"'I must be close to IX~"'I for Eq.
(18) to be valid. Starting with K~"'=K~ ', two short pre-
liminary computations were usually sufficient to obtain a
good set of values for [E'"'I.

IV. EXTRAPOLATION OF THE RG
TRAJECTORIES TO THE FIXED POINT

Estimates for the fixed-point couplings can be made
direct from the RG trajectories, using the matrix of
derivatives

(20)

which can be calculated by standard Monte Carlo renor-
malization group (MCRG) methods. Going over to an
obvious notation, an approximation to the fixed point is
given by

ten to involve only a single matrix inversion and simplify
computer programming.

For technical reasons, it is often useful to be able to
come close to the fixed point, within a limitation to cer-
tain operators that can be included in an MC, simulation
on a special purpose computer. Since full information on
the behavior of the RG transformation is available, devia-
tions from the fixed point in the most relevant (least ir-
relevant) directions could be projected out using eigen-
values and eigenvectors of the matrix T.

The statistical errors involved in extrapolating to the
fixed point are naturally larger than those for the renor-
malized coupling constants. Explicit examples of such
calculations are given below.

V. MAJORITY-RULE TRANSFORMATION
%ITH SCALE FACTOR b =2

The first example of the calculation of renormalized
coupling constants for the d =2 Ising model will use the
2 &&2 majority-rule transformation mentioned in the Intro-
duction.

TABLE III. Renormalized coupling constants and extrapolated fixed point for the nearest-neighbor
d =2 Ising model using a majority-rule transformation with scale factor b =2. Same MC simulation as
Table II.

Values in
simulation

~(n)a

0.440 687
0.0
0.0
0.0
0.0
0.0
0.0

Best estimates
for couplings

K'"'a

0.440 76(24)
0.000 04(22)

—0.000 15(17)
0.000 20{13)

—0.00029(21)
0.00008(18)

—0.000 17(16)

Extrapolated
fixed point

0.364 212
0.081 546

—0.007 484
—0.003 616
—0.002 453
—0.007 572

0.003 029

0.3643(7)
0.0814(9)

—0.0068(6)
—0.0038(3)
—0.0023(2)
—0.0075(5)

0.0026(3)

0.3705(17)
0.0923(5)

—0.0178(10)
—0.0071(2)
—0.0014(6)
—0.0113(8)

0.0067{5)

0.354 788
0.093 058

—0.010410
—0.004 736
—0.001 800
—0.008 112

0.005 221

0.3527(7)
0.0944(10)

—0.0094{6)
—0.0046(4)
—0.0019(9)
—0.0075(9)

0.0043(5)

0.352(5)
0.097(1)

—0.011(1)
—0.005(1)
—0.002(1)
—0.007(1)

0.006(1)

0.350 144
0.095 238

—0.012 165
—0.003 503
—0.002 313
—0.002 270

0.004 343

0.353(3)
0.095(3)

—0.013(2)
—0.002(2)
—0.005(2)
—0.004(3)

0.005(2)

0.358(6)
0.094(3)

—0.014(3)
—0.003(2)
—0.005(2)
—0.002(3)

0.006(3)
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Table II shows the effect of the RG transformation on
various correlation functions. The first column gives the
number of RG iterations (0 refers to the original MC
simulation), and the second column indicates the type of
interaction according to Table I. The values of the corre-
lation functions calculated in the usual manner [Eq. (7)]
are given in the third column. Even though the simula-
tion was performed at the exact critical temperature of the
d =2 Ising model and the RG trajectory approaches a
fixed point, the correlation functions change significantly
under renormalization owing to the size dependence.

Table III shows the calculated values of the original
and renormalized coupling constants. The first two
columns are the same as in Table II, and the third column
gives approximate values of the renormalized coupling
constants determined by preliminary calculations using
Eq. (18). The differences between the usual correlation
functions (third column of Table II) and those calculated
with Callen's representation and these parameters are
shown in the fourth column of Table II.

The differences in the correlation functions are quite
small —well within the statistical errors for the correlation
functions themselves (which are the same for both repre-
sentations of the correlation functions near a critical

point). Furthermore, statistical errors for the differences
are smaller than for the correlation functions themselves
by the factor given in the last column of Table II. The
fact that errors in the differences are so much smaller is
the reason for the success of this approach. A reduction
of statistical error by a factor of 0.1 would have required
an increase in computer power by a factor of 100 if a
two-lattice comparison had been used. Actually, the gain
is substantially more than that, since the single-lattice
method does not require the MC simulation of any model
more complicated than the original one.

The differences in the correlation functions given in the
fourth column of Table II were used to calculate the best
estimates for the renormalized couplings found in the
fourth column of Table III. The set of values correspond-
ing to n =0 represents the consistency check of reproduc-
ing the coupling constants used in the original MC simu-
lation. The nearest-neighbor coupling constant agrees
with the exact value within a statistical error of about
0.06%, and all other couplings are zero within small sta-
tistical errors.

From Table III it can be seen that the critical RG tra-
jectory rapidly approaches a fixed point and that the mag-
nitude of the more distant interactions remains small.

TABLE IV. Renormalization-group trajectories from the nearest-neighbor d =2 Ising model using a majority-rule transformation
with scale factor b =2.

+NN
(n)

0.3
0.1838
0.0966

+NNN
(n)

0.0302
0.0141

+3NN
(n)

—0.0064
—0.0053

&4XN
(n)

—0.0025
—0.0014

+5NN
(n)

—0.0005
—0.0001

(n)
&4S(i)

—0.0029
—0.0006

(n)
+4S(2)

0.0004
—0.0001

0.36
0.250
0.173

0.051
0.035

—0.005
—0.009

—0.004
—0.004

—0.002
—0.002

—0.005
—0.003

0.001
0.004

0.40
0.305
0.248

0.067
0.056

—0.006
—0.010

—0.004
—0.002

—0.002
—0.001

—0.010
—0.005

0.001
0.000

0.42
0.333
0.298

0.072
0.076

—0.007
—0.012

—0.003
—0.005

—0.001
—0.001

—0.008
0.001

0.002
0.001

0.46
0.404
0.42

0.083
0.10

.—0.016
—0.024

—0.002
—0.002

—0.003
—0.001

—0.008
—0.001

0.006
0.008

0.48
0.424
0.468

0.099
0.141

—0.010
—0.011

—0.006
—0.013

—0.002
0.002

0.004
0.001

0.002
—0.002

0
1

2

0.3
0.420
0.532

0.15
0.142
0.117

—0.009
—0.019

.
—0.007

0.001
—0.003

0.028

—0.009
—0.004

0.001
—0.000

0.08
0.1295
0.078

0.16
0.0501
0.0145

—0.0033
—0.0037

—0.0018
—0.0001

0.0001
0.0000

—0.0024
0.0003

0.0004
0.0005



30 MONTE CARLO CALCULATION OF RENORMALIZED. . . . I. 3871

0.5

)

Kc
I

0.4 E

The short line through the approximate location of the
fixed point in the diagram indicates the projection of the
eigenvector of the leading relevant operator onto this
two-dimensional subspace, and the deviations of the tra-
jectories are consistent with this direction.

0.3
VI. MAJORITY-RULE TRANSFORMATION

VfITH SCALE FACTOR b =3

KzN

0.2

0.1

0
0

I

0.05
I

0.10

FIG. 1. Renormalization-group trajectories for the 2)&2
majority-rule transformation, projected onto the subspace of
nearest- and next-nearest-neighbor coupling parameters. Data
taken from Table IV.

Since the method of calculating renormalized coupling
constants works directly with the renormalized configura-
tions, there is no restriction on the type of transformation
that may be analyzed in this manner. Table V shows data
for the renormalized correlation functions from an
MCRG calculation of a majority-rule RG transformation
with scale factor b =3. Since there is an odd number of
spins in each block for this transformation, no ties ever
occur.

It is interesting to note that after two iterations of the
b =3 RG transformation on a 36X 36 lattice, we arrive at
the same 4X4 system size as found after three iterations
of the b =2 transformation of a 32 X 32 system discussed
above. Since the last sets of correlation function in Tables
II and V both refer to the same size lattice, differences
must reflect different renormalized coupling constants

The interactions between more distant neighbors are nega-
tive and are expected to oscillate for still greater distances,
as has been seen explicitly in the d =3 Ising model. '

The last column in Table III shows extrapolated loca-
tions of the fixed point using Eq. (21). The first set of
values differs slightly from the next two, owing to non-
linear effects arising from the distance of the nearest-
neighbor Hamiltonian from the fixed point. The second
and third estimates for the fixed point agree with each
other and with the third point in the RG trajectory.

For comparison with these results, and RG truncation
approximation by Nauenberg and Nienhuis predicted a
fixed point for a similar transformation (using a tie-
breaker instead of equal probabilities when the sum of
spins in a block is zero) at Ki ——0.307, Xz ——0.084, and
SC6 ———O.OO4.

The method for calculating renormalized coupling con-
stants is clearly not liinited to the RG trajectory from the
critical to the fixed point. The method can be applied to
temperatures both above and below the critical value, as
shown in Table IV. An interesting feature of this table is
that the major effect of the RG transformation is seen in
the first two coupling constants, with interactions between
more distant neighbors changing less dramatically. This
makes it useful to plot these two RG parameters against
each other, as shown in Fig. 1. This projection of the RG
flow diagram confirms the qualitative picture of the effect
of a typical RG transformation, which has formed the
basis of all previous work. '2

The RG trajectory from the nearest-neighbor critical
point goes rapidly to a fixed point within small statistical
errors. For temperatures as little as 4% above or below
the critical temperature, the movement away from the
fixed point is quite pronounced on the second iteration.

0 1.431(2)
1.297(3)
1.219(3)
2.358(7)
1.120(4)
0.603(1)
0.485(2)

(as'"'&

0.0001(2)
o.ooo2(2)
0.0000(2)
o.ooo2(3)
0.0001(2)
0.0000(1)
0.0001(1)

Error
ratio

0.10
0.07
0.05
0.05
0.03
0.12
0.08

1.499(6)
1.400(8)
1.315(10)
2.579(20)
1.242(12)
0.640(4)
0.558(4) .

—0.0021(4)
—0.0000(4)
—o.ooo2(5)

0.0003(6)
0.0001(3)

—0.0022(3)
—0.0002{2)-

0.07
0.15
0.05
0.03
0.02
0.18
0.05

1.61(2)
1.54(2)
1.52(2)
3.00(5)
1.48{3)
0.70(1)
0.65(1)

—0.001(2)
o.oo2(2)

—0.000(3)
—0.005(5)
—0.001(3)
—0.000(1)

o.ooo(1)

0.14
0.11
0.13
0.10
0.12
0.11
0.09

TABLE V. Renormalized correlation functions for an MC
simulation of a 36&(36 lattice with a 3)&3 majority-rule RG
transformation. The format is the same as Table II. The calcu-
lation was performed on a 36' 36 lattice. The MC simulation
ran for 5.76)&10 MCS/S after discarding 8&&10 MCS/S, with
data taken every 20 MCS/S. Characteristic relaxation times for
the energy of the unrenormalized system were about 120
MCS/S.
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TABLE VI. Renormalized coupling constants and extrapolated fixed point for the nearest-neighbor
d =2 Ising model using a majority-rule transformation with scale factor b =3 on a 36&(36 lattice. The
format is the same as Table III, and the MC simulation is the same as Table V.

Values in
simulation

~(n)

0.440687
0.0
0.0
0.0
0.0
0.0
0.0

Best estimates
for couplings

~(n)

0.4409(6)
—0.0001(3)
—0.0001(4)
—0.0005(2)

0.0001(3)
0.0004(3}
0.0000(4)

Extrapolated
fixed point

E

1

.2
3
4
5

6
7

0.407 119
0.077 863

—0.027 724
—0.009 074
—0.001 295

0.005 743
0.012 115

0.408(2)
0.080(2)

—0.027(2)
—0.008(1}
—0.002(1)
—0.003(2)

0.010(1)

0.422(6)
0.081(5}

—0.032(2)
—0.011(2)

0,000(2)
-0.008(3)
—0.014(2)

0.407 119
0.077 863

—0.027 724
—0.009 074
—0.001 295

0.005 743
0.012 115

0.402(4)
0.101(5)

—0.025(4)
—0.018(3)
—0.001(3)

0.006(2)
0.008(5}

0.439(2)
0.101(2)

—0.306(2)
—0.018(1)
—0.003(5)

0.005(1)
0.009(2)

TABLE VII. Renormalized coupling constants and extrapolated fixed point for the nearest-neighbor
d =2 Ising model using a majority-rule transformation with scale factor b =3. The format, the model,
and the RG transformation are the same as Table III, but the MC simulation was performed on a
12)&12 lattice. A preliminary MC simulation ran for 2. 185)&10 MCS/S after discarding 11000
MCS/S, and produced the values shown in the first column. The second column, giving a subsequent
refinement, used the values in the first column to extrapolate after one RG transformation. The second
MC simulation ran for 2.85&10 MCS/S starting with the last configuration of the first simulation.
Characteristic relaxation times were about 20 MCS/S.

Estimates
from first

extrapolation
~(n)a

0.4411(5)
—0.0007{7)

0.0005(8)
0.0004(3)

—0.0001(3)
0.0001(5)
0.0001(7)

Best estimates
for couplings

g (n)
a

0.4411(9)
—0.0003(8}
—0.0005(8)
—0.0000(5)
—0.0000(3)

0.0004{6)
0.0000(2)

Extrapolated
fixed point

0.400(3)
0.082(4)

—0.028(2)
—0.011(2)
-0.002(2)

0.007(3)
0.016(1)

0.407(3)
0.078(3)

—0.028(2)
. —0.009(2)
—0.001(2)

0.006(3)
0.012(1)

0.421(6)
0.086(4)

—0.36(3)
—0.013(2)
—0.000(2)

0.007(4)
0.015(2)
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TABLE VIII. Decimation transformation with scale factor b =2 for the nearest-neighbor d =2 Is-
ing model (K, =0.440687). The calculation was performed on a 32)&32 lattice, and ran for 2.25 X 10
MCS/S starting from the last configuration of an old simulation, with data taken every 20 MCS/S. Ex-
trapolations for all levels of renormalization after the original lattice used ECj ——0.2 and Eq=0. 1, and
all other couplings are equal to zero.

0.4396(9)
—0.0002(7)
—0.0004(11)

0.0002(5)
0.0004(3)
0.0011(6)
0.0003(6)

0.254(1)
0.086(1)
0.015(1)
0.008(1)
0.004(1)

—0.018(1)
—0.009(1)

0.186(2)
0.089(2)
0.028(1)
0.016(2)
0.012(3)

—0.031(1)
—0.013(3,)

0.146(3)
0.097(5)
0.033(1)
0.019(2)
0.010(3)

—0.043(3)
—0.028(4)

and, different fixed points.
That this is indeed the case can be seen in Table VI.

The renormahzed nearest-neighbor coupling constant is
about 0.4 for both iterations, although it was about 0.35
for the b =2 transformation. The third-neighbor interac-
tion is negative, but much stronger than for the b =2
transformation, balancing the strength of the enhanced
nearest-neighbor coupling.

A curious feature is that of the strength of the nearest-
neighbor coupling at the extrapolated fixed point is larger
than for the first two iterations. Although it is possible
that this is indeed the case, it would seem more likely that
the effect is due to the use of an insufficient number of
coupling constants.

To test the method for finite-size effects, the calcula-
tion in Table VI was repeated, using a 12&(12 lattice. The,
renormalized coupling constants calculated with this
smaller lattice are shown in Table VII and can be seen to
agree very well mth data in Table VI.

VII. DECIMATION WITH SCALE FACTOR b =2

A decimation transformation is one in which the renor-
malized spins are simply a subset of the original spins.
When the renormalized spin is always given the value of
the original spin in the lower left-hand corner of the 2)&2
block, we have a decimation transformation with scale
factor b =2.

The fixed point is known to be a trivial one, in which
the range of interaction diverges and magnitudes of the
renormalized couplings all vanish. The results are shown
in Table VIII. In contrast to previous RG transforma-
tions, the renormalized coupling constants do not fall off
rapidly with distance. The seven parameters included in
the calculation are clearly not enough for a full descrip-
tion of the renormalized system. All pair interactions are
positive (ferromagnetic), although other transformations

produced a change of sign with distance. Although three
iterations are not enough to get a good idea of the asymp-
totic behavior of the transformation under many itera-
tions, Table VIII appears to be consistent with the expect-
ed trivial fixed point.

VIII. SUMMARY AND CONCLUSIONS

The ability to calculate effective renormalized coupling
constants for any block-spin RG transformation of in-
terest opens up the systematic investigation of detailed ef-
fects of renormalization. This paper has attempted to
provide a basis for such investigations, by showing the
inethod in operation using various RG transformations on
a simple, well-known model in statistical mechanics.

A later paper will extend these studies to the three-
dimensional Ising model, for which there is still no exact
solution. This direction is very promising, since current
state-of-the-art MCRG calculations already come close to
the accuracy of the best competing methods for the calcu-
lation of critical exponents.

The three-dimensional model will also be used to inves-
tigate the improvement in the convergence of the MCRG
calculation of critical exponents by simulating an approxi-
mate fixed point, instead of the nearest-neighbor critical
point. Such an investigation has not been discussed in
this paper, because the first iteration of the b =2 RG
transforination starting from the nearest-neighbor model
is already only 3% away from the exact value, so that a
dramatic improvement is not to be expected.

I believe that this approach can be useful for studying
very general models, including lattice gauge theories,
which are important in the theory of elementary particles.
The class of RG transformations can also be broadened to
include transformations in momentum space. Such fu-
ture applications appear to be quite feasible on the basis of
the present results.
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