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Enhanced impurity-induced damping of magnetic modes in FeFz..Mn
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High-resolution far-infrared laser spectroscopy is used to investigate the impurity-induced relaxa-
tion of the k=0 host mode in antiferromagnetic FeF2.Mn at low temperatures, for Mn-impurity
concentrations c=(2—5) & 10 at. %. The transmission spectra exhibit very asymmetric broaden-

ing with increasing c, with the modes above the polariton gap having linewidths nearly an order of
magnitude larger than the antiferromagnetic resonance. The observed frequency-dependent relaxa-
tion (formally, a frequency-dependent imaginary self-energy) is shown to arise from two magnon im-

purity scattering. However, the close proximity of the impurity mode to the host magnon band re-

quires the inclusion of multiple-scattering effects to obtain quantitative agreement between experi-
ment and theory.

I. INTRODUCTION

Since both the exchange and anisotropy fields are large,
the antiferromagnetic resonance (AFMR) frequency of
FeFz lies in the far-infrared (FIR) region (1.575 THz, or
189 pm for zero applied magnetic field). Because of this,
the early AFMR studies on FeF2 utilized grating or
Fourier-transform' FIR spectrometers, which lack the
resolution of, for example, microwave magnetic resonance
spectrometers. With the development of FIR lasers,
high-resolution AFMR and local mode studies of FeFz
and FeFz.Mn were made which revealed many new facets
of the k=0 spin excitations in this system.

Contrary to conventional magnetic resonance experi-
ments where the wavelength of the radiation is much
larger than the sample dimension d, in the FIR experi-
ments A,=d. As a result, propagation effects of the excit-
ing radiation are important. Instead of just probing the
AFMR, the FIR field generates propagating coupled
photon-magnon modes, or magnetic polaritons in the
sample. Previous studies of the magnetic polaritons in
FeFz include the detailed analysis of the very broad and
asymmetric line shape observed in transmission experi-
ments ' and the measurement of the polariton absorp-
tion and group velocity versus wave vector k. One can
account in detail for all of the observed properties in pure
(or essentially pure) FeFz by inclusion of a frequency-
independent damping in the equations of motion. When a
Mn impurity is introduced into FeFq a local mode appears
very close to the bottom of the host magnon band. For
small concentrations of Mn (c(1 at. %) the frequency
pulling effects can be accurately obtained by treating the
host and impurity sublattice magnetizations using two
sets of coupled equations of motion. However, neither the
broadening of the impurity nor that of the host modes is
adequately described by introducing a frequency indepen-
dent damping —particularly so as the concentration of Mn

increases beyond c -0.01 at. %. The impurity mode
damping has been studied in detail and the dominant re-
laxation mechanisms have been clearly identified. '

In this paper the problem of the broadening of the host
modes by the Mn impurities is investigated. The most
significant experimental fact is that the observed relaxa-
tion rate is strongly frequency dependent and its value
above the polariton gap is more than two orders of magni-
tude larger than one would expect from lowest order two-
magnon (exchange or anisotropy) scattering. " The reason
for this is that the local perturbation potential associated
with the Mn impurity is so strong that a bound state (lo-
cal magnon) appears; hence, the usual perturbation theory
(Fermi golden rule) result is not directly applicable. We
show that inclusion of multiple-scattering effects to all or-
ders, through introduction of the t matrix, corrects this
problem and accounts for the measured linewidths.

In Sec. II the main features of magnetic polaritons in
antiferromagnets are given. In Sec. III the experiments
are described and the data are presented. Section IV is de-
voted to the calculation of the two-magnon scattering
contribution to the linewidth. A discussion of the results
appears in Sec. V.

II. MAGNETIC POLARITONS

The propagation in an antiferromagnet of the coupled
magnon-photon excitations called "magnetic polaritons"
can be simply determined within an effective-field, cou-
pled equations of motion approach for the magnetiza-
tion. For a two-sublattice uniaxial antiferromagnet (AF),
with an applied magnetic field Ho parallel to the unique
axis (z direction) and driven by a spatially uniform rotat-
ing field of frequency co, the frequency- and field-
dependent transverse susceptibility is

X+(co,H )=2K4M/IH—, [(coly)+Ho] ), — (1)
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(2)

where e is the dielectric constant and c is the speed of
light. This dispersion is shown in Fig. 1 for FeF2 with

Ho ——0 in the case of no damping (co real). The poles of
k+-are the up- and down-going resonance frequencies in
an infinite medium, coy =y(H, +Ho). When co is close to
mli (1.57 THz in FeF2 at Ho ——0) the modes are hybrid
magnon-photon excitations. Between co~ and co~+yb FB,
where b,Fa—4mMH~/H, (2.8 kOe or 8.4 GHz in FeF2),
there is a "forbidden band" for propagation, within which
k +—has no real solution. In the region far off resonance,
Eq. (2) approaches the photon dispersion relation

k =co@'~2/c. For waves propagating with klHO a disper-
sion relation similar to (2) is obtained, but in this case the
forbidden band extends from coi-co~+4FB/2 (the top of
the spin-wave manifold a't k=0) to co~+ yhFB.

The forbidden band of Fig. 1 has a drastic effect on the
line shape of the transmitted radiation through a sample
of finite thickness, from which important information
about the magnetic properties can be obtained. The FIR
radiation transmission line shapes resulting from the com-
plex wave vectors in (2), with the inclusion of damping,
were discussed in detail in Ref. 4. Those results will be
used to extract the information on the magnetic damping
from the data presented in Sec. III.

III. EXPERIMENTAL OBSERVATIONS

Direct transmission measurements at 4.2 K of the
AFMR spectra were made with a far-infrared laser—

where y is the gyromagnetic ratio, M is the sublattice
magnetization, H, =(2HEH„+H„)', and H~ and Hz
are the anisotropy and exchange fields, respectively. The
propagation and volume dipolar effects are contained in
Maxwell's equations. When these are solved with the ap-
propriate permeability tensor obtained from (1) for plane
waves propagating with k

f WHO, the following polariton
dispersion results:

superconducting-solenoid spectrometer described else-
where. Spectra were obtained at a fixed frequency of
v=1.3623 THz (H20-vapor laser line) by sweeping the
external magnetic field Ho applied parallel to the unique

(c) axis of the crystal. The radiation (k
f fc) was incident

normal to the faces (polished to within 1 pm) of disk-
shaped samples, typically 4 mm in diameter and 100-pm-
thick FeF2 crystals with Mn impurity concentration
c=0.0014, 0.3, and 0.5 at. %, as determined from the rel-
ative intensities of the impurity-associated and host ' F
NMR spectra.

-We first review what is observed in pure FeF2 to under-
stand the changes that occur in the line profile as the im-
purity concentration is increased. In Fig. 2 the transmis-
sion spectrum of a 77-pm-thick sample of nearly pure
FeFz (c=0.0014 at. %) is shown by the solid line. The
dashed curve represents the theoretical 'prediction ob-
tained using the analysis given in Ref. 4 with a Lorentzian
linewidth of AH=20 Oe, which is introduced by letting
co~co+i Leo in the equations of motion, with
b,co =y hH/2. Several important features of the spectrum'
in Fig. 2, denoted by the letters A —F, can be qualitatively
understood. Far off resonance (A,F) the wave vector k is
entirely real and varies slowly with Ho. Therefore, the
transmission, which depends on the thickness t and k, is
almost constant. Approaching the resonance position,
Re k varies rapidly and gives rise to the interference peaks
which are labeled 8 and E. At the resonance position,
Im k varies from zero to its maximum value, causing the
steep slope in the spectrum labeled C. The sharp corner
(low field) corresponds to the down-going AFMR posi-
tion. The flat section of the transmission curve (D) is a
consequence of the forbidden band, where k is entirely
imaginary. The slope near the AFMR position, the width
of the flat region, and the intensity of the interference
peaks are all very sensitive to the value of the linewidth.
In fact, comparison between computer-generated trans-
mission spectra for various linewidths and the data can be
used to deterinine ~ with reasonable accuracy. The
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FIG. 1. Calculated magnetic polariton dispersion in FeF2 at
Ho ——0 for propagation along the symmetry direction.

FIG. 2. Measured transmission spectrum of v=1.3623 THz
radiation through a 77-pm-thick sample of FeF2 at T=4.2 K
(0.0014+0.0007 at. %%uoMn )show nb y th esoli d line . Th edashed
line is the prediction of the polariton model with H=20 Oe,
Ref. 4.
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FIG. 3. Measured host-mode line profiles for two concentra-
tions of Mn impurities at v=1.3623 THz and 4.2 K. With in-
creasing concentration, the mode shifts in frequency and
broadens. The c=0.3 at. % spectrum has been shifted (dashed
curve) to facilitate comparison with the c=0.5 at. 'Fo spectrum.
Notice that the high-field side of the polariton line broadens
more rapidly with increasing c.

70

small value of ~=20 Oe measured in the nearly-pure
FeFz sample was attributed almost entirely to radiation
broadening that is to say, as the impurity concentration
goes to zero, the damping of the magnetic polariton re-
sults mainly from the photon admixture.

The observed spectrum changes markedly with the in-
troduction of Mn even in small quantities such as c&0.2
at. %%uo . Firs t, astron g impurity-associate d loca 1 mod eap-
pears below and very close to the host mode. "' ' The
transmission spectra of the host mode for two different
concentrations —c=0.3 at. % (t=105 pm) and c=0.5
at. % (t=80 pm) —are shown in Fig. 3. With increasing
concentration, the mode shifts in frequency and the line
profile broaderis. A most important feature to be noted is
that the low-field edge, corresponding to the AFMR fre-
quency, remains relatively sharp. However, the high-field
edge of the line, which corresponds to polaritons above
the forbidden band, broadens rapidly with increasing c.
This is seen most clearly in the lower'half of the figure,
where the 0.3 at. %—Mn spectrum (shown by the dashed
curve) has been shifted so that the AFMR positions of the
two spectra coincide. Although the model provided excel-
lent fits to transmission spectra of 0.0014 at. % Mn:FeF2
with EH=20 Oe, the higher concentration spectra cannot
be fitted with any choice of a single Lorentzian linewidth.
For example, Fig. 4 shows two attempts to fit the c=0.5
at. %%uodat a(soli d line )wit h asingl e frequency-independent
linewidth. The value required to fit the AFMR edge
(dashed-dotted line) is MI=0.5 kOe, which is an order of
magnitude lower than b,H= 5.0 kOe needed to fit the line
shape above the forbidden band. Similarly, for the c=0.3
at. % sample we determine AH=0. 1 and 1.0 kOe, respec-
tively, for the AFMR and the top of the polariton band-
widths.
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FIG. 4. Transmission line profile observed (solid line) for a
80-pm-thick sample of 0.5 at. % Mn:FeF2 compared to results
of calculation with two different frequency independent
linewidths for the host mode. Clearly the hH required to fit the
AFMR edge is substantially less than that needed to fit the top
of the polariton band.

IV. THEORY

The two most significant features of the linewidth data
of the preceding six:tion can be summarized as follows:
(1) The AFMR linewidth of FeF2 with Mn impurities in-
creases rapidly with the impurity concentration c, and (2)
the polariton damping in the impure crystal is a strong
function of its frequency relative to the AFMR position.
One of the features of the data can be accounted for by a
linewidth transfer mechanism. The Mn impurity-
associated local mode lies below and very close to the
AFMR frequency. The linewidth ~1 of this mode is
substantially larger than that of the host AFMR and it in-
creases rapidly with c (bHI ——6 and 12.5 kOe for c=0.3
and 0.5 at. %, respectively, at v= 1.36 THz) as a result of
the impurity-impurity interaction. If the measured AIII
is introduced phenornenologically in the impurity magnet-
ization equation of motion, and no damping is used in the
host equations, the broadening of the AFMR mode with
increasing concentration is reasonably well predicted for
c &0.01 at. %. However, this mechanism cannot account
for the much larger damping required to fit the line shape
above the polariton forbidden band. As is shown below,
the strongly frequency-dependent mechanism required to
explain the data is the enhanced impurity two-magnon
scattering.

It is well known that two-magnon scattering, in which a
magnon of wave vector k decays via scattering by
aperiodic defects into degenerate magnons with k'+k,
provides the dominant broadening mechanism of k=0
modes in ferrornagnets and antiferrornagnets at T=O K.'
Comparison between experiment and theory in antifer-
romagnets has been confined to MnF2, in which AFMR
line width studies have been made in the microwave
(9—24 6Hz) region. ' ' In this case, the surface demag-
netizing energy shifts the k=O mode into the degenerate
manifold of spin-wave states, where it can decay into oth-
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er magnons with k&0. Linewidths of 0.05 & b,H & 20 Oe
( T« Tz) have been measured for the uniform and mag-
netostatic modes in highly-polished disks of MnF2, and
have been shown to be associated with two-magnon
scattering and radiation damping. ' ' ' However, for
FeF2 the studies must be conducted in the far infrared,
and the excited modes have kd »1, where d is a charac-
teristic sample dimension. In this case the transverse
component of the rf magnetization varies rapidly across
the sample, averaging the surface demagnetizing fields to
zero. Thus the AFMR energy is raised only a negligible
amount relative to the bottom of the degenerate spin-wave
band, where the density of degenerate states is very small.
Hence the two-magnon scattering is not expected to be a
significant source of broadening at the AFMR position.
However, the magnetic admixture of the polaritons near
the top of the forbidden band is degenerate with a much
larger manifold of spin-wave states and thus can more
readily decay via two-magnon scattering.

Clearly this mechanism exhibits the essential feature for
a frequency-dependent damping. The conventional treat-
ment developed by Loudon and Pincus" is perturbative in
the defect potential. Although we recognize that an im-

purity scatterer which has associated with it a local mode
(bound state) close to the bottom of the host magnon band
cannot be so treated, we first develop the calculation in
that way. We will then show that the modifications
necessary to properly deal with multiple scattering effects
involve only a straightforward replacement of bare poten-
tial by t-matrix elements.

Far from the polariton region (k »10 cm ' in FeF2)
the dispersion relation of the magnetic excitations can be
calculated with Zeeman, exchange, anisotropy, and
volume dipolar contributions. For Hp parallel .to the c
axis, the AF dispersion relation for ka «1, where a is
the separation between spins on the same sublattice in the
plane perpendicular to c, is given by

cok/y=(H, +4mMHq sin 8k+2HEb k )' +Ho (3)

A =A p+V, (4)

where b =a/z'~2, z is the number of next-nearest neigh-

bors, and 8~ is the angle k makes with the c axis. Equa-
tion (3) is valid in the limit where Ho(H, +Ho )

»2mMH~ and Hz &&HEb k . Since these results were
applied to measurements on the lower branch of FeF2
with Hp-90 kOe, this limit is applicable. Equation (3) is
plotted versus k in Fig. 5 and shows the degenerate mani-
fold of spin-wave states which exist for cok & y(H,
+Hp): coH. Modes in this freq—uency range can therefore
scatter via two-magnon processes and conserve energy.

Since aperiodic defects destroy the translational invari-
ance of the pure lattice they allow processes in which
crystal momentum is not conserved. The Hamiltonian
can be expressed in the form

FB
3
I

3 2—

DFB/2—

0
0 I 2 3 4

WAVE VECTOR k (l0 cm ')

FIG. 5. Calculated degenerate manifold of spin-wave states
in the long-wavelength region for FeF2. Note that the scale of k
is 10' larger than in Fig. 1. k~ and k~ represent the limits of the
continuum of states into which a k =0 mode can decay via two-
magnon scattering. hFz ——4mMH& /Hg.

and can be expressed in terms of magnon operators a
k

and a (for the down-going branch) as
k

V= g I'- -,(a-a, +a-,a ),
k k' k k' k' k

k, k'
(5)

where I', is the Fourier transform of the scattering

potential. The rate at which the mode kp decays into a
degenerate mode k through two-magnon scattering (5),
given by the standard golden rule, can be expressed as a
linewidth

~H(~)= " f ~~- - ~25(~ ~k)d'k, -
yg2(2~)2 k 0 k

where 0 is the volume of the sample and co is the frequen-
cy of the mode ko. Since we are interested in the decay of
modes in the polariton region, we have ko( =10
cm ') «k(=10 cm '), as can be seen from the plots in
Figs. 1 and 5. Furthermore, for point imperfections the
strength of the scattering potential is approximately k in-
dependent for ka && l, and we may set I' -=I'p in Eq.kok
(6). If we use the dispersion relation (3), with the approxi-
mation H, »4mMH~, 2KEb k, the density of degen-
erate states becomes

' 1/2

p(co) = f dPkd (cosOk)5(co —coi, )

Hc 2mMHg

2mMH& +HEb k (co co~)H~/y— —

where V describes the perturbative effects of the impurity,
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As discussed in Refs. 16 and 17, Eq. (7) differs from the
expression used by Loudon and Pincus, " who neglected
the anisotropic nature of the spectrum and made the ap-
proximation that all degenerate states lie at the maximum
value of k. Though this is a reasonable approximation,
we have chosen to keep the full expression (3) in carrying
out our numerical calculations. The integral in (6) is

evaluated over the range
i

k
i

= k& to
i

k
i
=kz, where

k( (—H—,cop/y 2—nMH~ )'/ /HEb,

kz (H——,cop/y ) '~z/HF b,
and cop ——co —co~ is the energy of the mode that relaxes,
relative to the bottom of the spin-wave manifold. Using
(7) and (8) in (6), one may obtain the following contribu-
tion of a single impurity scatterer to the linewidth

EHp ——
i 3 3 (2mMH~H, rpo/y ) + (H, coo/y 2aM—Hg )

QH, iF() i 1/2

4m(yR) (2nMHg )'i Hgb

(H, coo/y)'~ +(2~MH„)'/2

(H, a)p/y 2vrM—Hg }'/

For a sufficiently small impurity concentration c the con-
tributions to the linewidth are approximately additive, so
that

b, H(co)=cN ~p . (10)

i f-„)= i
k ) + (E Mp+i q) 'V

i

—f„), -
(12)

with the Hamiltonian breakup of Eq. (4) and g =0+. We
introduce the t matrix as the operator which acts on the
unperturbed states

i k) to give the same result as V act-
ing on the distorted state

i g-„),

T
i k)=vip„)

so that T accounts for multiple impurity scattering to all
orders. From Eqs. (12) we have

Clearly this linewidth increases as m increases. The
scattering potential F( k)=Wp can be found from V in the
representation given by Eq. (5). For an impurity with ex-

change interaction J' to a number z of equivalent neigh-

bors,

Fp —(J—J')Sz/X,

where J is the exchange parameter between host neigh-
bors. With (9)—(11) and the parameters appropriate' to
FeFz.Mn we find that hH is of the order of a few Oe for
polariton energies near the top of the forbidden band.
This is three orders of magnitude smaller than the fit to
the observed polariton line shape requires —a discrepancy
which is remedied by taking proper account of multiple
scattering.

The very existence of a localized mode signals the
breakdown of perturbation theory, a bound-state singular-

ity in the scattering matrix associated with the impurity
potential. On the one hand, we should not be surprised
with the inadequacy of a perturbation calculation at ener-

gies near that of the local magnon; on the other hand we
know that to treat the strong but spatia11y local perturba-
tion adequately we need only introduce the t matrix,
which incorporates multiple-scattering effects to all or-
ders. Thus the continuum wave functions

i gk ) in the
presence of the impurity potential are given by the
Lippmann-Schwinger equation, '

T=(1—VG ) 'V, (14)

where G =(E A—o+ig) ' is the pure-crystal Green
function. Then multiple-scattering results are included by
replacing V by T in the first-order time-dependent pertur-
bation expression for the transition probability; i.e., the
squared matrix element becomes

i &k
I
T

I
ko& I'=

i &q'-„I V
I

ko& i'. (15)

iJ'BHO g glSl +2J2 g Sl Sl+s + g (S!}
I l, 5

+2J'zSo. g Ss +2J) So. g Ss —D'(So}
52 5)

(16)

where sites are labeled by subscripts of the spin operators
and a single impurity is located at the origin (l=0}. We
have retained only the dominant exchange terms, between
next-nearest neighbors on opposite sublattices of the
body-centered tetragonal arrangement of magnetic atoms,
for the pure FeF2 host, or between Fe spins. The impurity
spin is taken to couple with its eight next-nearest neigh-
bors at positions 52, and its two nearest neighbors at posi-
tions 6&. In a lattice site representation the perturbation V
due to a single Mn impurity in FeF2 is a matrix of rank
11, involving the impurity and its 5& and 52 neighbors.
Explicitly, to quadratic order in the boson operators of the
Holstein-Primakoff representation we have for a single
impurity on the"up" sublattice

Of course, far from a scattering resonance or a bound
state T=V, and the modification to ordinary first-order
perturbation theory is small. However, here the effect is
enormous, as the existence of a local mode implies, and as
a consequence, the linewidth is enhanced by three orders
of magnitude.

The calculation of T from Eq. (14) is lengthy but
straightforward. The system is well described by a Hamil-
tonian' ' which includes isotropic exchange, single-ion
uniaxial anisotropy along the c axis of the lattice (chosen
here as the z direction), and the Zeeman interaction with a
magnetic field Ho applied also along the c axis,
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V=[16S(J2—J2)+4SJ; +2(D'S' D—S)+ (g' g—)p~IIp]a pap+2J](SS')' ' g(a pas, +as,ap)
5)

+2[J2(S'S)' —J2S] g (arabs, +bs,ap)+2(J2 —J2) g bs,bs, 2—J~S' g as,as, .
52 52 5)

(17)

Then this same transformation, also by block diagonaliza-
tion, simplifies the inversion of the matrix (1—VG )

which determines T through Eq. (14). The lattice-site
representation for T is recovered by inverting the unitary
transformation

T= U 'T'U . (19)

Because we are dealing with a two sublattice antifer-
romagnet, in the pure system there are two excitations as-

sociated with each wave vector k. Since the matrix ele-
ments T--, corresponding to the Ii, of Eq. (5) are

k k' k k'
the scattering matrix elements for only one of the two ex-
citation branches, they are not simply the Fourier
transforms of TJ. Rather, these must be appropriately
weighted by the magnon transformation coefficients u

k
and U-. Since the magnons involved in the scattering

k
process are near the center of the Brillouin zone we can
simplify the result with k=k'=0. The contribution of
the local mode enhanced two-magnon scattering to the
linewidth is then given by Eq. (9) with

IO

The matrix V formed in the usual way by the coefficients
of the boson operators in Eq. (17) can be block diagonal-
ized by the unitary matrix U formed from the basis vec-
tors of the point-symmetry group of the impurity cluster:

V'=U VU-'.

=1 2 2Ep= up $ Tgp —upup $ (Tg) —TJ ) —Up $ TJJ~
271 l,J J~J

where i,i' and j,j' refer to the up and "down" spin sublat-
tices, respectively. We have applied the results above to
FeF2.Mn and compared with the experimentally observed
magnon linewidths using the following parameters
S=2, J2 ——1 82 cm ', J~ ——0, g=2 25, D=6 5 cm
S'=2.5, J2 ——1.79 cm ', J& ——0.2 cm ', g'=2.0, and
D'=0.19 cm '. Figure 6 shows the calculated linewidth
for c=0.5 at. % as a function of the mode frequency rela-
tive to the bottom of the magnon band, in units of
yA F/s2 (the width of the spin-wave manifold). We note
that the contributions from exchange, anisotropy, and g-
factor scattering are equally important for the linewidth,
which now has the magnitude of a few kOe and is strong-
ly frequency dependent. In Fig. 7 we compare the experi-
mentally measured transmission line shape obtained for
the sample with c=0.5 at. % to the theoretical prediction
of the polariton model with a frequency-dependent relaxa-
tion parameter given by the above theory. As can be seen,
the agreement between theory and experiment is remark-
ably good.

In summary, we have shown that the main relaxation
mechanism of k=0 magnons in FeFq.Mn at low tempera-
tures is impurity-induced two-magnon scattering. Be-
cause of the proximity of the impurity-associated local
mode to the magnon band, the scattering is greatly
enhanced and the usual first-order perturbation" calcula-
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FIG. 6. Linewidth due to two-magnon impurity multiple
scattering in 0.5 at. % Mn:FeF~ as a function of position of the
magnetic mode relative to the bottom of the spin-wave band.

FIG. 7. Comparison of transmission data from a 80-pm-
thick sample of 0.5 at. % Mn:FeF2 {solid curve) with the
theoretical prediction of polariton model with a frequency-
dependent relaxation parameter obtained from the two-magnon
impurity multiple-scattering calculation.
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tion of the magnon linewidth fails. However, multiple-
scattering effects can be calculated with a t-matrix theory
and the resulting relaxation rate has the magnitude and
the strong frequency dependence required to explain the
experimentally observed line shapes. It is noteworthy that
the polaritons play no role in the actual mechanism. They
enter in the calculation of the line shape only because in a
FIR transmission experiment the radiation excites mixed
magnetic-electromagnetic modes in the sample. The
large, frequency-dependent damping is produced by im-

purity scattering of the magnetic modes, and should be
observed in experiments which probe magnons far from
the polariton region. In fact this has been recently con-
firmed in high-resolution light scattering experiments. '
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