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Stability of the Kondo lattice in the large-N limit
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We consider a Kondo lattice of rare-earth ions, as a description of materials such as YbCuA1 and

a-Ce, by an expansion in 1/S, where N =2j+1. We show that in the large-N limit the nonmagnet-

ic state is stable against magnetic order. and that its susceptibility and specific heat are those of an

ensemble of isolated impurities.

I. INTRODUCTION

In recent work using a steepest-descent approach, Read
and Newns' have shown that the low-temperature proper-
ties of a magnetic impurity with one f electron occupying
N degenerate levels coupled to a Fermi sea [the Coqblin-
Schrieffer or SU(N) Kondo model ] may be represented

by a suitably renormalized noninteracting resonant level
model in the limit of large N. This follows earlier sugges-
tions that the Kondo problem should have a simple ex-
pansion in powers of 1/N. The results of this approach
for properties involving low-lying excitations of the sys-
tern (specific heat, susceptibility) are in accord with exact
solutions of the N level problem -using the Bethe ansatz.

In this paper we show that a similar limit may be taken
for the Kondo lattice, a periodic lattice of singly occupied
identical X-level ions interacting with a Fermi sea via a
Coqblin-Schrieffer coupling. We find that in the large-N
limit, the ground-state energy and low-temperature ther-
modynamic properties of the nonmagnetic state of the
Kondo lattice become those that the individual ions would
have if they were dilute impurities, so that they only feel
each others presence to order 1/N. As a consequence of
this property, we show that the critical value of the cou-

pling constant Jo above which the nonmagnetic state
remains stable (introduced by Doniach and Jullien et al.
for the spin- —,

' case) goes to zero as N ~Do. This result

follows from a comparison of the ground-state energy of
the nonmagnetic Kondo state of the lattice with that of a
magnetic state of the lattice calculated using the
Ruderman-Kittel-Kasuya- Yoshida (RKKY) interaction
induced by the spin —conduction-electron coupling.

H=g e~c ~c~ g fiMciMciM'fiM' ~
k k k N MM'
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where

jeff =$ (e~—p )c ~c~ +$ pi( r) (fiMciM +ctsrfM)'
i,M

and f;M creates an f electron at site i in angular momen-
turn channel M; it is understood that nf; ——1. In this pa-
per we have for simplicity treated only spinless electrons
and neglected spin-orbit coupling, so that 1M runs from

L to L g—iving the degeneracy of our f states as
N =2L + 1. Inclusion of spin and of the Clebsch-Gordan
coefficients restores the correct degeneracy N=2j+1
=21+1+1,but does not affect the essentials of our argu-
ment.

To find the large-N limit in the nonmagnetic regime we
decouple (1) by a Stratonovich-Hubbard transformation
for the partition function, as in Ref. 1, and calculate prop-
erties of the ground state; Thus

Z =Tr D D exp — H,ff,i

II. COMPUTATION OF THE LARGE-N LIMIT
BY STEEPEST DESCENT

Our starting point is the Coqblin-Schriefferz [or SU(N)
Kondo] model, generalized to a lattice:

and the term in A,;(r) which fixes the number of f elec-
trons per site at unity originates via a gauge transforma-
tion from the phase of the (originally complex) P field. '

In Ref. 1 it was found that low-temperature properties
in the single impurity problem could be calculated to lead-
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ing order in 1/N by a steepest-descent method, replacing
P(~) and ik(r) in (3) by constant values iI}o and ef p
(which are chosen to minimize the effective free energy
which results when the fermion trace has been taken} and

neglecting fluctuations in P —Po and k. Then ei becomes
the renormalized position of the f level, chosen to fix the

f occupation at one per site, and iI}o becomes an effective
hybridization between f and band states. We follow this
procedure here to find the properties of a translationally
invariant ground state in which e/ and Po are the same on
each lattice site.

It follows that to compute ground-state properties we

only need to solve the hybridized band-structure problem
of diagonalizing H,ff[go, Eg p'] —given in (3} and then

determining e/, Po, and p self-consistently (the chemical
potential p is determined by fixing the number of elec-
trons in the conduction band). This problem is, however,

I

greatly simplified to leading order in 1/N as follows: We
define the (diagonal) retarded propagators Gj, (e) and
G//(e) as the Fourier transforms of

—i(~f, (i)c,t (o))e(i)

f~(i)f,~(o) )e(i),

respectively. These can be calculated perturbatively start-
ing from H,gr[go, e~ p] o—nce we realize that we need
only their values at energies below the Fermi level p, and
that Popo-(ei —p)/N, as justified below (po is the density
of conduction band states near e=p), so that the pertur-
bation on states below the Fermi level is weak. So for
G)"c ~

G/c(~++)= . p og MM( OE)+
E—Ey+l6

1 0o
+ ~

iI('o Q gus'( —R &) . gMM(R, e)E—Ey+l E—E) +l6R,M'
(4)

plus higher-order terms involving 3,4, S, . . . sites. Here
the propagator

, 4~YL (Q-)[Yl. (0„)]
gMM'( Ri Ri & ~}

k
E''—E~+ l 5

ik (R;—R )
Xe

where we have used the local leading contribution to GJ„
just derived, taken the density of states in the band as ap-
proximately flat near @=p and D is the energy difference
between p and the effective bottom of the conduction
band (it is assumed that ei —p «D). The change in ener-

gy due to switching on the coupling Po is then

AEo =Npogo ln[(ei' p)/D] —(ei—' —p) + Po ~ (7)
Jp

takes an electron from partial-wave state M' at site j to
state M at site i Now if. for fixed .R we take angular

momentum states quantized around R, we find that

gMM(R, e) is diagonal in M and M' and of order N in
each channel. Hence in the two-site term in (4) we have

shown that the sum over R and M contributes no addi-
tional factor N, so that the term is O(1/N) smaller than
the preceding single-site term. Similarly all multisite
terms must be at least 0 (1/Ã) compared with the single-
site term. This single-site term, and the similar one for

G~~, involve the sum

gMM(O, e) =g (e @+i5)—

whose imaginary part just gives the local density of states

pp for the conduction band.
The ground-state energy can now be calculated from

the coupling-constant integral for the one-electron energy
contribution E ',

E =2N I dPo f de — ImG&, (e+—i5)

=Npgo ln[(e/ p)/D], —

As discussed above, we require that EEp be stationary
with respect to variations in ei and Po, giving

Npoitio= e/ p, e~ p=—D exp( —1/—polo) —=Tx (8)

which self-consistently justify our assumption that popo is
O(N '}. The ground-state energy per rare-earth site of
the Kondo lattice in the large-N limit is therefore

AEp ———Tg,
so that the total ground-state energy is precisely that
which would'be obtained by treating each ion as a dilute
impurity.

III. PROPERTIES OF THE NONMAGNETIC
GROUND STATE

The propagator Gy~ is calculated similarly to G~„giv-
ing for the leading part of the local f density of states the
single-site term

p/( e)=Popo/( e E/)—
in each channel M at or below the Fermi level. Hence,
restoring the correct degeneracy factors, the zero-field
susceptibility Xp at T=O, and linear coefficient y of
specific heat are given by (N =2j + 1)
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&0= 3JV+1)g PIi/Tk &

3
'ir kg /Tk

where we have used (8) and so their ratio is

X JV+I Pa 1

y Hki'i

(10)

The O(1/N) corrections are here due both to intersite
one-electron effects and to fluctuation corrections. ' Equa-
tions (8) to (11) are the same results as were found in the
single impurity case in the large-S limit. Thus thermo-
dynamic properties of the nonmagnetic (Kondo) ground
state of the Kondo lattice in the large-N limit are those of
independent i'mpurities, although the exact eigenstates of
H ff [$0,ef —

gati ] are of course Bloch waves as would be
seen in studies of transport phenomena, excitation spec-
trum, etc.

The same results have also been obtained in a more sim-
plified model in which M is a good quantum number for
the conduction band, so that

IV. COMPARISON WITH THE MAGNETIC
GROUND STATE

To estimate the stability of the nonmagnetic ground
state we compare (9) with the energy of a ground state
which is fully magnetized via the version of the RKKY
interaction appropriate for the Coqblin-Schrieffer
model. ' The second-order perturbation-theory formula
for the interaction between two ions at a separation R
given in Ref. 2 can be written, with

gMM (R,e)=5Mug (R,&) =4rM g
k

e E-+—i 5

and the model consists of N degenerate, independent, hy-
bridizing f, and conduction bands. This model can be di-
agonalized exactly (when N =2 it is similar to that of La-
croix and Cyrot ) and yields the same results found more
generally above.

with angular momentum quantized around R once again.
We note that the large-N limit is most appropriately taken
with R fixed and L~ao, not using the asymptotic for-
mulas of Ref. 9, which are strictly valid only for impracti-
cably large values,

~

R
~

&&L(L+1)k, ' (here k, is a
momentum cutoff of order N ). An estimate of the
lowest possible magnetic energy based upon each bond
having the f state M =0 occupied is then [using the fact
that goo is largest and 0 (N )]

b,E,s ~ —JopoD/N (13)

the constant of proportionality depending on the band
structure and type of magnetic order. Therefore, for large
N the Kondo ground state is stable provided

~

b,EO
~

& /KE, g /, or

exp
p 0 N

(14)

where A is a constant independent of N, in agreement
with the result of Coleman. ' This implies that the criti-
cal coupling required to satisfy (14) vanishes as N~ ao as
Jopoix:(21n2N) ' or that the smallest possible renormali-
zation factor is

T~/D ~ (2N ln2N) (15)
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