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Effect of quenched impurities on long-range order in systems with a frustrated ground state
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Destruction of long-range order {LRO) in interacting systems with a frustrated ground state due

to quenched dilution is discussed. In such systems there is an additional contribution to the disor-

dering process when initially frustrated bonds become satisfied as dilution removes the competing

bonds. It is therefore expected that at T=0, LRO vanishes at an impurity concentration ql which

is lower than the corresponding percolation threshold impurity concentration q, . To study this

phenomenon the anisotropic Ising antiferromagnet on a triangular lattice with quenched site dilu-

tion is analyzed. An estimate for qI is obtained by means of series-expansion methods. This model

may describe the magnetic phase of oxygen adsorbed on graphite which has been of considerable in-

terest in recent years.

I. INTRODUCTION

The effect of quenched impurities on the phase diagram
of an interacting system is a frequently encountered ex-

perimental phenomenon. Many such systems may be
represented by a magnetic spin model with short-range ex-

change interactions in which quenched nonmagnetic im-

purities are distributed homogeneously with some given
concentration c. Consider a simple model in the "pure"
(c =0) state which has an unfrustrated, ordered ground
state at zero temperature and undergoes a second-order

phase transition into a disordered phase at some critical
temperature T, ~ 0. The simplest example is the fer-
romagnetic Ising model on any lattice of dimensionality d
higher than d =1. Introduction of quenched impurities
with homogeneous concentration c is modeled by allowing

a probability q for any lattice site to be vacant and proba-
bility p =1—q to be occupied by a spin, where q ~c.
Now consider the long-range order (LRO) in such a sys-

tem, which exists for sufficiently low temperature T and
concentration c. LRO in a pure, c =0 system is destroyed
at T = T, due to thermal fluctuations in the spin system.
On the other hand, at T =0 there are no thermal fluctua-
tions at all, but nevertheless LRO is destroyed through a
second-order phase transition at sufficiently high q. This
order-disorder transition when increasing q at T =0 is in-

duced by an increase in "geometric" disorder in the sys-
tem. Finite clusters of magnetic ions cannot support
LRO, but an infinite cluster is completely ordered at
T =0 in nonfrustrated systems. Thus in such systems the
order parameter (magnetization per lattice site) at T =0 is

given by

m (p, T =0)=P„(p),

where I' is the fraction of occupied sites belonging to
the infinite percolating cluster. Note that P (p) =pP (p),
where P(p) is the usual percolation probability. ' This
means that at T=O the LRO is destroyed exactly at p„
the percolation threshold for the corresponding site per-
colation problem on that lattice.
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FIG. 1. Schematic p- T phase diagrams for Ising models with
quenched site dilution for systems with (a) nonfrustrated and (b)
frustrated ground states. Here p, is the percolation threshold
probability, and pl is the site occupation probability below
which there is no LRO at T =0 in the frustrated case.

For nonzero temperature the established picture for the
phase diagram is as follows. The p-T plane is separated
into ordered and disordered phases by a line of critical
points connecting the "pure" Ising critical point at

p = 1,T = T, to the percolation critical point at

p =p„T=0, as shown schematically by line a in Fig. 1.
At finite T, the critical exponents are those of the Ising
universality class. As one approaches the "multicritical"
point p =p„T=0 from above, there is a crossover to
percolation critical exponents with crossover exponent
/=1.

A most interesting question, both experimentally and
theoretically, is how the p-T phase diagram is modified
for systems which have a macroscopic fraction of frustrat-
ed bonds in the ground state. Qualitatively, it is easy to
see that two mechanisms contribute to the destruction of
LRO at T =0 when quenched impurities are introduced
into such a system. First, there is the effect of formation
of disconnected finite clusters completely isolated from
the infinite cluster by a perimeter of vacancies. The mag-
netization in those clusters is free to fluctuate, thus reduc-
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ing the average magnetization per site. This is the origin
of the "geometric" disorder also in the nonfrustrated sys-

tems. However, in a system with a frustrated ground state
the average magnetization per site can also be reduced
when a bond, which was initially frustrated in the undilut-

ed system at T =0, is "relieved" of frustration as dilution
removes the competing bonds. Thus, in systems with a
frustrated ground state, geometric disorder induces a de-

crease in LRO. For such a system, Eq. (1) is not valid;
the T =0 order parameter in those systems should be

given instead by

m (p, T =0)=R (p)P„(p), (2)

II. EXPERIMENTAL SYSTEMS

Here we present two explicit examples of experimental
systems with frustrated ground states which should
behave in the manner described in the preceding section.
First, consider the system of Nz molecules adsorbed on
graphite. At coverages equal or below —,

' and at suffi-

ciently low temperatures the molecules form a
(v 3 && V 3)30' commensurate structure in registry with the
hexagonal lattice of the substrate. Upon further lowering
of temperature, the system undergoes a phase transition
from a phase in which the molecular axes are randomly
oriented to a phase in which they are orientationally or-
dered. Low-energy electron-diffraction measurements
have led to the identification of the low-temperature
phase as a (2)& 1) herringbone structure of oriented mole-
cules. The ground state is sixfold degenerate. One of
those six equivalent ground-state orderings is shown

where for systems with a frustrated ground state, R (p) & 1

at any p. It is reasonable to expect that at T =0 the LRO
is destroyed at some critical probability qL ——1 —pL which
is Iourer than the percolation threshold q, =1—p, . In oth-

er words, when diluting such a system the LRO is des-

troyed before the probability for formation of an infinite
cluster becomes zero. Hence, the p-T phase diagram
should resemble line b for a system with a frustrated
ground state, as compared with line a for a system with a
nonfrustrated ground state (see Fig. 1).

We expect the phenomenon described above to occur in
many experimental systems. Two explicit examples are
considered in some detail in Sec. II. Both are d =2 sys-
tems of diatomic molecules adsorbed on graphite, diluted
by inert-gas atoms. The frustrated ground states are the
"herringbone" phase exhibited by the system of Nz mole-
cules adsorbed on graphite and the antiferromagnetic e
phase of 02 molecules adsorbed on graphite.

In order to study the effect of quenched site impurities
on the LRO in frustrated systems in a more quantitative
fashion, we introduce a simple theoretical model in Sec.
III. This is the anisotropic Ising nearest-neighbor antifer-
romagnetic model on a triangular lattice with quenched
site dilution. The model is then studied quantitatively at
T =0 using the series-expansion method for both high-
and low-density limits, and an estimate for ql is obtained.
In Sec. IV we discuss the results of this study, list several
related phenomena, and state some open questions about
the type of critical behavior of this class of systems.

schematically in Fig. 2(a). This structure arises due to the
anisotropic interactions of N2 molecules with the sub-

strate and with each other. The Nz-substrate interaction
tends to orient the molecular axes in the plane of the gra-
phite. Since the Nz molecules possess a relatively large
electric quadrupole moment, the intermolecular Nz-Nz in-

teraction is well described by the electric quadrupole-
quadrupole (Egg) interaction. The Egg interaction
favors pairs of Nz molecules to be oriented perpendicular-

ly to each other. Thus we see that in the herringbone
structure shown in Fig. 2(a) every horizontal bond is frus-
trated.

A second example is provided by the system of 02 mol-

ecules adsorbed on graphite. The coverage-temperature
(p' T) pha-se diagram has been under intensive experimen-

tal study in recent yeaars. The Oz molecule is anisotropic
with an egg-shaped form, and has a spin 5 =1. The mag-
netic moment of Oz is oriented perpendicularly to the
molecular axis. At sufficiently high coverages and low

temperatures, the molecular axes of Oq molecules are
oriented perpendicular to the substrate plane, and form an

equilateral (distorted) triangular lattice. Neutron-
diffraction studies' show that the ground state is antifer-
romagnetic, with the molecular magnetic moments being
parallel to the substrate plane and forming a two-
sublattice collinear structure as shown in Fig. 2(b). This
low-temperature, two-dimensional antiferromagnetic
phase is referred to as the e phase in the literature, and it
has the same structure as the basal plane of the antifer-
romagnetic n phase" of bulk solid Oz. The dominant in-
teraction between a pair of 02 molecules is the antifer-
romagnetic exchange interaction. Assuming only the four
nearest-neighbor and the two next-nearest-neighbors in-
teractions to be important, Bhandari and Falicov' "es-
timated J&

~

=0.005 eV for the nearest-neighbor ex-
change constants and

~
Jz

~

=0.003 eV for the second-
nearest-neighbor exchange constants. More recent ab ini-
tio calculations' '"' by Van Hemet et al. yield

J2/J& ——0.42. Thus we see that in the antiferromagnetic
ground state shown in Fig. 2(b) every horizontal bond is
frustrated. Recently, specific-heat measurements' estab-
lished that as temperature is increased, the system under-

goes a phase transition from the antiferromagnetic phase
to a paramagnetic phase, with the same distorted triangu-
lar arrangement. Those measurements also indicate that
this transition belongs to the Ising universality class. ' '

In principle, both experimental systems described above

(~) (b)
FIG. 2. (a) One of the sixfold-degenerate ground states corre-

sponding to the herringbone phase of Nz molecules adsorbed on

graphite. (b) One of the twofold-degenerate antiferromagnetic
ground states corresponding to the e phase of Oz molecules ad-

sorbed on graphite.
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can be diluted by incrt-gas impurities. For example, Ar
or Kf RtoIIls can bc Used to d11Utc thc N2-on-graphite hcl-
ringbone structure, and He atoms can be used to dilute
the 02-on-graphite anti ferromagnetic structure. However,
it may be nontrivial experimental problem to perform the
dilution homogeneously and in a quenched manner.

In order to study the effect of quenched impurities on
I.RO in systems such as N2 and 02 on graphite, we have
to approximate those systems by a simple theoretical
model. We found it easier to do it for the case of 04 on
graphite. Nevertheless, we expect that the same qualita-
tiue features should also characterize the N2-on-graphite
system.

III. THEORETICAL MODEL:
SERIES-EXPANSION APPROACH

In th1s scct1on wc 11ltI'oducc R siIIlplc theoretical ITlodcl

which may describe the 02-on-graphite system in the re-

gime of the antiferromagnetic-to-paramagnetic phase
transition. As such, we choose the nearest-neighbor Ising
model on the triangular lattice with anisotropic exchange
constants

1H= ——, g[J)(S„S„+) +-S„S„+) +))

sinh (2J /k~ T)+2 sinh(2J ~/k~ T, )sinh(2J2/k~ T, ) = 1 .

(4)

Let us now introduce quenched site dilution with equal
probability P for any site to be occupied. To estimate the
probability at which the LRO is destroyed at T=O
(which will be denoted by PL, , to avoid confusion with the
percolation critical probability P, ), we used series-
cxpanslon tcchnlqUcs. IIl thc high-density 11ITllt, thc flI'st
terms in the series expansion of the magnetization in
powers of q, for small q, were obtained. In the low-
density limit the first terms in the series expansion of the
susceptibility in powers of p, for small P, were found. We
wish to emphasize that, in general, pL may depend on the
ratio

I
J&

I
/

I
J& I, si~~e different values of tins ratio lead

to different series. In the present work we assumed that
J2/J, is infinitesimal, but nonzero. Note that for the case
J~ & 0 and Jq ——0, PL, ——P,'q, but for any Jz & 0 (even if it is
inflnitestimal) we have PL

——P,". Here p,'q=0. 593 (Ref.
16) and P,"=—,

' (Ref. 17) are the site percolation probabili-
ties for the square and triangular lattices, respectively.
Let us now briefly describe the methods used in deriving
the series expansions.

+Jz(Sn, mS. , m+i) j (3) A.. High-density magnetization

such that
I Ji I » I

Jz I, and J, «0 and Jq «0. The
ground state of this model, which is a (2X 1) structure,
consists of ferromagnetic horizontal rows coupled antifer-
rornagnetically (see Fig. 3). This is the same structure
found in the 6 phase of Op on graphite [Fig. 2(b)]. I't ls

useful to note that the Hamiltonian (3) is invariant under
the transformation J

~
~—J~, and S„~o.„

=( —1) S„.The ground state of this Hamiltonian in

the o variables is ferromagnetic. Thus the destruction of
LRO is signaled by the vanishing of the magnetization
and a singularity in the susceptibility. The same is true
for staggered magnetization and staggered susceptibility
when the S variables are used. The undiluted model

described here undergoes a second-order phase transition
belonging to the Ising universality class at the critical
temperature T~ glvcn by

J~&O J &0

FIG. 3. One of the two degenerate ground states correspond-

ing to the anisotropic Ising antiferromagnet on the triangular
lattice(J, &O, J, &0, and

I
J,

I /I J,
I
«i).

Our method for derivation of the series for magnetiza-
tion at T =0 in the high-density limit is similar to the
method used by Grinstein et al. ' for quenched random
Is1ng rnagncts with rn1xcd IlcRI'cst-nc1ghbof coupllngs J.
The derivation of the series in the ferromagnetic phase is
based on a decomposition & into graphs of vacancies
which contribute additively to the decrease of total mag-
netization per site. Thus

whcIc m 1s thc qucnchcd avcIRgc 1Tlagnctlzat1on pcf s1tc,
and AM is the reduction in M = g,.m; from the full lat-

tice value M=X due to a single graph 6, m; being the
magnetization at site i and X being the total number of
sites in the lattice. Here P(6) is the conditional probabil-
ity per lattice site of finding the graph 6, provided that
this graph is not a subgraph of any higher-order graph
that belongs to the decomposition &.

If 6 contains n vacancies, then P(6) is an infinite
series in powers of q, whose lowest-order term is propor-
tional to q". %'e have carried the series expansion of' m to
oldcf g . F1guI'c 4 shows R11 thc gI'Rphs to that oldcl, and
Table I lists the corresponding calculated values of P(6)
(to order q ) and M(6). Our calculation suffers from the
same complication as the calculation by Grinstein et al. '

Namely, the decomposition into additively contributing
graphs of vacancies cannot be reduced to connected
graphs only. Thus the connected components in the
graphs (b), (d)—(h), and (k) (Fig. 4) do not contribute addi-
tively to M. This is because in those graphs the discon-
nected clusters of vacancies, when all of them are present,
remove all the dominant bonds. Hence, initially frustrat-
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m(q) = I q— 2—q4+2q' —", —q'+ ", —q'+ (6)

(o)

p —~

0 0 O~

(b)

p

(c)

+0 ~ ~ Q~
For comparison, the first terms in the series expansion of
the T =0 magnetization m (q) for the nonfrustrated site-
diluted ferromagnet on a triangular lattice are

m(q)=l —q —q +q —6q +6q +
0 Q

(e) (g)

4- -p

ed bonds become satisfied, leading to the flipping of spins
and thus contributing to M. This contribution is nonad-
ditive, since when only one component is present, not all
dominant bonds are removed, and hence the initially frus-
trated bonds remain frustrated. This phenomenon is
characteristic of systems with a frustrated ground state.
When the ground state is nonfrustrated, the decomposi-
tion into additively contributing graphs of vacancies can
be reduced to connected graphs only.

The necessity to consider disconnected graphs has
severely limited the length of the series that were able to
obtain. %'e are not aware of any convenient algorithm for
identifying all graphs entering to given order in q. Thus
we are able to carry the expansion only to order q, and
the result is

FIG. 4. All of the graphs used in calculating the high-density

series, expansion of m(q) to order q'. Solid circles denote va-

cant sites, arid open circle with fixed sign denote spins of fixed

sign. Open circles in (c) is not labeled by sign since it can be

(+ ) or ( —) with equal probability of 2. Similarly, the pair of

open circles in (d) stands for this pair of spins being (+,—),

( —,+), or ( —,—) with equal probability of 3 . Thin solid lines

denote bonds which are free to flip to minimize the energy of
the graph. Thick solid lines denote bonds which are fixed (frus-

trated or nonfrustrated) as in the ground state. The dashed lines

serve merely as a guide to the eye.
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Note that the first nontrivial contribution to m is of the
order q, as compared with q in the nonfrustrated case.
This agrees with the qualitative arguments presented be-

fore, that the magnetization of the frustrated model
should decay faster than that of the nonfrustrated model
as one increases the concentration of impurities. In Fig
5(a) the order parameter m(q) is plotted to orders 4, 5, 6,
and 7, as well as the [3,3] Padh approximant to m(q). For
comparison, in Fig. 5(b) the T =0 magnetization m(q)
for the nonfrustrated site-diluted ferromagnet on a tri-
angular lattice is plotted to orders 6, 7, 8, and 9, as well as
the [3,5] Pade approximant for m (q).

We have applied the standard log-derivative Pade
analysis' to the series (6). Thus we have found the poles
on the real axis and the corresponding residues for the
Pade approximants to d lnm (q) /dq. The results are
shown in Table II. We see that the series is dominated by
a nonphysical singularity at q= —0.28 with residue hav-

ing a value which approximately equals 0.02. This is
similar to the ordinary site percolation, where the series
for P(q) is also dominated by a nonphysical singularity
on the negative real axis. In Table II there is also a physi-

TABLE I. Occurrence probabilities and magnetization reduc-
tions for the graphs of Fig. 1.
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FIG. 5. (a) Plots of m(q), where m(q) is given by (6), to or-
ders 4, 5, 6, and 7 in q. The [3,3] Fade approximant to miq) is

also shown. (b) Plots of m (q), where m (q) is given by (7), to or-
ders 6, 7, 8, and 9 in q. The [3,5] Fade approxitnant to m(q) is
also shown.
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TABLE II. Real-axis poles and residues of the Fade approximants to d lnm(q)/dq, where m(q) is
given by (6).

q&0
Approxim ant Pole Residue Pole Residue

0.1006
0.1125
0.1118
0.0964

[2,2] 0.3702
[3,2] 0.3808
[2,3] 0.3805
[3 3]' 0.3627

'For [3,3] there is also a spurious pole at q= 0.1586.

—0.2702
—0.2816
—0.2819
—0.2742

0.0194
0.0233
0.0232
0.0204

X,(p) = gs'n, (p) = gs'p'D, (q), (9)

where n, (p) is the probability per site to find a cluster of
size s, and D, (q) is the so-called perimeter polynomial. ' In
our case it is no longer true that M =+s; this is due to the
effect of bonds, initially frustrated in the ground state, but
which now turn out to be satisfied due to the absence of
dominant bonds. In general, the energy of every finite
cluster should be minimized to find the magnetization of
that cluster. One such cluster with corresponding degen-
erate magnetizations and occurrence probability is shown
in Fig. 7. In any case, M is an integer, such that

0, l2

cal singularity on the positive real axis, and the pole-
residue plot for it is given in Fig. 6. The close consistency
of the Pade approximants shown in Table II suggest that
the destruction of LRO occurs by means of a second-
order transition characterized by pL —0.63 and PL -0.1.
We therefore find that pL ~p,". However, due to the fact
that the series is rather short, our result does not exclude
the possibility that in the limit J2/Jq « 1, pL

——p, .
B. Low-density susceptibility

In order to calculate the first terms in the low-density
expansion for the susceptibility at T =0, we used the
identity

Xo(p)= lim k~TX(T,p)= gM (G)P(G), (8)
T~o 6

where the summation is over all finite isolated clusters G
of occupied sites, M (G) is the magnetization of the clus-
ter, and P(G) is the probability per site to find this cluster
on the lattice. Now, in the case of a dilute nonfrustrated
magnet, the magnetization of a cluster containing s sites
is M =+s, and therefore (8) can be rewritten as

—s &M &s. Thus, instead of (9) we can use

Xo(p)=g g M, n, M(p)=gp' g M D, M(q),
s M2(s2 s M2&s

(10)

~ 0 0
J2

0 ~

where n, I is the probability per site to find a cluster of
size s, and the value of magnetization squared M, and
D, M(q) is the corresponding modified perimeter polyno-
mial. Thus the only change in the algorithm as compared
to the ordinary percolation case is the decomposition of
cluster classes of a given size into subclasses according to
their value of magnetization squared, which is found by
energy minimization.

Considering clusters of size less than or equal to s =6,
we have constructed the modified perimeter polynomials
and derived the first terms up to order p manually. The
corresponding modified perimeter polynomials are given
in Table III. The resulting series expansion to order p
for (p) is

Xo(p)=p+2p +10p +8p +30p +32p +, (11)

Unfortunately, the series is not sufficiently long to pro-
duce a sensible result when subjected to the standard ratio
and log-derivative Pade analysis. At first glance this is
somewhat surprising since, for example, a series expansion
of comparable order for the dilute nonfrustrated fer-
romagnet on a triangular lattice gives a reasonable esti-
mate for p„as compared to the exact value of p, = —,

' . '

However, we see in (11) a "pairing" effect between odd
and even terms in the expansion. This is probably due to
the existence of nonfrustrated antiferromagnetic bonds in
the clusters. As a result, series of double length are neces-

O. l l—

e 0
J2Q

l ~
I J20 ~
0 ~

P OlO— g(2, 2)

o.os I I

0,56 Q.37 0.39
pole

FIG. 6. Pole-residue plot for the singularities on the positive
real axis of the Pade approximants of d lnm (q)/dq.

M(G) =+w

P (G)=Bp q
6 l5

FIG. 7. Example of one of the finite clusters used in calculat-

ing the low-density series expansion for the susceptibility. Open
circles denote spins belonging to the finite cluster with their cor-
responding signs. Solid circles denote vacant perimeter sites,
and bonds are denoted by lines.
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TABLE III. List of modified perimeter poynomials D, ~ for clusters of size less than 7, used in

derivation of the low-density expansion for the susceptibility [Eq. (17)]. Note that g~D, M D——„where

D, is the ordinary perimeter polynomial for clusters of size s in the site percolation problem on the tri-

angular lattice.

6

D2 2
——2q, Dz, o =q8 8

D33 —2q +4q', D3 ~
——Sq'

D44 ——3q "+8q "+8q", D4, ——4q +14q D4,o=7q
D5 5 ——6q" +15q' +26q' +16q', D5 3 ——6q' +24q' +38q', D5, &

——16q "+39q'
D66 ——14q' +30q' +68q' +72q' +32q', D64 ——12q' +50q' +100q' +100q'
D62 ——27q' +84q "+118q', D« ——q "+8q' +42q "+56q'

sary in our case in order to obtain results of comparable
accuracy with the Xo(p) series of the dilute nonfrustrated
ferromagnet.

We obtained better results from the high-density expan-
sion than from the low-density expansion; however, the
low-density expansion is potentially more promising since
it is suitable for programming on a computer. We see
that a convenient algorithm exists for calculation of the
low-density susceptibility (which is not the case for the
high-density magnetization). However, as in usual per-
colation, the number of clusters grows exponentially with
size, ' and, moreover, the energy of each cluster should be
minimized in order to find the magnetization. Thus one
has to resort to the computer in order to obtain long
series, and even then there is a severe constraint due to
computation time.

IV. DISCUSSION

In this paper we studied the anisotropic Ising model on
a triangular lattice with quenched site dilution. This
model has a frustrated ground state in the undiluted case.
A series expansion in the high-density limit indicates that
in such a system the order parameter vanishes at a lower

impurity concentration than the corresponding percola-
tion threshold impurity concentration. The series expan-
sion for the susceptibility in the low-density limit is incon-
clusive to the order that we were able to obtain manually;
however, we believe that our algorithm can be pro-
grarnmed for use on a computer and can thus provide re-

sults to much higher orders.
The theoretical model that we studied may describe the

dilution of the magnetic phase of 02 adsorbed on graphite

by nonmagnetic impurities, provided that a more realistic
value for

~
J2

~

/
~

J~
~

(e.g. , that of Ref. 12) is put into the
numerical calculations. However, this will be true only if
the dilution in the real system were of the quenched, not
annealed, type. Also, it is not clear whether neglecting the
interaction between the impurities themselves is justified;
if not, the probability for a given site to be occupied by an
impurity is not independent of that probability on other
sites, as in the case of correlated percolation. Finally, in
studying specific experimental systems one should not ex-
clude a priori the possibility of an intermediate phase
characterized by a different order parameter due to com-
petition between the dominant and frustrated bonds and
the disorder due to dilution.

We believe that many experimental systems should ex-
hibit the qualitative behavior described in this paper. The

magnetic system of diluted 02 adsorbed on graphite is but
one example for which we found a simple theoretical
model. Another example which has been provided in this
paper is the diluted herringbone phase of Nz adsorbed on
graphite. Both examples are two dimensional, but the
same qualitative phenomena could occur also in three-
dimensional systems with a frustrated ground state.

From the theoretical point of view, the same qualitative
behavior should characterize systems with quenched bond
dilution as systems with quenched site dilution, which we
considered here. Also, it will be instructive to compare
phase diagrams of systems with annealed vacancies hav-
ing frustrated and nonfrustrated ground states.

An important question which is left unanswered by this
study concerns the type of critical behavior exhibited by
the systems of the kind described above at the T=0
order-disorder transition. We have seen that the impurity
concentration at which it happens is lower than the corre-
sponding percolation threshold impurity concentration.
The question is whether or not the transition belongs to a
universality class which is different from that of the per-
colation phase transition. Our estimates for the exponent
Pl, given by the residues of the physical poles in Table II,
were not sufficiently accurate to give a decisive answer to
this question. We hope to address this problem in a fu-
ture study using more accurate numerical methods.
Another subject for a future study is exploration of the p-
T phase diagram at nonzero temperature.¹teadded in proof Recently, . the phase diagram of
argon-diluted nitrogen films adsorbed on graphite has
been studied [A. D. Migone, Zhong-song Li, M. H. W.
Chan, and M. R. Gini, Phys. Rev. B 28, 6525 (1983)] us-

ing high-resolution heat-capacity techniques. According
to this study, the transition temperature T, (p) is signifi-
cantly depressed by the Ar impurities. Extrapolation of
T, (p) to zero temperature indicates that at T =0, LRO is
destroyed at p =p„where pL &p,". The frustration
mechanism, discussed in this paper, may explain this ex-
perimental result.
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