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Exact expressions for diagonal correlation functions in the d =2 Ising model
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We present exact explicit expressions for the diagonal spin-spin correlation functions (oooo„„) in
the d =2 Ising model, in terms of elliptic integrals, for n up to 6. We also give a general structural
formula for (crooo„„) and discuss its properties.

The two-dimensional Ising model remains of great im-

portance as an interacting many-body system which is ex-

actly soluble. Although the free energy, magnetization,
and certain other thermodynamic quantities were calculat-
ed in classic papers long ago, ' -' there remain a number of
quantities which are not yet completely determined.

Among the interesting objects of study in this model are
the (static) spin-spin correlation functions (oo()cr „).
Recently, we presented a new method for calculating
high- and low-temperature series expansions for the diag-
onal correlation functions S„=( rcoocr«). In the course
of this work we found that explicit analytic expressions
for these correlation functions had not been published, ex-

cept for the case n =1. Thus Sz was recently calculat-
ed."

Here we present a general structural formula for the S„
expressed directly in terms of elliptic integrals. We also

give explicit expressions for the S„, for n &6.s The
method of calculation is based on the formulation of these

correlation functions in terms of Toeplitz deter-

minants. ' '

To fix conventions for the exchange constants J, 2 we

exhibit our form for the Hamiltonian of the d =2 Ising
model:

(Jioj,koj + i, k +J2crj,k crt, k+ i )

(j,k)6 Z2

ao a 1 a n+1

S„=
a1 ao . a „+2

(5)

a„ ao

where

1 2~
a — J dg e tn()~(g) (6)
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k —e'~

n
~(n, +) (k2 1 )l(+Is, )e(T —T)l

n —l, l
1=0

The point of our analysis is to use (5)essentially a sum
of products of integral representations —to calculate expli-
cit expressions for the S„,and then to determine the gen-
eral structural form of these expressions.

We find that the S„have the following general form

X [E(k)]"-'[K (k)]t (8)

Further, let p=(kt) T )
' and define

k =sinh(2PJ))sinh(2PJ2)

applicable for T & T„and

k& ——k)'

(2)

applicable for T & T„where T, is the critical temperature
of the model, given by

k&(P, )=k((P, )=1 . (4)

Since the S„have different expressions for T& T, and
T & T„ it is convenient to use the notation S„+and S„
for these two respective temperature regimes.

Since (o.oo, cr~„)=(oooo ~ „),we can take n)0 in
(ooocr«) with no loss of generality and will do so
henceforth. Recall that So ——1. For n & 1, S„can be ex-
pressed in terms of a Toeplitz determinant as' '

where k=k& and k=k& for S„+ and S„,respective-
ly; e(x)=0 for x &0 and 1 for x & 0; 5; j is the Kroneck-
er delta function; and K(k) and E(k) are the complete el-
liptic integrals of the first and second kinds, respectively.
In (8), A„E'Q, p„ is a positive-semidefinite integer, and
H'„"' i I is a polynomial in k . Since K(k) and E(k) also
depend only on k, the summand in (8) is a function only
of k . It follows that S„+ is an even (odd) function of
k & for even (odd) n, whereas S„ is an even function of
k& for all n.

We shall now derive some general properties of (8).
First, as T~00, the system becomes completely disor-
dered and (oooo~„)—+5~ o5„o. Since S„+-O(k&) in
this limit, the summand in (8) must vanish like

(n+2p„+(1/2) 1—( —1)"j)
k) as- T~ao. Et follows, in particu-
lar that
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TABLE I. Values of the A„ for 1&n &6.n

g ( —1)'H'„"' I I(0)=0
1=0

Next as T—+0, the lattice becomes completely ordered and

(oooo~n)~1. Consequently the summand of (8) must
nvanish like k &" and hence, in particular,

2'
3

n

( 1)
+ ll~(n, —)(P) P

1=0
(10} 25

3'X5
Finally, as T~T„since (ooocr~n ) is a continuous func-
tion of T,

28

3'X5'X'7
S„+(k)——1)=Sn (k( ——1),

3'X 55X 7'which implies that

~(ni+)(1) ~(ni —)(1} (12) 218

3 X5 X7'X11There is, of course, no analogous equality between
%n"' l l(1) and %n"' l l(1) fOr l&0 beCauSe theSe termS are

[I+5, ,e(W, T)]-
annihilated by the (k —1) " ' factor. ] Writing

~(n +) .
( )

'
(n +)k2j

nO Jmax"

~(n, —)
— g (n, —)k2j ~ (13)

n, O j=0 C

b„=np, [J)coth(2p, J) )+J2coth(2p, J2)] k AS„(T, ) .

(20)

we find that

Further, we find that the leading singular corrections to
(18) are of the form

(n, +) (n, —)

J J „(n) J (14)

so that the equality equivalent to (12) and (13),

j „(n) j „(n)
(n, +) y (n, —)) (15}

j=O j=O

is actually met in the special manner implied by (14), i.e.,
there is a one-to-one equality between the individual terms
on the left-hand side of (15) and the reordered terms in
the right-hand side of (15). Further, using the known
value

(T T, ) ln
i
T—T,

i
+—

so that, for example, the curvature d S„(T)/dT diverges
like —b„/( T T, ) as T~—T, .

In passing, we recall that one might be tempted,
a priori, to think that as n ~ oo, the behavior of S„near
T, would be the same as that of the square of the magnet-
ization, since

M = lim (croocr~n ) .
m+n~~

(21)
I —nn

One would thus be led to conclude falsely that M vanishes
at T, with a critical exponent p= —,

'
(the mean-field-

theory value). The correct exponent is P= —,', and the fal-
lacy in the naive approach alluded to above is that it im-
plicitly assumes that the limits n —+ca and T—+T, com-
mute, whereas in fact, they do not. In contrast, as was
noted in Ref. 7, the low-temperature expansion for S„
has a universal part up to order n in k&, so that as
n ~ co, it becomes independent of n and is precisely the
expansion of (1—k()'~ . In this case one could justifi-
ably infer the exact result for M from the n~ faoorm

of the low-temperature expansion since the limits n ~ ao

and T~O commute.

(16)

we find that
1 —n

1

4l
(17)n) I .

An interesting feature of S„ is that although it is con-
tinuous for all T, its derivative with respect to tempera-
ture is logarithmically divergent at T=T, . Thus, one
knows that

S„(T)~S„(T,)+b„(T—T, )ln
i
T —T,

i
as T~T,

(18) TABLE II. Values of the p„ for 1 & n & 6.

plus higher order terms, where b„&0 from the general in-

equality

n

1

2
3
4
5

6

Pn
0
1

2
4
6
9

(19)S„(T)) (S„(T2) if and only if T) & T2 .

To our knowledge, the value of b„has not previously been
calculated. From (8), we find that it is actually propor-
tional to S„(T,):
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2 2=k
~ y& =k&

We then have the following.
n=1, T)T, :

(22)

HQ ] —1(&, +)

n=1, TgT:
H)p =1(&, —)

Hp ( ——0.(&, —)

n =2 T)T:
+zo = —y&+5 ~

(2, +)

+p, z+ =3(2, +)

Tc

&z,o =5y &
—1(2, —)

——2,(2, —)

Hp,' = —1(2, —)

n =3, T)T:
H3 p+' ———10y &

—2ly & +96y& —1,
~2, 1

—3(y +3y —69y + 1)

HI q+ ——3(y & +48y& —1),
Hp 3 =33y& —1

(3, +)

We proceed to give the explicit expressions for the S„+
for n (4. For completeness, the previously calculated
n =1 and 2 cases are included. The values of A„and p„
are listed in Tables I and II, respectively. It is convenient
to define the variables

n 3~ T(Tc

~3,Q
——y, +96y, —21y, —10,

' ——27(3y + 1),
&A '=6(3y' -7y, —4),
HQ3 ——9y —7 .(3, —)

n=4, T&Tc

~4,o =3y &
—1549y &

—1977y &
—5366y &

+21 773y &
—549y —47,

~3 ] = —8( 129y + 134y +658y 3 7332y

+245y & +22),
~2 2 = —6(30y &

—81y & +70y —9704y~

+428y & +41),
~ ],3 =4(45y + 1 1 ly' +6389y —363y —38)

~p, 4 = —5(9y &
—843y & +59y +'7),

n =4, T&T,:

&4,p = —47y &
—549y & +21 773y —5366y

—1977y &
—1549y +3,

———4(3y & +62y &
—7047y &

—2997y &

—1288y&+3),
——6(3y & +2149y &

—2804y —136Qy

—1063y & +3),
——4(504y &

—1739y &
—975y &

—865y & +3),
———1011y &

—599y &
—697y +3 .

l.o
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FIG. 1. Plot of the diagonal correlation functions Sl, S&, and S4, together with the squared magnetization M as functions of
T/T, in the isotropic d =2 Ising model.
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S (T)&S„(T) if m(n (23)

(where the equality holds only at T=0 and T= oo), and
hence (with equality only at T=O)

S„(T) &M2(T ) Vn (24)

are evident in the graph. One can also discern the infinite

yhe +~„" (I( for a=5 are given in the Appendix. (Our

results for n=6 are listed in Ref. 8.) Although the ex-

sions are quite long, we believe that it is worthwhile to
record them, since they are exact and are in an explicit
form which can be used directly for analytical or numeri-

cal analysis.
In Fig. 1 we plot S&,S2,S4, and the squared magnetiza-

tion M as functions of T/T, . The elementary correla-
tion inequalities (19) and

slopes in the S„and M at T= T, . It is interesting that
in the low-temperature phase the different S„ functions
and M are practically indistinguishable until T!T,& 0.8,
whereas in the high-temperature phase there is a greater
separation between these S„'s. This indicates that the dis-
ordering (or, viewed differently, short-range order), which
occurs in the X2 symmetric phase, T & T„depends more
sensitively on n, at least for small n, than the approach to
long-range order does in the phase with spontaneously
broken Z2 symmetry, T & T, .
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APPENDIX

&he H„"'
~ I are listed below for n =5. Because of the length of the expressions for n & 5, we avoid giving results for

S„, n &5 here. (For n =6, see Ref. 8.) For n =5, T& T„
K5 o+'=262y & +9340y &

—1411795y &
—1 417 235y &

—2293 735y &
—7 179 887y &

'+26 133 515y —1 102 985y —133 795y —20 785y + 12,

Hq '~+ ' ——5(12y & +715y &
—301 320y &

—205 360y &
—475 660y &

—2 228 562y &

+ 16 836 940y &
—909 560y &

—115920y &
—18 385y & + 12),

Hs 2+ ' ———5(24y & + 111337y &
—89 860y &

—41 517y & +943 946y &
—21 491 273y &

~1463928y) +196741y) +32330y) —24),

H 2 z+ ' = —5(14 157y &
—83 180y &

—131273y &
—20 398y &

—13 698 717y &

+1 145440y & + 162 833y & +28 250y &
—24),

H I 4+ ' =5( 14 169y & + 12 352y & +35 277y & +4 382 564y &
—43462 ly &

—65 328y &
—12 265y & + 12),

H o z+ ' = —17 715y &
—65 50 ly & +2 824 190y &

—320 730y &
—50 375y &

—10 585y & + 12,

and n=5, T&T„
' ——12y &

—20 785y &
—133 795y &

—1 102 985y & +26 133515y &
—7 179 887y &

—2293 735y &
—1417235y &

—1411795y & +9340y & +262,

H4 i
' ———125(96y +811y +8548y —363 315y —165 262y —92 539y &

—44064y & +355y & + 10),
H z 2

' ———5(360y & +65 ly & +31 658y &
—6 410 543y & +6 389 472y & +2 643 313y &

+ 1 923 170y & + 1 729 647y &
—15 796y &

—476),

3 ——10(270y'& ~2523y & ~ 1 010246y &
—1 920 319y'& —870 1 16y

—707 955y &
—667 762y & +7159y & +226),

HI 4
' ———10( 135y &

—122 352y & +551 498y & +258 369y & +239 203y & +256 106y &
—3204y &

—107),
' ——225y &

—616911y &
—284 740y —286 190y —391 095y & +5645y & +202 .
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