
PHYSICAL REVIEW B VOLUME 30, NUMBER 7 1 OCTOBER 1984

Heisenberg model with higher-order exchange: Ground-state properties and excitations

H.-P. Bader
Institut fur Theoretische Physik, Eidgenossische Technische Hochschule Zii rich H—onggerberg, CH 809-3 Zii rich, Switzerland

R. Schilling
Institut fiir Physik der Universitat Basel, Klingelbergstrasse 82, CH 4056-Easel, Switzerland

(Received 28 November 1983; revised manuscript received 19 March 1984)
10

Properties of Heisenberg models with higher-order exchange, H=
2 g, , g„J„'"(S„S )', are

discussed. It is found that there is a one-to-one relation between the set of all coupling constants
and the set of the energies of all v-magnon states with v & 2s, where s is the spin at each site. Neces-

sary and sufficient conditions for a ferromagnetic ground state are derived for systems with only
nearest-neighbor interactions as well as for systems which also include next-nearest-neighbor in-

teractions. These conditions are qualitatively different-in the quantum and in the classical case.
Discussing the elementary excitations, a classification of the v-magnon bound states is found: an ex-

treme case is the pure exchange bound state, where the v,spin deviations extend around the nearest v
sites; the opposite extreme case is the pure single-ion bound state where the v spin deviations are
most likely at the same site. Between these two cases there exist all combinations of both, if higher-
order exchange with l0 )v is present. The case v=2 is discussed in more detail.

I. INTRODUCTION

In this paper we investigate the properties at T=0 K of
the Hamiltonian for the most general isotropic exchange
model restricted to pair interactions,

I0

H= —,
' g g J„'"(S„S )', 1&l,&2s, (1)

1=1 n, m

where J„'~ are the 1th-order exchange coupling constants
between sites n and m and S„ is the spin operator at site
n with spin quantum number s.

Harris and Owen' and Rodbell et al. were the first to
show that (small) biquadratic exchange interactions must
be taken into account. Later it was shown that higher-
degree pair interactions between magnetic ions may be
comparable or even stronger than the dipolar couphngs.
(For reference see Refs. 11, 17, and references therein. )

This led to a lot of papers investigating the thermodynam-
ic behavior of models (1).

Most of the theoretical work ' is concerned with the
influence of biquadratic exchange (l =2) on properties of
the usual Heisenberg model [bilinear exchange (lo ——1)]
with nearest-neighbor (NN) interactions. Let us review
some of these concerning the ground-state properties and
excitations of (1).

Munro has proved that the ground state is a singlet if
the couplings J„'~ fulfill certain conditions, thus extend-
ing the Lieb-Mattis theorem up to biquadratic exchange.
Conditions (necessary and sufficient) for a ferromagnetic
ground state (FGS) were derived in Refs. 5 and 7—9 for
NN interactions. An interesting numerical result for a
chain with eight lattice sites was found by Parkinson. '

He has shown that for all J'" and J' ' with 0&J~"
& 1.3J' ' the ground state is neither ferro- nor antifer-
romagnetic,

X+[1—cos( k. 5 i)],

where 5, are the NN vectors and Et: is the ferromagnetic
energy. The influence of the biquadratic exchange on the
2-magnon states and especially on the bound states was
investigated by several authors '" ' for s =1,2. The
most important result is the appearance of a single-ion
bound state where the two spin deviations prefer to be lo-
cated at the same site.

To our knowledge the Schrodinger model'

H= 4 g JnmPnm (3)

with P„m the transposition operator, a special case of
model (1), is the only case with lo &2 which was studied
theoretically. For s = 1, Uimin' has calculated the
ground-state energy of model (3) for the linear chain.

The intention of this paper is to study for T=0 K the
influence of higher exchange interactions on physical in-
teresting quantities like ground-state properties, excitation
energies, bound-state behavior, etc. This is important for
the interpretation of experimental information as will be
shown. In addition, higher-order exchange gives rise to
stronger quantum effects. ' ' This will be seen for the
conditions for FGS.

The paper is organized as follows.
(i) First we derive general properties of the spectrum of

model (1) for arbitrary lo. In this context we discuss how

Concerning the elementary excitations, Nauciel-Bloch
et al. were the first to derive the spin-wave dispersion
(1-magnon energy):

Ei(k )= EF s[J"'+2J—' 's(s —1)]
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the original coupling constants J„' ' can be determined
from experiments which only allow one to determine the
v-magnon energies, i.e., some renormalized coupling con;
stants. In particular it is shown that from the v-magnon
energies with v&2s it is impossible to decide if higher
than vth exchange is present.

(ii) In the second section ground-state properties are
studied. Here we improve the necessary and sufficient
conditions for FGS obtained by other authors ' for
model (1) with lp ——2. Moreover, the influence of higher-
order exchange (lp) 2), next-nearest-neighbor (NNN) in-

teractions, and an external magnetic field are discussed.

(iii) The last section contains a study of a part of the ex-
citation spectrum. It is shown that the 1-magnon disper-
sion for lp & 1 is equal to that of the bilinear model with a
renormalized coupling constant. With specialization to
Schrodinger s exchange model a classification of the v-
magnon bound states, which appear for models (1), is
found.

These three sections are almost self-contained and not
necessarily dependent on each other as far as the results
are concerned.

II. GENERAL (SPECTRAL) PROPERTIES

The following applies to model (1) with arbitrary lp. If not specified, the lattice and the coupling constants J„'~ are ar-
bitrary.

Let
I
m i, . . . , m& ), m; E j —s, —s + 1, . . . , s j be the eigenstates of all S„', n = 1, . . . , N, where N is the number of

lattice sites. Using the eigenstates of S; SJ, we obtain

~ ~ mx)=EF Imi ' mN)
» —Im,.+m,. I

(s,m;s, mz'
I
2s k, m;+—mj )(2s —k, m;+mJ Is,m;;s, mJ )BJ '

(4a)

where (s,m;;s, mj I
S,m;+mj ) are Clebsch-Gordan coef-

ficients,

lo

iyyJ(t) 2l (4b)

is the ferromagnetic energy, and

10

8" = J" s —s —2sk+(k) (1) 21 2 k(k —1)
lj lj 21=1

(4c)

are the renormalized coupling constants. This notation is
chosen because all excitation energies are directly related
to B,J"' and not to JJ

' as follows from (4a).
The significance of the B,J"' is revealed by the eigen-

values E' ' of the two-spin system:

if and only if

(i) EF((~,~pj) =E,(tJ,;~'~j),

(ii) BJ"'=BJ' ' for alii j,k =1, . . . , v (v&2s) .

&roof. Assuming (i) and (ii) it is obvious using (4a) that
the eigenvalues and eigenstates for Ns —v&M&Ns are
equal. Here M is the quantum number of S'. Since the
matrix built by the product of the Clebsch-Gordan coeffi-
cients is regular, the reverse statement is also true. Under
more restrictive conditions:

(i') EF EF, ——
(ii') B'j' ' B;'J' '=——0 for all i,j and 2k & v,

for alii,j and 2k+1&v,
lo

Hz QJJ"(S;Sj)' i&——j fixed,
1=1

(Sa) the statement even stays true for different spins s&s'.
With (i') and (ii') it follows that the Hamiltonian restrict-
ed to the v-magnon subspace A „has the form

10

E' '(S) Ep = g J,J~'
f [—,S—(S + 1)—s (s + 1)] —s ~

j
1=1 „=H'

I „=Et; ,' gB,"+ ,' gB—,"—P;J. —

(sb)

with S the total spin.
Equations (4) can be used to prove the following.
Statement. Let H and H' be given by (1) for two dif-

ferent sets j J~J'j and f JJ' 'j. Then all eigenvalues and
eigenstates of H and H' in the v-magnon space are equal

For the proof see the Appendix.
Given B,J

' for k = 1,2, . . . , 2s it can be shown that Eq.
(4c) has a unique solution JJ", l = 1,2, . . . , 2s. Using this
and the statement above, we find the following.

Conclusion. In order to determine all the model param-
eters Jtz

' from experiment it is necessary and sufficient to
measure all magnon energies up to v=2s.
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Extension of the Mttnro theorem. As mentioned in the
Introduction, Munro proved that for systems (1) with

lz ——2 on a lattice A consisting of two sublattices Az and

Az, the ground state is a singlet (S =0) if the couplings
fulfill some conditions. This statement can easily be ex-

tended to systems which include higher exchange interac-
tions: Performing the unitary transformation
U=exp( —igg;~p„S,"), the nondiagonal elements of
H'= U HU are not positive in the basis

I ~m, , . . . , m„)) if

(m, mi ~H;,
'

~
m;, mj) &0,

for all i j and (m, mJ )&(m;, mj ) .

Here H,J ——U 'H;& U with

Ip

Htj. gJ~)~'(S——;SJ ) .
/=1

Under these conditions it follows similarly as in Ref. 3

that the ground state is a singlet (S=0). For the results

for lo ——3 and s = —,',2, see the Appendix, Sec. 2.

GF

V)
II

8
II

III. SUFFICIENT AND NECESSARY
CONDITIONS FOR FGS

FIG. 1. Spin dependence of Gp for H2 ——J"S ~ S2

+J' '(S~.S2) . j' '=s "J' ' are the reduced coupling constants.

A. Sufficient conditions

For deriving sufficient conditions we use the methods
developed and applied to systems (1) with only bilinear ex-
change in previous papers. The cell we use is the
two-spin system (Sa). For this, GF is given by

B' '&0, k =1, . . . , 2s (8)

which are all independent, except for lo &2. Note that (8}
is sufficient for systems (7) for arbitrary latti'ce since cell
(5a) applies directly to systems (7).

1. lp ——2

Let us now consider the case lo ——2 in detail. Here (8)
reduces to

(9a}

We first derive conditions for FGS for the models (1)
with only NN interactions:

lp

H = g J'"g(S„S„~s,) .
1=1 NN

Here already the case lq ——2 shows the qualitative features
of GF, the region in the space of the coupling constants,
where the ground state is ferromagnetic.

(i) Sector: j'"&0, j' '&0. The ground state for
j' '=0 is ferromagnetic and for j~"=0 nonferromagnetic,
except for s & 1. (For s = 1 and j"'=0, the FGS is degen-
erate with nonferromagnetic states. ) Thus for s & 1 there
is always FGS whereas for s & 1 the ground state is ex-
pected to be nonferromagnetic, at least for small j"'.
This agrees with (9a).

(ii) Sector: j'"&0, j' '&0 Similar .as in (i) for
j' '=0, the ground state is antiferromagnetic (with energy
j'2'[1+(I/s)] ). Thus it is expected that Gz increases
with increasing s, consistent with (9b). This shows that
the qualitative behavior at Gz for (9) with /o

——2 is as ex-
pected.

Improvement. So far we used the smallest cell leading
to conditions for all s. The reason was that we were in-
terested more in qualitative results to study the influence
of s and higher-order exchange on GF.

By choosing larger cells we were able to improve the re-
sults. We used a ceil H3, which is H2 extended to three
lattice sites, for s = —,', 2, and —,

' . The results are presented
in Table I. (For the calculation see the Appendix. } Com-
pared with the threshold values a=1/s of cell H2, the re-
sults for Hi in Table I are an essential improvement. The
reason is that the antiferromagnetic ground-state energy
of H3 is a much better approach to the ¹itesystem
than of Hz. This is similar as for the bilinear ease.

J( )& J( )

s
(9b) 2. lo) 2

j' ' is defined as j' '=s 'J'". (9a) and (9b} are presented in
Fig. 1.

Let us comment on (9a) and (9b). This will also be use-
ful for deriving necessary conditions.

Here we study the influence of higher-order exchange.
The sufficient conditions for FGS following from (8)
describe a cone of 2s planes. This is illustrated for 10=3
in Fig. 2.
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TABLE I. Necessary and sufficient conditions for FGS for H =pi, JI"g~~(S„S„+s)' in the sec-
1

tor j'",j' '&0. (FGS for j'"&aj' '.) The sufficient conditions are valid for arbitrary lattice and also
represent the threshold conditions for the ceBs H2, H3, and H3 ". (See the Appendix for the definition
of Hp". ) The necessary condition,

~
8,0—0}holds also for the arbitrary lattice whereas

~
l(3(lI, i) }and

the Anderson approximation hold for the linear chain.

Spin

1
3
2

2
5
2

5s)

Cell H2

1
2
3

0.5
0.4

1

s

a Sufficient
Cell H3

1

0.545 454

0.373 724
0.274 307

Cell H'"
1

0.476 19
0.333 33
0.233 06

i
8,0—0)
0.5
0.2222

0.125
0.08

1

2$

Necessary

~
li,(XI)},. . .

1

0.465 03
0.280 52

Anderson
approximation

0.363
0.242

0.1815
0.1452
0.363

s

S= 3
2 F

ii -&2)

FGS

H =g Ji 'g(S„Ss+s,) + g Jz g (S„S„+s~) .
l =1 NN 1=1 NNN

(10)

As cells we again used (5a) with external field and for (10)
we used cell H3 with NNN interactions:

Hs= XJ'i'BSi S2)'+(S2-S3)'1+ XJ~"(Si Ss)'.
l=1 l=l

3. Magnetic field and NNN interaction

We also studied the influence of a magnetic field and of
NNN interactions on GF The. Hamiltonian in the latter
case is

$=2
FGS FGS

The results for the case of a magnetic field and simple-
cubic lattices are presented in Fig. 3 and for system (10)
for the linear chain are shown in Fig. 4.

Unfortunately for systems with higher-order exchange
the eigenvalue problem is solvable only for simple cells for
all s. For example, even for H3 and H3 the eigenvalues

II

I

I

I

I~
ID
ID

I

IR

FGS

pie.a-a&

s=l
' =3s= 2'

FGS

FGS FGS

FGS FGS

FIG. 2. Necessary (dashed lines) and sufficient conditions

(solid lines& for FGS for H=gi, J'"g~z(S„S„+s,)i. Condi-

tions obtained by
~

l(3(A, , )},
~
$4(A i,k q) },and AND are valid for

the linear chain,
~
gq( k ) } for the simple-cubic, and all the oth-

ers for arbitrary lattices. The method of the convex hull was
used to obtain conditions denoted by H3. SPW denotes spin
wave (1-magnon) and AND the Anderson approximation.

FIG. 3. Necessary (dashed lines) and sufficient conditions

(solid lines) for FGS for H =g&,JI Igiiii(S„S„+s )'—h +„S„'
for simple-cubic lattices. The magnetic field is fixed to
ii =zi/s.

~
g&(Ai) },

~
$4{iii,iI2) },and AND hold again for the

linear chain. [Spiral denotes states (16).]
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j(2) & Q

.(I)")2
"I

r j
I
I
I
I

I
I

I
I
I
I
I

FGS

j(2) Q
2

m~~L~~ k
"I

I

FGS

j(2) & Q
2

"
I

I

———--~)(t)& j(~)

I
I
I
I

~l

I~

If(k, ,k )& $ 1«i) «2)+s, &+(—1) '

i E'A~, 5)

x g I (ki);, (k2);+s, & .
l EAgp5]

Here

I(k));,(k2)J &=(St ) '(SJ ) 'I 0&

$-"
2

I

I

I

FGS
I
I

I

I

FGS

Vx+
r(+1 F

I
I
I
I
I
I
I

ol
I
I

FGS
with

I
0& the ferromagnetic state with all spins up.

2. Spin coherent states (Ref. 23)

These states are denoted by
I
8),pl, . . . , 8N~JN & with

$ «to

"I
I///////~

GF

//'//'/ &Ill ~'lu//g /

GF

"I
I/'//'////////////'/// 8

// llA~8//A'1/D~//g /

GF

(S,&=se, (8„,$„) (14)

and (8„,$„) giving the direction of a classical spin. We
use the special cases

FIG. 4. Necessary (dashed lines) and sufficient conditions

(solid lines) for H= pl IJI gNN(S„S~+sl) +pl —IJ2(I) . I 2 (I)

XQ~N(S„S„+q ) for the linear chain. The thin solid lines"+ 2

follow from cell H3 with J~ ' ——0 and cell H2 (convex hull).

(a) I8o—o&;

(b) 8„—=8,

k.R„+P, n EA~

k.R„, n EAg .

(15)

(16)

cannot be given in closed form for arbitrary s. However,
using the method of the convex hull we can obtain suffi-
cient conditions for such cases. This method is based on
the fact that the convex hull of some regions, each con-
tained in GF, is itself contained in GF (Ref. 22). We ap-
plied this method to cases (2) and (3), see also Figs. 2—4.

1. Generalized cell states

We have

Ill)„(k )&=pe' '(S; )" Io&, v&2s . (12)

For lattices A with sublattices Aq and A~, with B,J
' ——0

for ij EA„or ij EAtt,

I
A(1(1)& =

I f(3)&+~I
I 0(2, 1)&» I

144(1( I 1(2) &
=

I P(4) &+1( I I 4(3, 1) &+~214(2,2) &

and so on, where

(13)

B. Necessary conditions

The general method to obtain necessary conditions is
based on the variational principle. The energies of trial
states are evaluated and compared with the energy of the
ferromagnetic state. Unfortunately there is not a simple
successful scheme to obtain such trial states. However, in
our cases, the states which were used can be classified into
three groups, namely generalized cell states, spin coherent
states, and physically adapted states. Since they are de-
fined separately in each case, we shall only present the
states and discuss the results.

We have

3. Physically adapted states

I f&F &: ground state of the NN antiferromagnetic

bilinear Heisenberg model (17)

(AF is antiferromagnetic). The conditions following from
states of types (1) and (2) are calculated in the Appendix.
Now we only discuss the results.

We first restrict ourselves to the case (7).
States (1). Extending the 2-site cell states of H2 [which

led to condition (8)] to ¹itestates we try to approach
condition (8). 1n fact, the 1-magnon states

I QI(k ) & and
the state

I
l()2(0) & lead to conditions

B( )&0 (18a)

and

B(2)&0

agreeing with condition (9) for k = 1,2. Therefore, the hy-
perplanes belonging to S=2s —1 (k =1) and S=2s —2
(k =2) of the threshold surface of H2 also belong to the
threshold surface of Hamiltonian (7). The reason is that
states

I
QI(k )& and

I
$2(0)& are also ei enstates of H2

[Eq. (5)] on the hyperplanes 8(" and 8( =0, respective-
ly. Such states do not exist on the hyperplanes B' '=0
for v~ 2. However, the (corresponding) extended 2-site
states (13) are good trial states as shown by the results in
Table I for l()

——2. Since the evaluation of the 2(s —1)
states (13)
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~ (1) Sn Sn+5&

j NN s NN

Sn Sn+5,

s2

where the first term can be considered as a perturbation.
The ground state of the second term is some antifer-
romagnetic state. Using the Neel state as a simple trial
state we obtain as a necessary condition

IA(~1)}
I

P4('Al 4)} ''' l&»(~(

becomes tedious for large s, we only calculated the cases
for s up to 2. But, as will be seen below, states (17) will
complete the results of states (13) to larger s.

Remark. For s= 1 (18a) and (18b) are also sufficient,
as follows from (8). Thus for s =1 the region Gz is
known for an arbitrary lattice. For J"'=J' ', (7) reduces
to the Schrodinger model (3) from which follows also thatJ'"=J' '&0 is part of the threshold. Note that forJ'"=0 &J' ' the FGS is highly degenerate.

States (3). As mentioned earlier these states extend the
results of (13) to larger s. This will be demonstrated now
for Hamiltonian (7) with lo ——2 and for simple-cubic lat-
tices. Remember that for this case the sufficient condi-.
tions are (8). Since (9a) is also necessary [cf. (18a)], we are
interested in couplings j'",j' ' with j'",j' ' & 0 and

I

j'"
I

&
I
j' '

I
/s. For this case Hamiltonian (7) becomes

2

Again (23) is only an approximation to the threshold and
not a necessary condition, in contrast to (22).

The results of states (12)—(17) for Hamiltonian (7) with
lo ——2 for the linear chain are presented in Table I. The
extension to other lattices is straightforward, also see the
Appendix.

Finally we mention that the inclusion in (13) of states
with spin deviations at three different sites improves the
result only a little. For example, for

I 43(~1 ~2) }
I P(3) }+~1I 4(2, 1)&+414(1,1.1) &

where

(111))= g S. S;+sS, s IO)
i&A~,
5),51

S; S;+s,S, s, IO),
i GA~,

5,,5', ,

we obtain for the linear chain and s = —,, a=0.467 38 in-
stead of a=0.46503 with

I
$3(A, , ) }. For models includ-

ing higher-order exchange, a magnetic field, or NNN in-
teractions, trial states (12)—(17) lead to conditions present-
ed in Figs. 2—4.

~ (1) &
~ (2)

2s 2 (20) IV. EXCITATIONS, MAGNONS

This condition improves, taking quantum corrections to
the Neel state into account. Assuming Anderson's spin-
wave approximation for the quantum corrections to the
energy of a state with Neel-type ordering, we would ob-
tain

(1) & (2) V

s z1[2+(y/z)s )]

For the values of y for the various lattices see Ref. 24. z1
is the number of NN. We should point out that (21) is
only an approximation of the threshold and not a neces-
sary condition in a strong mathematical sense, since
Anderson's spin-wave energy does not belong to a state in
the Hilbert space. More transparent than this approxima-
tion is a much simpler procedure, which even leads to a
better result. For the ground state

I OAF }of the NN anti-
ferromagnetic bilinear Heisenberg model, using

JVZ1 2A,F g S„S„+s,OAF
——— s [1+y(s)],

NN

A. 1-magnon states

The 1-magnon states are

Using Eq. (4a) one finds the corresponding eigenvalues

g(1)
E1(k ) =EF +[1—c—os(k. 5,)],

2
5)

which is a generalization of the result in Ref. S. Thus
measuring the spin-wave dispersion allows one to deter-
mine only 8"'.

Remark. We should mention that not only the disper-
sion relation (24) is the same as for the bilinear model, but
also all other properties of (1) restricted to the 1-magnon
space, e.g., surface states, etc.

(24)

In this section we use periodic boundary conditions and
NN interactions.

we obtain

j( 1 ) &J ( 2 )y (s ) !.22)

Clearly y(s) is not known exactly for s & 1. But with the
Anderson approximation for y(s),

B. 2-magnon states

Separating for the 2-magnon states

I 42) =g @(i,j)S; SJ I0}'
the center of mass

y(s)= +0(1/s ),
Z1$

we obtain
(1) & (2) V'

SZ1
(23)

4(i,j)=exp[ —,'iK (R; +R)J] ((()r()J,

where r(J =R;—R is the difference between the latticeE J
vectors R; and Rj, the eigenvalue equation
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K
~ gz) =Ez

~ gz )takes the form

K 518"'g cos P(r+5i) —P(r ) +8'5(0, r )icos2
1 5I

K5(
P(5i) —cos P(0)

—8+5(r, 5i) P(5i) —cos
K 51

2
P(0) =eP(r ), (25)

where

and

Bi B(2) B(1)
4s —1

1 B(2) B(])
4s —1

This generalizes the eigenvalue equation obtained by
Chiu-Tsao et al." to arbitrary spin s and arbitrary high-
order exchange. Equation (25) also demonstrates that in-
dependent of lp the 2-ma(non energies are determined
only--by two parameters, B" and B' '.

From (25) follows the 2-magnon continuum

(q )= ~8"'~ g 1 —cos
5)

K.5i
cos

q. 5)

(26)

where q is the relative momentum of both magnons.
This holds with the restriction 8'"=—

~

8"'
~

&0. Simi-
lar to Chiu-Tsao et al. " for s =1 we have discussed the
2-magnon bound states for hypercubic lattices in any di-

mension limiting ourselves to K=If(1,1, . . . , 1). The en-

ergies of the bound states in the functions of a =cos(K/2)
and P=8' '/8'" are qualitatively independent of s. Thus
the detailed discussion of Chiu-Tsao et al." also applies
to arbitrary s. As an illustration we give the "phase" dia-

grams for the existence of bound states as a function of a
and P. For s-type" bound states the "phase" diagram is
presented in Fig. 5. d-type" bound states exist if

I

respectively. This generalizes the result of other au-
thors "to arbitrary s and higher-order exchange. The
existence of a single-ion bound state is illustrated in Fig. 6
which represents, for the linear chain, the ratio

W(0) sa [t—a —sgn(t)(t —a )'/ ]
W'(1) 2s —1 (t —a ) [t —sgn(t)(t —a )' ]

where t=1+(e/28"') and W(r) is the probability of
finding the two spin deviations at rth neighbor sites.

Remark. lf the coefficient 8'" of the kinetic energy
approaches 0, i.e., if P~+Dc, then a single-ion bound
state exists. This is based on the uncertainty relation and
is similar to the effect of A'~0 on the bound states of the
H atom.

(28)

K=—g I'g, +s, . .J
NN

(29)

This simplifies the eigenvalue problem as follows.
(1) The subspaces spanned by the vectors

C. v-magnon states

For arbitrary I
J' 'I the v-magnon states for v& 2 prob-

ably cannot be determined analytically, even for one di-
mension. Therefore, we will study the special case, where
model (1) reduces to the Schrodinger model (3),

where

4s j Ig) —Do,

2s —1 ID
(27) 4s-I

2s-I
4s-I
2s- I

COS g &
—COSQ ) COSQ2

2

ID ——
D dq

(2m. )D 1 —(1/D)g cosq~

II-—
2

=a

and D is the dimension.
Figure 5 shows that for FGS (i.e., P&0) in the thrm-

dimensional case no bound state exists for K=O. This is
necessary for the application of the spin-wave theory to
low-temperature thermodynamics.

Besides the [at most D (Ref. 25)] exchange bound
states, a single-ion bound state can exist, depending on the
coefficients 8', 8, and 8"' of the "point interaction, " the
"NN interaction, " and the "kinetic energy" in Eq. (25),

(A)

FIG. 5. "Phase diagram" for the existence of 0,1,2 s-type 2-
magnon bound states below the continuum. Case (A) (with

D =1,2) and case (B) (with D =3), K=K(1, . . . , 1),
a =cos(K/2}, and P=B'~'/B"'. W3 = 1.516.
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FIG. 6. Probability ratio W(0}/8'(1} for the 2-magnon
bound states for the linear chain (D=1). Single-ion bound
states exist below (P&0} and above (P&0) the continuum.
P=B(~'/B'" is the parameter.

composed of a single-ion 2-magnon bound state and a 1-
magnon bound state. The antisymmetric eigenstates have
eigenvalues, which are in the continuum.

For arbitrary v the following classification of the bound
states is now obvious: Besides the pure single-ion and
pure exchange bound states there also exists all combina-
tions of both. The reason is that for model (29) in the v-
magnon equation, similar to (25), the coefficients of all
the interaction terms and the kinetic energy are equal. We
believe that this classification for model (1) stays valid for
more general coupling constants I JJ']. If not all higher-
order exchange interactions up to 2s are present, then it is
expected that only part of these types of bound states ap-
pear. This was already true for v=2. (See Fig. 6.)

V. DISCUSSION

E2(K)=E,(K)=EF Jg [1—cos(K—5()], (30)

as follows from above.
In the subspace [ I 1;,1J )] the bound states are ex-

change bound states. For the linear chain the eigenvalues
of these states are

r

E2(I(.) =EF—J sin
EC

2

v=3: The two subspaces [ I 3;)] and [ I 1;,li, ik)] are
already discussed, using remarks (2) and (3). The third
subspace [ I 2;, 11)] can be decomposed into a symmetric
and an antisymmetric part,

[!2;,1 )+ I2., 1;)] .

The eigenstates for the symmetric part are again identical
to the 2-magnon states for the Heisenberg model with
s = —,. Thus there exists a 3-magnon bound state (depen-
dent on the total momentum and dimension) which is

where g' Iv; =v and i &i, for all m&m' are in-

variant with respect to Hamiltonian (29).
(2) The eigenvalue problem for (29) in the subspaces of

the same type are identical. By subspaces of the same
type we mean

[I 1 &]-[I2 &]-[ I3 &]-

[ I
1 1~ &]-[12»,&l-

[I2 1 &]-[I3 1 &]-[13;,2 &1-

and so on.
(3) The eigenstates of (29) in the subspaces

[ I 1;,, . . . , 1; )] are equivalent to the v-magnon states of
the Heisenberg model with s = —,'.

Let us now consider the 1-, 2-, and 3-magnon states in
more detail.

v= 1: There is of course no new insight.
v=2: For s &1 there are two subspaces [ !2;)] and

[ I
1;,11 )]. In the first subspace the eigenvalues are equal

to the 1-magnon energies

For the Heisenberg model with higher-order exchange
we showed that for determining the coupling constants,
all v-magnon energies up to v=2s have to be measured.
In particular in the v= 1 [(v=2)] magnon space it is im-
possible to decide if higher than bilinear (biquadratic) ex-
change is present if s & —,

' (s & 1).
Extending the Munro theorem to bicubic interactions

we obtained conditions for the couplings such that the
ground state is a singlet. The results indicate that this
method is not so successful as if only bilinear interactions
are present. For example, for NN interactions, lo =3 and
s~ co, it is obvious that the ground state is antiferromag-
netic for couplings j'", j' '&0, and j' ) &0 whereas the
conditions of the Munro theorem only describe a part of
this domain.

Generalizing the methods presented earlier we derived
conditions for FGS for such models. Let us comment on
the results.

(i) The spin-wave stability is stringent in a subspace of
the coupling space as the figures show. However, in con-
trast to the bilinear case, it represents only a part of the
threshold in the classical limit s~ &x&. This could indicate
that even in the classical case for higher exchange interac-
tions the local stability of FGS is not sufficient.

(ii) Besides the spin-wave states, we used trial states
which were "extended-cell states. " This procedure im-
proved the results.

(iii) The typical situation of the spin dependence of GF
in the coupling space is given in Fig. 1, which was dis-
cussed in Sec. III. Here we only want to point out the
qualitative difference between the classical and the quan-
tum case: For couplings J'",J' ' & 0 there is always FGS
in the classical case, in contrast to the quantum case. The
same holds for each pair of an odd and even power ex-
change. For example, the spin dependence of the region
for FGS in Fig. 4 can be discussed as those in Fig. 1.

(iv) The coupling constants belonging to even powers of
the exchange influence the domain G~ in a similar way,
which differs only by numeric values from one power to
another. The same holds for the odd powers. For bilinear
and bicubic interactions this follows from Fig. 2: There is
only a quantitative difference between the diagrams of
Fig. 2 and the corresponding ones where j"'=+1 fixed,
instead of j' '.
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(v) The inequalities for the thresholds of the Ising,
classical, and quantum models are no longer true as can
be seen in Fig. 1. For the corresponding Ising model the
threshold is

J (—2J 1—
2$

ACKNOWLEDGMENTS

We would like to thank Professor W. Baltensperger for
helpful suggestions and for a careful reading of the
manuscript. We also thank Dr. K. Ueda for helpful dis-
cussions. One of us (H.-P.B.) would like to thank the
Swiss National Science Foundation for financial support.

Note that including higher-order exchange, the ground
state of the Ising model with spin s may be different from
that of the s = —,

'
Ising model. Clearly GP~Gz' as

s~ oo, consistent with the classical spin limit.
(vi) The threshold surfaces are composed of curved and

flat pieces. On the curved pieces the ferromagnetic states
are degenerate with a state which changes continuously
along the surface, whereas on a flat piece the degenerate
states are constant. On the intersection, the ground state
changes its symmetry discontinuously (Fig. 4).

(vii) For models (1) with FGS, there exist no 2-magnon
bound states for K=0 in the case of a single-cubic lattice.
This is important for the theory of low-temperature ther-
modynamics.

Finally, studying the elementary excitations of the
Schrodinger model, which contains all powers of the ex-
change, the v-magnon bound states were classified into
pure single-ion, pure exchange bound states and all com-
binations of both. Similar as in the case of the 2-magnon
state, it is expected that this classification stays valid for
more general couplings J„'~, if still lo ——v. If lo &v then
only part of these types of bound states appear. Thus
higher-order exchange interaction manifests in the types
of bound states which appear.

(viii) Finally, let us say a few words about the
, molecular-field approximation (MFA). For only bilinear

interactions, to obtain GF, the MFA is a first simple ap-
proximation. Using the spin-wave stability condition, the
results are improved. In a further step, s-dependent re-
sults were obtained using the cell method and better
adapted trial states.

Of course MFA can be extended to higher exchange in-
teractions. It then includes at least 10 ordering parameters
(magnetization, quadrupole momentum, . . .) and must be
performed for each spin s separately. ' 7 Therefore, for
determining GF in functions of s, it is rather tedious and
does not necessarily give a good result. This is explicitly
shown for Hamiltonian (1) with s = 1, s = —', , and io ——2.

MFA: s =1,

J (1) & 0 J (1) &J (2)

3
$

wllele J =g s J

APPENDIX

1. Proof of the statement for s&s'

Let
l (v&);,. . . (v„); ) be the normalized state with vk

spin deviations at site ik, k=1, . . . , n Cl.early these
states with g,".

,v;=v and n &v form a basis of the v-

magnon space A „. The analogous states exist also in A „',
the v-magnon space of the system with spin s'. Thus for
v&min{2s, 2s'I

Hl~= H'l—
means that

(H —H')
l (v~);,, . . . , (v„); ) =0

for all these states with g,".
&v; =v.

Proof of the statement by induction. Suppose that from
H

l

~—:H'
l ~, follows (i') and (ii') for v=2ko+1. Us-

ing this we obtain from

H
l
(v+ I); ) =H'

l
(v+ I ); )

g(v+1) gt (v+ &) pin = in

and from

H l(v+2) &=H'l(v+2) &

that

g(v+2) g(1) gt (v+2) g(&) pin in in ln

Thus (i') and (ii') are true for v=2ko+2, 2ko+3. The re-
verse statement follows directly from (4a).

Consider now H2 of Eq. (5a) with

B,',"'=0 for ail 2k&v,

B +"=B,J" for all 2k+1&v.
Then it can be seen, using (5b), that

(2) ~ (&) ~ (&)H2
I ~„=FF 4BlJ + 4BfJ ~lJ I~„.

(Al)

Since (Al) holds for all i,j, it follows that H
l ~ has the

form (6).

2. Conditions following from the extension of Munro's theorem

We have for s= —,',
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J(2) &
11 J(3)&0jJ —4 iJ

J(1) 1 J(2)+ 103 J(3-) 0iJ 2 ij,16 iJ

J(1) 5 J(2)+ 191 J(3)(0ij 2 ij 16 ij

i,jEAz or Az

(2) 5 (3) (3)
JiJ & 4 JiJ,JiJ )0,
J(1)+ 3 J(2)+ 63 J(3)~ 0iJ 2 iJ 16 iJ

For s =2,

—i&A~, j&A~ or vice versa.

J" (5J)J '&0,
i jEA& or A~

J(2) & J(3)& 0iJ LJ

J(I)+4J(2)+16Ji(j3))0,
i HA~, j&A& or vice versa .

3. Threshold condition for ce11 H3 and H3

We have

H3 ——J(St S2+S3 S3)+J'[(St S2) +(S2 S3) ],
H3 H3+K—S—t S3+E'(St S3)

(A2) J(—2, (s —1)J' (spin waves),

J&a,J', (A8)

From the eigenvalues of HP" in Ref. 26 it follows for the
threshold condition

For s =1

J&0, J&J', (A3)

for s= —,
'

J& „4J', J(——,J', (A4)

for s =2

J& 1.495J', J& —4J', (A5)

and for s = —,
'

The matrix elements for H3 were calculated by Griffith
for s =1 and —', using the technique of irreducible tensor
operators. Clearly from these the threshold conditions
follow. Here we only give the conditions for IC =K'=0.
(Conditions for X,X'&0, see Fig. 4.)

with a, = 1, —',~, —,, and —,', [24(V 19—1)——,
'

] for s = 1, —,',
2, and —,', respectively. From (A2) to (A8) sufficient con-
ditions follow for FGS which are listed in Table I and
given in Figs. 2—4, respectively.

Illustration of the method of the convex hull.
(1) Model (7) with lo ——3. The sufficient condition fol-

lowing from H2 is a cone of 2s planes (see Fig. 2). In the
plane J' '=0 this condition improves using cell H3.
Now, from the convexity property of GF it follows that
the convex hull of the conditions obtained by using H2
and H3 is also sufficient (see Fig. 2).

(2) Model (11). Cell H2 leads t'o a condition in the sub-
space Jz"——J2 ' ——0. The same is true for cell H3 with
JP'=0 for the subspace JP'=0. Again the convex hull
of both is sufficient for FGS (see Fig. 4). Note that this is
easily feasible for arbitrary s, since H3 with Jp'=0 can
easily be diagonalized.

J&1.714J', J& —
~
J'.

Cyclic cell (can be applied to hexagonal lattice),
TABLE II. Values a, P, aud y for the simple-cubic lattices.

H3 = J(S) S2+S2 S3+S3 St)

+J'[(St.S2) +(S3 S3) +(S3 St) ] . (A7)

Linear chain

1.046 312
1.122 06
0.726

Quadratic

0.7946
0.905 75
0.632

Simple-cubic

0.703 13
0.699 32
0.58
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4. Necessary conditions

States
~
g„(k)): (12). For the Hamiltonian (1) with external magnetic field we obtain as necessary conditions, using

(4a),

g [B(t)(0) ( 1)tB ( )(k )]
(2s)!v!(4s—21+1)(4s —l —v)!

h
(2s v)—!l!(v l)!—(4s —l + 1)!

(A9)

where

B'"(k )=QB'"e

States
~

$3(A, ( ) ): Using the matrix elements of Hamiltonian (7), including a magnetic field, for simple-cubic lattices in
the subspace

~
1b3(A, , )) are

A]) ——Ep —zI B + B +3h,3(s —1) (i) s (3)
4s —3 4s —3

[3s (s —1)zi ]'i (B'"—B' ') =A2i,
4s —3

A22 Ez —— B— — B —(zi —1) B + B +3h .s (i) 3(s —1) (3) ()) s (2)

4s —3 4s —3 4s —1

(A10)

Siinilarly one obtains the matrix elements in the subspace
~

$4(A, (,A2) ).
Spin coheren-t states. For the Haniiltonian (1) with lo ——3 and a magnetic field we obtain

~lll~fl» ~N~4x I
&

I li)~41~ ~ ~NEIN ~

QJJ"(e;,ej)+ —,
' gJz '[s (s ——, ) (e;,ej) — (e;,ej)+s (s+ ~ )]

1,J l,J

+ z $ JJ(3 s (s —1) (s —
2 ) (e;,ej) —2s (s —

z )z(e;, e&)~

—hsg cos8; . (Al 1)

We specialize now to the cases Hamiltonian (1) considered in Sec. III.

We have

a. Harniltonian (7) with lo ——2: Arbitrary lattice and spin

i
((bi(k ) ), i

8,0—0): J'"& —2s(s —1)J' ',
~ fz, (k )),

~
8,0—0): J"'& —,

' J' ' .

Simple-cubic lattices. For s = —,
'

~
$3(A, ) ) J' "& aJ' '

for s=2

~ y,(~„~,)): J"'&PJ('),
and for s large

) . J(1) s l J(2)
Z

2yAnderson approximation: J'"&s J' ',
zi[2+(y/z, s)]

where a, P, and y are listed in Table II.
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b H. amiltonian (7) with lo ——3: Arbitrary lattice and spin

We have

~
$1(k )): J +2s(s —1)J +(3s4—6s +4s )] &0,

~
$2(k }):J"'+(2s —4s+1}J' '+(3s —12s +19s —8s+1)J '&0,

i(3(k ) ): J'"+(2s —4s+ 1 )J' '+(3s —12s +21s —11s+2)J' ' & (s —1 )(2s —1)J' ' icos(k 51)
zf

~
8,0—0): follows directly from (All) .

Simple-cubic lattices Fo.r s = —,

I)3(A 1) ) ~ g (9z1 —1 )(J"') ——,
'

( 15z1 +57)(J' ')2

+ (J )+ (z, —1)J J + J J + J'J'&0.92 745z) —6561 (3) 2 3 ()) (2) 951z) —15 669z) +627

s =2:
~
$4(A, 1,A,2) ) is a complicated condition, we only give the result in Fig. 2. For s larger

2y 121 4 2+ (3t'/sz1) (3)

We have

c. Hamiltonian (7) with lo ——2 and a magnetic field h: Simple cubic -lattices

~
$1(k ) ): J' "+ 2s(s —1)J' ' &

2$z )

~
$2(k )): J"'+(2s —4s+1)J' '&

SZ)

States (15) with /=0. We have

(1+cos8)[J'"+2s(s—1)J' ']—2(s ——,
'

) (1+cos8) (1—cos8)J' '&
szi

for s=-,3

I A(~1) &:
z1(9z1 —1) 3z1(5z1+ 19)(J(1))2 (J(2))2+

3z1(z1 —1) (z1 —4)J(1)J(2) h 3z J(1)+ J(2) +h 2) 0
4 16 4 2

s =2:
~
$4()4.1,A2) ) is a complicated condition, the result

is given in Fig. 3. For s larger

2'Y
Anderson approximation: J ' —s J(2)

z, [2+() /sz1)]

2h 1

sz, [2+(y/sz, ) ]

I OAF)' J'" s'X(s}J'"&——
sz1 2+/ s

I

We therefore have the Anderson approximation

g( &) V J(2)
z1 sz1[2+ () /z1s )]

d. Hamiltonian (10)

Similarly as above; necessary conditions can be derived
for this case.
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