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Excitation spectrum and superfluid density of 3He- A at T=0
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The excitation spectrum of He-A at T=0 is studied and it shows a discretization. This is linked
to the localization of the excitations which are trapped in the existing texture. The excitation densi-

ty of states is calculated and is found to be nonzero at zero energy. A corresponding departure of the
superfluid density from its ideal value is obtained.

I. INTRODUCTION II. THE EXCITATION SPECTRUM

In a recent paper' (hereafter referred to as I), we have
studied the expression for the superfluid current in He-A
at T =0. This has been motivated by the present lack of
a consistent set of hydrodynamic equations for this super-
fluid. z Actually there are hydrodynamic equations agree-
ing with the symmetry of He-A, namely, those of a Bose
liquid with particles carrying an intrinsic angular momen-
tum, however, they contradict our present microscopic
knowledge on He-A at T=0.

At T =0 singularities arise in microscopic theory be-
cause there are two nodes for the gap on the Fermi sur-
face. This makes it impossible to use the standard gra-
dient expansion of Gor'kov's equations. In I, we have
been able to overcome this problem by solving exactly
these equations. This has been done with the only approx-
imation that the order parameter is slowly varying as in
any texture. As a result we kept only gradients of the or-
der parameter and dropped higher-order terms. The va-
lidity of this approximation will be discussed in detail in
the next section.

In this paper we use our solution to pursue the study of
the statics of the system (a brief suinmary of our results
has been already published ). We investigate the excita-
tion spectrum and find that it is continuous with respect
to two parameters and discrete for the third one. This is
in contrast with the free case where this spectrum depends
continuously on k. Corresponding to this discrete
behavior of the spectrum, we find that the excitations cor-
respond to localized states. This localization arises be-
cause low-energy excitations are trapped, for a given k, in
potential wells created by the studied texture. We obtain
the density of states N(to) for these excitations and find it
to be nonzero at zero energy. Finally we have obtained
directly, through a gauge transformation, the superfluid
density tensor. Its component parallel to the anisotropy
axis / differs from the total density by an ainount propor-
tional to N(0) which strongly suggests a nonzero normal
density in He-A at T =0. All our results agree quite well
qualitatively with the physical picture proposed by Volo-
vik and Mineev, namely, trapping of the excitations by
the texture and corresponding existence of a normal densi-
ty. However, they are quantitatively markedly different.

Let us first recall the formulation of the problem: If
one neglects in Gor'kov's equations terms of order /i/ZF
compared to the dominant ones, they can be written as
(see I for conventions)

Because of the nodes of the gap, difficulties arise in solv-

ing these equations in the presence of textures of the /

vector; indeed, for wave vectors k pointing near +/, the
usual gradient expansion is no longer useful and one must
look for a nonperturbative solution of Eq. (1). We expect
that in order to grasp the main physical effects issuing
from this unique situation, we need to retain only the first
variations of the gap; in other words, to put into Eq. (1) a
linearized version of the texture around the origin r =0:

bk(r)=bk+r Vbk . (2)

q =
i
/Xcurll

i
= —B,/„) 0 .

A
If /Xcurll=0, the singularity is higher order and be-
comes unimportant. It may be useful to think of the ex-
ample of a texture where / varies in the y-z plane along
the z direction. In this case 8, /„ is the only nonvanishing-+
derivative of / at r =0. To solve Eq. (1) we are only in-
terested in r parallel to k. We set

r =pk, a=k. V'bk, (4)

where a can always be taken real positive for fixed k (the
only sacrifice is a simple phase change in hk depending
on k). With these conventions, Eq. (2) reads

Qk(p) =b,k+ap=a(p+po)+i ImdPk,

This will later be shown to be a consistent procedure.
At the origin, / is supposed to be along z. The singular-

A w A
ity we are interested in arises because / Xcurl/ = —(/ V )/

&0. We take y along / X curl/ at r = 0 and we set
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where po ——Re(hk)/a. In the case of our simple texture we have merely a=(q5)k„po ——(5/a)k„, and Imhk
= —k, 5. Our exact result for g" is [see Eq. (32) in I]

g "(co„,k,g,p)= G (p}f du e G "(u)—6' (p}f du e 6 '(u)
vFdetG . + 00

where

co„+iImb, o
detG =—

~l (@+1)' (2aup)'

p= /A, i2, x=
1/2

2(x
(u +pa),

G"= U„+i/2(x) —( 1/A, )U„ i/2(x),

iG' = U„+i/2(x)+(1/1, ) U„ i/2(x),

i G—'= U„+i/2( —x)+(1/A, )U„ i/2( —x),
G = Uq+ i/2( —x) —(1/A, ) Up i/2( —x),

and U is the parabolic cylinder function.
This seems to be a rather messy expression. . But it is

easy to study the analytical behavior in the complex plane
of co =ico„As a f. unction of co we have

Imb, o —co

(Imago)

—co
A, =l

1 2~ P= (g)
(2aup)' 2aup

I

Since the parabolic cylinder functions are analytical in p,
the only singularities arise for A, =O and when I (p+1)
diverges, which occurs for p= —p where p is a positive
integer. Therefore we obtain a set of poles on the real co

axis:

u =Imho,

cop =+[(Imb,o) +2paup]', p ) 1

which is the excitation spectrum. We see that we obtain,
for fixed k, discrete energy levels which correspond physi-
cally to localized states. This is discussed further below.

To go further we must calculate the residues of g" cor-
responding to the different poles given by Eq. (9). They
will be noted Rp(k, g,p} and for evaluating these quanti-
ties we shall distinguish between the zeroth level mo and
the higher ones cop with p & 1. From Eqs. (6) and (7) one
has

» i ll (p, + 1)
2(2~)'/' U~( —y) ——U ( —y) du e u+(x) ——U (x}+ x + +

U+ (y)+ —U (y) f du e U+ ( —x)+ —U ( —x) (1O)

where y =(2a/up)' (p+po) and U+(y) stands for U~+i/2(y).
For R we find

R (k, g,p)= ——
2 7TUF

1/2
P I (u —p)g/uF P i ( u —p)g'/vF

U—1/2( y) U i/2(x)du —U i/2(y) U i/2( —x)du
+00 00

and for RP,

RP(k, g,p) =—1 9
4 m)F

cop —Imb, o

cop (p —1)!

X [ U +i/2( —y) —Ap U p i/2( —y)] e du [U p+i/2(x) Ap U p —1/2(x)]
i (u —p)g'/uF 'U

P—[U i/2(y)+A, 'U —i/2(y)] e du[U +,/2( —x)+A, 'U, /2( —x)], (12)

where Ap =i (2auF) /(cop —Imago).
But for p GN, the functions U p i/2 are given by

/2 —x ~/4U p —i/2(x)=2 e " Hp(x/v2)=( —1) U p —i/2(

where H& is the pth Hermite polynomial.
This simplifies the above expressions into

(13)
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R (k, g',p)=- g
2 PUF

' 1/2 + 00 i (u —p)g'/uF
U 1/2(y) du e U 1/2(x) (14)

1 a
RP(k, g,p) =—

4 7TUF

' 1/2
Q)p —Imkp 1

[ U —p+1/2(y)+~p U —p —1/2(y}l
—1

p 1 1 P

+ oo i(u —p)g'/u+ —1X du e [ U —p+1/2(x) Ap U —p —1/2(x)] . (15)

Using

f e P / e'"PHp(y)dy =v'2m(i) e " Hp(x),

integration over the variable u is easily done and leads to

(16)

R (k, g,p) = exp — (p+pv) — i (p—+pa)p p 1 g
2 2vF 2cKVP UF

(17)

and

(1/2)P 1 cop —Imkp Ro y p yRP(k, g,P)=, Hp 1 ~ + ~ Hp
P

1

H, & — ' HP 1
( )1/2 ~g P

( )1/2

(18)

We see that, as a function of p, R is centered around

p = —
p11 and has a spatial extension of order

L =(vp/a)'/ . This is much smaller than the length scale
L =5/a over which the order parameter changes since
the ratio between these two lengths is
(vp/5L)' =(gv/L)', where gz

——vp/5 is the coherence
length. On the other hand, go/L = (gu/L)'/, and we have

go«L «L. In the case of our simple texture (and

k, —1), L =q ' and L=(g v/q)' /. The preceding ine-

qualities show that our basic approximation of linearizing
the order parameter is valid since the spatial extension I.
of the excitation is much smaller than the length scale L
for order-parameter changes.

In the same way, the excitation cop has a spatial exten-
sion v'2pL around —p11. Our approximation holds up to

p &(L/L) =L/gv, where it begins to fail. But at this
stage cop-5 and we are not interested in excitations of
such high energies. If we needed it, we could solve the
problem in this range by a quasiclassical approximation.

The localization of the excitation is easy to understand.

The local energy of an excitation k located at p is

[gk+(Imhv} +a (p+pv} ]'

We-see that an excitation with a fixed energy which is suf-
ficiently low cannot escape far from the point p= —po
and is trapped around this point.

III. DENSITY OF STATES AND NORMAL DENSITY

The density' of states at the origin N(co) is a sum of
terms Np(co) corresponding to each successive level

Np(co) =N11 f dgRP(k, g, p=0)5(co —cop), (19)
4m

where No mkp/m is the den—s—ity of states at the Fermi
level in the normal liquid. Since g does not appear in the
expression of cop, we can write directly

Np(co) =Np f Rp(k)5(a) —cop)

with

Rp(k) = f dip(k, g, p=0) (20)

X 2

VF

' 1/2

po
A,

-2
P ~2

P

1/2

po

We now note the following. We are interested in the den-
sity of states for low energies co «5. This means low cop

and from Eq. (9) this implies
~

lmhv ~, (paup)' &&5.
Therefore, since exp( x /2)Hp(x) (the—wave function of
the harmonic oscillator) is maximum for x —v'2p and de-
creases exponentially after that, we have a non-negligible
contribution in Eq. (17) only if

) Redo
~

=a
~ po ~

-(paup}'/ «5. Therefore the inain contribution to the
density of states comes as expected from the vicinity of
the nodes of the gap. This allows us to set k, =+1 in the
integral (20), which implies a =q5, and to replace

f dQ/4m by f dk„dk„/2~ (a factor of 2 coming froin

the two directions +1 }. We can also change the x and y
axes in the integration so that Red, o=k„5, Imb, v ——kp5.

For No(co) we obtain

The g-integrated residue Rp is obtained by using again,
formula (16). We obtain

2

R (k )= (m.aup)
' exp —a

UF

(21)

, (cop —Imago)

cop (p —1)!
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No(co) = Nc(nqu. +5) '~
2'

—k 25~/qu
X f dk dky5(co ky5)e

kv)0

': —lb) 0

Re 4)

No qvF

2 6
(22)

For Nz(co) we use the orthogonality property of the Her-
mite polynomials

pP

and we obtain

Np(co) = qur f dky5[co+(5 k y+2pqur5)' ],

(co 2pquF5—)'

This gives the following structure for N(co) in the range
co ((5

N(co) = +No
No quF qua' +" tco

~

i (co 2pquF5)—
(24)

The structure of this density of states is quite similar to
the one created by Landau levels for an electron gas in a
magnetic field. For (qur5)'~ &&co &&5, many levels con-
tribute to N(co} which can be approximated by (we set P
equal to the integral part of co /2quF5):

5 N(co) ~ co

qvF No (co —2pquF5)
co l2+pF5

dp
0

CO CO

2 ir2
=

(co —2pqu~5) quz5

Therefore in this range, N(co) reduces as expected to the
ordinary density of states No(co/5) for the low-lying ex-
citations in the homogeneous system.

A main feature of N (co) is the existence of a finite den-
sity of states for co =0:

-I k'vg

FIG. 1. Change in the path of integration for the calculation
of ps ~

old field operator a new one p (r, t) is introduced by the
relation

g~(r, t)=exp im P~(r, t) .

After the transformation the gap dependence on v, has
disappeared. The new Hamiltonian has the same expres-
sion as before except one supplementary term if we keep
only the linear order in v, :

f d rv, (P~VP~ —VP~P~)= —f d rv—, g'. (28)

Gor'kov's equations read now as in (1) but it is easy to see
that, because of the additional term, ico„ is replaced by

ice„—k v„' that is,

Q)~ ~co~ +1k ' v g (29)

(27)

g'=NokttTQ f dg kg" (30}

with g" given by Eqs. (6) and (29). In the limit of zero
temperature, the sum over Matsubara frequencies goes
into an integral

Furthermore the density current g is given by

tg= g +pvs

Therefore by calculating the density current from our
solution of the Gor'kov's equations with (29), we shall ob-
tain directly the deviations of p' from p at T =0.

We must calculate

N(0)= i(l.V)l
i2 6

(26)

g'= ' f d~' f dg
"" kg".1VO

(31)

Therefore we expect a normal density at T =0 linked to
N(0) and a corresponding correction to the superfluid
density p' in order to ensure Galilean invariance. Howev-
er, we can only calculate p' within our framework. The
rest of this section is devoted to this question.

The best way to obtain the v, contribution to the
current is to perform a gauge transformation in order to
get rid. of v, . This is done as follows: If P~(r, t) is the

I

In order to integrate over co' the function g " of
co'+i k v„we shift the integration path as shown in the
figure, replacing the path Ã by Xi+@2+@3. (See Fig.
1.)

We see that poles inside the total contour
( 4 i +4 g+ 4 3) will contribute to the integral. By

Cauchy formula we have

f dco'g "(,g, co')= f dco'g" —sgn(k v, ) g Rt'(k, g)e(co (k v, —co )) .
p=0

(32)

The integral along 4'q on the right-hand side of Eq.
(32) has no more v, dependence and may be discarded.
The integrals along Ki and Ã3 vanish when Ãi and Ã3
go to infinity because gii —1/ico' when Reco'~+ ao. This

is a general behavior of the Grmn's function; it results
directly from Eq. (1) and it can be checked on Eq. (6) by
making use of Darwin's expansion for the parabolic
cylinder functions U(a, x) valid for large X=(x +4a)'~ .
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Finally we obtain for the v' dependence of g
' the ex-

act expression:

g'= N—p f dg ksgn(k v')
4m

X g RP(k, g)8(to (k v, —to )) . (33)

This is what one would expect from a normal liquid ef-
ect.

It is worth pointing out that our result Eq. (34) -holds
only in the regime v'/v, «(qvp/5)' where v, =5/kp is
a typical order for a critical velocity. In the range
(qvp/5)'~ & v'/v, &&1, we obtain

If we let v ' go to 0, the only contribution is from p =0
because top)2qvp5 for p)1. This remains true even if
we assume that m v ' and curll are of the same order be-
cause this means kpv'-qvp «(qvp5)' if qvp «5. Now
the 8 function implies ~1mb, p~ &

~

k v'~ and R gives
only contributions for

~

Red'
~

&&(qvp5)' . Therefore
only the vicinity of the nodes of the gap contribute and we
have again k, =+1. We see that only g', is nonzero to
leading order. Taking into account the contributions
from the two nodes, we obtain

g,
' = Npkp —f dk„dk„R (k)8(top(kpv, ' co ))—

oo kFV

g, = kF —g f dtoNp(to)
p

= ——
p v,'+2 g (v,') —2pv,

3 ~~F, ",, 2«F
p=1

)& sgnU,

1/2

(38)

= —k, f d Np( )8( (kpv,'— ))

= —N(0)kpv, ' .

Finally we obtain for the superfluid density p' along l:

(34)

This result displays an interesting nonlinear behavior
which reflects directly the structure in the density of
states.

We note finally that our result Eq. (35) for p' can easily
be generalized by standard methods to finite temperature.
The result is merely

p~ =p N(0)kp =—p 1 —— (35) + oo

p~ =p —kp dtoN(to) (39)

3 ~(l V)l (

P~ =—PUF2
(36)

It is easy to include Fermi-liquid effects in this calcula-
tion. One must replace v ' by v '+(IF'i /3m )

X(g/p —v') in order to take into account the self-
consistent interval field. But g —pv is negligible com-
pared to v '. The net result is merely to replace m by m*
in No vrhich leads to

s 3 rn' vF
~

(i'~)l
~

2 m 5
(37)

where the departure from p is linked to the finite density
of states and it is natural to associate this departure to a
finite normal density at T =0:

3 O'UF

2 5 g p,"„[(2pqvF5)'~, T] .
p=1

(40)

where N(to) is the density of states given by Eq. (24) and
f(to) the Fermi distribution. At T =0, Eq. (39) reduces to
Eq. (35) and in the regime (qvp5)' «k&T«5, where
N (to) can be aPProximated by Np(to/5)z, it gives the stan-
dard low-temperature result for p' . In the intermediate
range we remark that Np(to) has the same form as the
BCS density of states for an isotropic superfluid with an
effective gap hp ——(2pqvp5)'~ . Therefore if we introduce
the normal density p,"„(5,T) of such a supefluid we may
rewrite Eq. (39) as
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