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Monte Carlo calculations are performed for two directed systems: the problem of directed an-
imals and the problem of directed aggregation. Taking advantage of recent exact results obtained
for the directed animal model, we present a Monte Carlo method which produces directed animals
with unbiased statistics, in contrast with previous methods for polymer problems. Large typical
clusters of each type are displayed and estimations of the exponents governing the mean length and
width of the clusters are obtained, showing that the two models are in different universality classes.

I. INTRODUCTION

Recently there has been much interest in the study of
kinetic growth of clusters by statistical physics methods.
The processes involved are related to the growth of cry-
tals, dendrites,! tumors,? and to the coagulation of small
particles as smoke, dust, and aggregation of colloids.>~?
In these latter cases, the cluster grows through the aggre-
gation of a particle coming from far away by a diffusion
process. The aggregate is characterized in particular by
its Hausdorff dimension D, giving the mean radius R of a
cluster of mass s (number of sites in the cluster):

1
v ——
R ~sY, v= D
D is found to be about 1.7 in two dimensions (2D’s),>* 2.4
in 3D’s and 3.3 in 4D’s (Ref. 4). These results and oth-
ers’~? indicate that these models are not in the same
universality class as other geometrical models, as percola-
tion,!® linear polymers,!! or branched polymers (an-
imals).!°

On the other hand, recently much work has also been
done on directed random cluster systems, as directed per-
colation'? and directed animals.!*~!® These models take
into account the effect of a strong external field, such as a
gravitational or electric field: for example, directed per-
colation has been proposed as a model for the hopping
conductivity in a strong electric field!® and directed an-
imals for the shape of a river network.!® As in the non-
directed case, it is interesting to study what happens when
the cluster is grown by a kinetic process. The processes
involved may be a reaction of polymerization inside a
flow of solution containing the monomers, the capture of
small aerosol particles on fibers?® or surfaces?! in the pres-
ence of a strong electric field, or the pattern formed by
electric breakdown in an insulator.??

In this paper we want to compare two two-dimensional
(2D) lattice-directed systems, described hereafter, one of
directed kinetic growth and one of directed animals. The
two models are chosen such that the allowed clusters are
exactly the same (but the statistics, i.e., the weights of the
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clusters, are different in the two models; see Fig. 1). We
study here systems of site clusters by means of Monte
Carlo methods on a square lattice and on strips of finite
width.

In Sec. IT we present the two models and give for both
of them some pictures of typical clusters. In Sec. III, the
Monte Carlo methods used for each model are explained.
Our results are described and discussed in Sec. IV.

II. MODELS

We first recall that a directed cluster is defined by the
following property:'? there exists a “root” or a “seed”—
that is, a given set of sites of the cluster—such that any
point of the cluster can be reached from the seed via a
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FIG. 1. Directed clusters with s sites, for s <4. The pre-
ferred direction is shown by the arrow. The seed is the lowest
site of the cluster. The weights of the clusters for the aggrega-
tion model are shown under each cluster. For s < 3, they are the
same as for the animal model, but for s >4 the weights are dif-
ferent. For s=4, there are 13 clusters, such that each directed
animal has the same weight ;. We have identified symmetric
clusters; so, for example, for s=4, in the directed-animal model,
the first cluster has a weight -5, and each of the others has a

weight %
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path which never goes opposite to a given preferred direc-
tion. The shape of such a cluster with a large size s can
be described by two different exponents v|| and v, (instead
of one v=1/D), giving the behavior of the mean length L
and width W:

S, L~s"ll, W~st. (1

A. Directed animals

In the problem of directed animals one gives the same
weight to each allowed cluster. Here we consider the
model of directed-site animals on the 2D square lattice,
with the preferred direction lying along a diagonal (model
A of Ref. 17). For this model some exact results have
been obtained,'>!”!® giving in particular'® the exact num-
ber Q,(T") of directed animals of s sites with a root I', T’
being a given set of occupied sites on a row orthogonal to
the preferred direction, and the exact value v; =5. How-
ever, the exact value of v|| is not known, and the followmg
values have been obtamed up to now: v|=0.800+0.001
(by direct enumeratlon 4, v |=0.8 (field theory and Pade
approximants, !> v =0. 818i0.001 phenomenological re-
normalization!”). Figure 2 shows some typical directed
animals obtained by a Monte Carlo method explained in
Sec. III. These animals are of sizes 500, 1000, and 2000.

B. Directed diffustion-controlled aggregation

The model is a simple generalization of the model first
proposed by Witten and Sander® shortly described in the
Introduction: given a seed, a particle diffuses and stops if
it reaches a site adjacent to tae seed; then a new particle is
launched, and so on. Here we introduce a preferred direc-
tion in the diffusion process: the particle “falls” from far
above the cluster and is halted when adjacent to one site
of the cluster. As for the directed-animal model, the pre-
ferred direction lies along the diagonal of the square lat-
tice and a seed is set at the origin. Figure 3 shows a typi-
cal aggregate at three stages of its growth, that is with
1000, 5000, and 10000 particles.

III. MONTE CARLO METHODS

A. Directed animals

It is usually a difficult problem to study linear or
branched polymers by Monte Carlo methods. Indeed,
there is no efficient Monte Carlo method which produces
long polymers with the correct probability. Known
methods introduce a systematic bias and many algorithms
hav2e3 been proposed to make this bias as small as possi-
ble.

For a model of directed animals, because we know the
exact expression for the number Qg(T") of animals of any
given number of sites S and any given root T','® we can
use a Monte Carlo method that does not suffer from any
bias. The idea is to construct row by row a typical direct-
ed animal of S sites. Let us suppose we have already con-
structed the cluster up to N sites and to a distance L from
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FIG. 2. Typical directed animals obtained by a Monte Carlo
method. These animals are of sizes 500, 1000, and 2000.

the root. We want to add a new row. Let I" be the con-
figuration of occupied sites on the Lth row. On the
(L +1)th row one can construct any configuration I'"’ of
occupied sites such that any site of I'”” is connected to a
least one occupied site of I'. Among all these possible
configurations I'"’, we must pick one of them, e.g., T,
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FIG. 3. Typical directed aggregate at three stages of its growth: 1000, 5000, and 10 000 particles.

with a probability P(T'). This probability P(I'') must be
chosen to give the same weight to all configurations of S
sites which coincide with the part of the cluster already
constructed (columns 1—L), that is

Qg _y(I7) Qs_yI7)

S Qs y(I) Qs yim(D)’

P(I')= (2)

where ' denotes the sum over all the configurations I'”
which can follow I', and m =m (I") is the number of oc-
cupied sites at column L.

The expression for all O (T") is known'®® for animals
on strips of finite width n, then one can easily obtain the
expression for the 2D lattice [the notations are those of
Refs. 17 and 18(a)]:

18(a



30 DIRECTED DIFFUSION-CONTROLLED AGGREGATION VERSUS. .. 379

X ,
Q)= fo ﬂgﬂ_&cosg cosk (r — 3 )(1+2cosk)* !
.. 1 N;
sin(j + 5 )k
jso | sin(k/2)

(r is the width of the root T'; T is denoted ¥ in Ref. 17).
However, from a practical point of view, one can note
that for n > .S the values on the strip and on the 2D lattice
are the same and Qg can be expressed as a sum rather
than an integral.

Even though the exact expression of all Qg_y(T) is
known, the calculation of the probabilities P(I"') is a long
task since one must evaluate these probabilities for all the
possible I''. To avoid this long calculation at each step of
the construction of the cluster we have used the method
of importance sampling:** one chooses I’ with some
given probability @ (I") which is simple to evaluate; then
this choice is accepted with a probability 7(I''), so the
probability to effectively obtain I'’ is

B =0(Ir(r) {1+ [z'r,,Q(r")u_r(r")]

(3)

+[]2+~~]

___o@)r(r)
zi‘"Q(rn)r(F”) *

We want P(I") to be equal to P(I'’). Therefore r(I'')
must be given by
P
o) -
A is an arbitrary constant to be taken such that, for any
I, r(T') is less than 1 but as large as possible. The main
advantage of this importance sampling method is that we
must calculate P(I'’) only for one configuration I’ in-
stead of needing to calculate it for all configurations I'™”’
as in formula (2).

We use here a simple choice for Q(I'’): For each site
on the (L 4 1)th row which is allowed to be occupied, we
choose it occupied with a probability p and empty with a
probability (1—p). Then

Q(l-v):pm(l")(l_p)n(F’)-m(F’) R (6)

(4)

r(I)=4

(5)

where n (I'') is the number of sites which can be occupied
on a row following I" and m (I"’) is the number of occu-
pied sites in I'". The final results do not depend on the
particular values of 4 and p used, but good choices in-
crease the efficiency of the method—note that the mean
number of trials before accepting a new configuration is
1/ 4.

B. Directed aggregation

It is easy in this case to perform a Monte Carlo study.
If the seed is a single site, the cluster will be confined in a
cone starting from the seed, of half angle 7/4, and with
the preferred direction as the axis. If L is the height of
the cluster measured along this axis, one launches a parti-
cle at height L + 1 from a point chosen at random with
equal probability for every point at this height in the cone.

If the particle gets out of the cone, it is lost, and another
one is launched. At each diffusion step the particle can
choose between two sites under it; if at least one of them
is occupied, the particle is halted.

IV. RESULTS

A. Monte Carlo on strips

The methods described above can be performed on sys-
tems confined on strips of finite width » with periodic
boundary condition, and of infinite length parallel to the
preferred direction. On such a strip one can calculate the
average length (L ) of a cluster of s sites, which for large
s is expected to behave in the following way:

(L)~n(v”_1)/vls . (7

An argument for this relation, which generalizes the one
originally used for polymers,? is given in Ref. 17.

In Table I(a) the values of (L )/s for the aggregation
model are given, and Fig. 4 shows In{L ) /s vs Inn. For
directed aggregation we obtain the value

TABLE 1. Values of (L /s) for strips of different width n.
(a): Directed aggregation. The value at n=2 is an exact numer-
ical value. We have obtained this value by a method which is
rather complicated and which we shall not describe here since
we could not generalize it to n >3. (b): Directed animals. The
values for n < 13 are the exact values obtained in Ref. 17.

n (L/s)
(a)
2 0.72576
20 0.1280+0.0001
30 0.0856+0.0001
40 0.0651+0.0001
50 0.052240.0001
60 0.0438+0.0001
70 0.0378+0.0001
100 0.0263+0.0001
200 0.0135+0.0002
(b)
2 1.17157
3 1.344 05
4 1.487 83
5 1.61139
6 1.72052
7 1.818 83
8 1.908 71
9 1.99179
10 2.069 25
11 2.14199
12 2.21067
13 2.275 84
15 2.40+0.02
20 2.66+0.02
30 3.13+0.04
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FIG. 4. Monte Carlo on strips for directed aggregation. On
top, density p(n)={s/Ln.) for large s; at the bottom (L /s ) vs
n in a log-log plot.

1 —VH .
—=0.99+0.01 . (8)
Vi
In any case we expect v||+v, > 1, since there is at most
one particle per lattice site, and the equality would mean
that the cluster has a finite density p for large s. Indeed,
the drawings in Fig. 3 are in agreement with a value
v|+v, close to l—otherwise one would expect to see
holes of any sizes in the cluster. The values p, =(s/Ln)
are also shown in Fig. 4. If we assume that v||+v,=1,
for the density we obtain
p= lim {(s/Ln) ,

§—> 0

n—ow

p=0.384+0.005 .

9)

The compactness of the clusters is in agreement with
similar calculations made independently by Jullien et al.?®
and by Meakin.?’ Jullien et al. analyzed the behavior of
(L) using only one exponent, (L ) ~n'~Ps, from which
they obtained D ~2.

For directed animals we already have from Ref. 17 the
(exact) values of b,=(L ) /s for n <13. We made Monte
Carlo calculations for larger strips (n=15, 20, and 30)
[Table I(b)]. We tried an analysis assuming a form
(L/s)n=An®+Bn®~% where a is interpreted as
a =(1—w))/v,. Taking into account only the values for
n <13, one can extrapolate the possible values for n=15
and 20 for different values of b. If b is not too small
(b > 1.0) then these values are not very sensitive to b (for
n=20, the possible values of (L /s) are between 2.657
and 2.667), and within the error bars of the Monte Carlo
calculations. As a result, v|| takes a value between 0.816
and 0.819 [with n <13, the value 0.818 (Ref. 17) is ob-

tained for b=2]. To obtain a value of v of order 0.800
(as proposed in Ref. 14), one must choose a very low value
for the correction exponent b, and to accept the highest
values of (L/s) compatible with the error bars
((L/s)>2.68 for n=20).

B. Results for 2D systems

For clusters generated on the 2D square lattice we cal-
culate different moments of the distribution of lengths
and widths of the clusters.

(i) The mean length (L) and width (w), and expect
for large s

(LYy~s"l, (w)~s

(ii) Let X;,Y; denote the coordinates of the ith particle
in the cluster (i =1,s); the seed (i =1) is set at the origin
(X;=Y,;=0) and X;Y; are, respectively, measured
orthogonally to the preferred direction and along it. We
define, for Z being X or ¥,

1 S 1/p
T2Z|  m@)=i—pd?, (10
i=1

vy

pp(Z)=

and one expects for large s

v

(ui(Y)) ~ (o V) ~(my (X)) ~s 1,

vi

(X)) ~(my(X)) ~s (11)
(ui(X))=0.

1. Directed aggregation

For this model, these quantities are shown in Fig. 5, for
1000 < s < 18000, the average being taken over 7 samples.
The slopes compatible with these data lead to the follow-
ing estimates:

v =0.5210.02,
(12)

v, =0.4940.02 .
This is in reasonable agreement with the strip

calculations—if one takes v;=0.52, v, =049, then
(1—v))/v,~0.98—we note that there is the possibility
that v)|=v, = %, or the weaker relation v)+vi=1, which
can be justified by the following heuristic argument.

It is found in the simulations that the maximum width
of the aggregate is reached near its top, so that it has
roughly the shape of a triangle of height L and width W.
The particles start with uniform probability from any of
the 2L points lying in the allowed cone, at a height L + 1
above the root: those particles starting just above the tri-
angle are very likely to reach the cluster, and there is in
addition a region of width L!/? where particles have a
finite probability to be captured during their diffusion. If
we assume that W >>L!/2, as observed, the probability
that the cluster mass increases by one unit is

P(AN=1)~W/L . (13)
Now the probability that the height increases by one
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FIG. 5. (a) Results for 2D directed aggegrates: The various
curves are expected to have slope (v—1) for large s
(1000 <5 < 18000). (b) Results for 2D directed aggregates: The
slopes are expected to be equal to v, —1 for large s.

unit is related to the average number of topmost cluster
sites. If we assume that this number does not increase
with N, there comes

P(AL =1)~L"1, (14)
and therefore

(AL)
(AN)

which gives

w-t, (15

vH—l v,

N ~N
i.e.,
VH—"VJ_:l . (16)

If the further assumption is made that the number of
sites at the maximum distance from the axis remains fin-

ite when N increases, one obtains along similar lines

(AW
(AN)

. . 1
which gives v) = 7.

~w-t, (17)

2. Directed animals

We realized a detailed statistical study for animals of
sizes smaller than 150. The results are displayed in Fig. 6.
For v,, our data lead to the following estimate:

v,=0.49+0.03 ,

which is in good agreement with the exact value v, =+.
A direct measure of the slopes in Fig. 6 leads to an esti-
mate of v;;=0.85+0.01 for the mean length (L ). How-
ever, if we assume a Dbehavior of the type
(L)~s"(4 +Bs~®) which takes into account correc-
tions to scaling, we find

vj=0.824+0.015 .

For py(Y) an analysis of the same type gives
100 | (a)
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FIG. 6. (a) Results for 2D directed animals. The slopes are
expected to be equal to v|;. (b) Results for 2D directed animals.
The slopes are expected to be equal to v;.
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v;=0.8310.02. These estimations of v by the Monte
Carlo method favors the conjectured value v)= ~- rather
than 0.800.

C. Fractal dimension

Let us now discuss the question of the fractal dimen-
sion D of directed clusters. Suppose that we have con-
structed a large directed cluster of s sites and that we
want to measure its fractal dimension D. The canonical
procedure is to use squares of linear size € and to calculate
the minimum number .#7(€) of squares which are neces-
sary to cover the cluster. In the regime € >>1 and € much
smaller than s'!! and svl, one expects #(€) to behave

similar to
N(e)~eP . (18)

In practice it is difficult to produce a sufficiently large
cluster to satisfy the condition 1 <«<e<<s’t. Therefore,
we have used several approximate definitions of this frac-
tal dimension D. The first one consists in choosing € of

the order of the smallest of s*!l and s, which leads to
1 -—VH
Y Wi (19)
Vi

for v <v. This definition is reasonable since it gives
D=1 for directed self-avoiding walks. Moreover, if we
compare with Eq. (7), it gives that for a strip of width n

(L/s)~n'"?,

a formula which is valid for nondirected clusters.?’ For
directed animals in 2D with v, =1 and szTgl— one ob-
tains

D'~1.38,
and for directed aggregation
D’'~1.99+0.01 .

Let us note that if v, >v||, one should replace formula (19)
by

v
M
]

D=t @-1
Vi

(20)

Another approximate definition of D consists in writ-
ing that the total mass s, as a function of the macroscopic
volume of the cluster, behaves similar to

S~(Lwd—1)D"/d
with

d

DII:_—_________ .
(d—l)vl—{—vH

All these quantities, D, D', and D", give, for vj=v,=v,
the proper fractal dimension of a nondirected system,
D =1/v. However, the fractal dimension D gives a rough
characterization of directed clusters, since one knows that
they are characterized by two critical exponents, v|; and
V.

V. CONCLUSION

In this paper we performed Monte Carlo calculations
for two directed systems, one of directed animals and one
of directed aggregation. Whereas in the two models the
possible clusters are the same, the typical clusters here ob-
tained show the difference between the two statistics.
This difference is illustrated by the calculation, on strips
of finite width and on 2D systems, of the exponents which
govern the length and the width of the clusters with a
large number of particles. For the directed-animal model,
the results are in good agreement with our previous work,
giving a value for v|| of about 0.82. For directed aggrega-
tion, v and v, are both close to 5 (v=0.52+0.02,
v, =0.49+0.02), which indicates that the model is also in
a different universality class than the (nondirected) aggre-
gation models recently studied by various authors.
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